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ABSTRACT
In TREC 2011, we focus on tackling the new challenges pro-
posed by the pilot Crowdsourcing and Microblog tracks, us-
ing our Terrier Information Retrieval Platform. Meanwhile,
we continue to build upon our novel xQuAD framework and
data-driven ranking approaches within Terrier to achieve ef-
fective and efficient ranking for the TREC Web track. In
particular, the aim of our Microblog track participation is
the development of a learning to rank approach for filter-
ing within a tweet ranking environment, where tweets are
ranked in reverse chronological order. In the Crowdsourc-
ing track, we work to achieve a closer integration between
the crowdsourcing marketplaces that are used for relevance
assessment, and Terrier, which produces the document rank-
ings to be assessed. Moreover, we focus on generating rel-
evance assessments quickly and at a minimal cost. For the
Web track, we enhance the data-driven learning support
within Terrier by proposing a novel framework for the fast
computation of document features for learning to rank.

1. INTRODUCTION
In TREC 2011, we participate in the Web adhoc and di-

versity tasks, the Microblog real-time search task, and the
Crowdsourcing assessment and consensus tasks. Our focus
is the improvement of the support for data-driven ranking
models within the Terrier Information Retrieval (IR) plat-
form [19], the effective application of these models for new
tasks, e.g. microblog search, and the development of new
features for these tasks.

In the assessment task of the Crowdsourcing track [13], we
propose a close integration of a crowdsourcing infrastructure
into our Terrier IR platform, for achieving fast generation
of relevance assessments based upon Amazon’s Mechanical
Turk (MTurk)1. For the consensus task, we propose and
evaluate a machine learning approach, which leverages prior
worker accuracy, topic difficulty and worker impact for cal-
culating consensus between multiple assessors.

The major goal of our participation within the Microblog
track [20] is to determine whether filtering is an effective ap-
proach to improve the relevance and quality of a tweet rank-
ing. In particular, we propose a learning to rank approach
that uses multiple features extracted from each tweet to de-
termine if that tweet should be filtered from the ranking.

In our participation in the Web track [8], our primary goal
is to improve the underlying learning infrastructure within

1https://www.mturk.com

Terrier, such that it becomes easier to generate and evaluate
many data-driven models in a short timeframe. In particu-
lar, in the adhoc task, we propose a framework for the fast
computation of multiple query-dependent features for learn-
ing to rank. In the diversity task, we leverage learned models
within our state-of-the-art xQuAD framework [24] for search
result diversification, so as to learn both the relevance of a
document to a query and its coverage of the multiple aspects
underlying this query.

The remainder of this paper is structured as follows. In
Sections 2 and 3, we describe our participation in the Crowd-
sourcing track assessment and consensus tasks, respectively.
Section 4 details our participation in the new Microblog
track real-time search task. In Sections 5 and 6, we de-
scribe our Web track adhoc task and Web track diversity
task participations, respectively. Conclusions are provided
in Section 7.

2. CROWDSOURCING TRACK:
ASSESSMENT TASK

The aim of the assessment task of the Crowdsourcing track
is to develop effective approaches to generate accurate rel-
evance assessments for Web documents in a fast and cheap
manner [13]. For our participation in the assessment task,
we integrate a crowdsourcing infrastructure into our Terrier
IR platform, to achieve the fast generation of relevance as-
sessments based upon Amazon’s Mechanical Turk (MTurk).
The aim of integrating this crowdsourcing infrastructure is
to decrease the time, effort and expertise required to crowd-
source relevance assessments for novel tasks and new col-
lections. In particular, through a closer integration to the
Terrier platform that performs the searches being evaluated,
aspects of the crowdsourcing, e.g. breaking down searches
into crowdsourcable jobs, can be automated.

Our proposed integrated infrastructure extends Terrier
with two types of functionalities facilitating fast and easy
crowdsourcing of relevance assessments. Firstly, the infras-
tructure facilitates automatic generation of one or more rel-
evance assessments for a Web document. In particular, it
takes lists of ranked results returned by Terrier and auto-
matically constructs a series of assessment tasks for the Web
documents within the ranked results. Each assessment task
is expressed as MTurk Human Intelligence Task (HIT). Each
HIT is operationalised as a MTurk ExternalQuestion [3] that
redirects workers to a modified instance of the Terrier Web
interface2. This Web interface is hosted on our local ma-

2http://terrier.org/docs/v3.5/terrier_http.html



Classification Metrics Error Metrics
Ground Truth Run Accuracy Recall Precision Specificity Log-Loss KL-Divergence RMSE
Consensus TREC Median 74.0% 75.4% 79.1% 70.4% 954.6 2058.2 63.8%

uogTrP1rg 78.2% 86.6% 80.4% 64.0% 822.5 612.8 54.4%
TREC Assessors TREC Median 67.5% 73.1% 78.1% 52.5% 103.0 103.1 50.6%

uogTrP1rg 61.7% 73.8% 67.7% 33.0% 125.9 126.0 50.9%

Table 1: Performance of uogTrP1rg compared to the two TREC median ground truth assessment sets within
the assessment task of the Crowdsourcing track. The best run is highlighted for each ground truth and
measure.

Figure 1: Example of the Web interface used during
the assessment task of the Crowdsourcing track.

chines and is used by the workers to assess each document.
With regard to the Web interface design, we focus on achiev-
ing fast turn-around times, with only 1-click needed to as-
sess each document. We also use pre-rendered Web pages
in conjunction with a ‘floating’ assessment panel, which is
always visible in the assessment interface, hence minimising
the worker’s scrolling effort. The interface used is shown in
Figure 1.

Secondly, the proposed infrastructure provides automatic
and supervised validation for quality assurance on the crowd-
sourced assessments produced. In particular, our validation
is a two-stage process. In the first, the time spent on the task
was used to automatically identify poorly performing work-
ers [15]. During the second stage, we perform a variant of
gold judgement validation [12]. From the crowdsourced as-
sessments, a 10% subset is selected that maximises the cov-
erage of the workers participating in the assessment task,
while also accounting for the number of assessments that
each worker has made, i.e. more assessments from a prolific
worker will be validated than from a worker that judged
only a single document. The selected assessments are man-
ually assessed by the crowdsourcer. The resultant validation
assessments are used to identify workers that are not com-
pleting the assessment task in good faith, e.g. workers that
are just randomly clicking.

We submitted one run, namely uogTrP1rg, which uses
our integrated crowdsourcing infrastructure to generate rel-
evance assessments using Amazon’s Mechanical Turk. As-
sessments were generated for the test topics over the course
of a three-day period. Notably, in contrast to standard
crowdsouring practices [15], only one assessment per doc-
ument was collected. This assured that the crowdsourcing
costs incurred were kept very low. Indeed, we payed about
US$39 for our participation. As per the TREC submission
guidelines [13], assessments marked for rejection from our
validation process were also included in the run (this will
degrade run performance). Runs were evaluated in compar-

ison to two ground truths, namely: TREC assessors; and
the majority vote of all submitted runs to the Crowdsourc-
ing track (Consensus). Table 1 reports the performance of
uogTrP1rg compared to the TREC median. Performance is
reported in terms of classification measures (higher is better)
and error measures (lower is better).

From Table 1, we observe that uogTrP1rg marginally un-
derperformed the TREC median, except under Recall, in
comparison to the TREC assessor ground truth. However,
it markedly outperformed the TREC median under all mea-
sures but Specificity on the consensus ground truth. This
shows that our approach generated assessments of similar
quality to that of other participating systems. Overall, bear-
ing in mind the limited resources allocated, i.e. only US$39,
we believe that achieving such a reasonable performance val-
idates the effectiveness of our proposed infrastructure for au-
tomatic crowdsourcing of relevance assessments. Moreover,
if the assessments that were marked for rejection during val-
idation but included in the run were removed, it is expected
that performance will be markedly increased.

3. CROWDSOURCING TRACK:
CONSENSUS TASK

The aim of the consensus task of the Crowdsourcing track
is to investigate techniques for aggregating multiple assess-
ments of varying quality for a single document into a sin-
gle high-quality assessment for that document, i.e. calculate
consensus among multiple assessors [13]. Participants calcu-
late consensus across five crowdsourced assessments for Web
documents. For our participation in the consensus task, we
propose a data-driven approach that learns a model for con-
sensus calculation. Our approach trains a model comprised
of three features, namely: prior worker accuracy – how well
the worker performed on previous assessments; topic diffi-
culty – how much disagreement there is between workers
for the topic; and worker impact – what proportion of the
assessment task has the worker attempted. We linearly com-
bine these features extracted for an assessment to score that
assessment as shown below:

Score(a, w, d) =
˛

˛

˛

˛

˛
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where a is the assessment, w is the worker, d is the doc-
ument being assessed, Accuracy(w) is the prior accuracy
for worker w, HITsDone(w) is the number of HITs com-
pleted by worker w, TotalHITs is the number of HITs that
were available to the worker and Agreement(t) is the level
of Kappa Fleiss [11] agreement between all workers that at-
tempted document d. N is a normalising factor to ensure



that the numerator remains within the range [0-1]. α, β

and γ are weights for each feature. We learn these weights
using a line-search optimisation [6]. The objective function
minimises Root Mean Squared Error (RMSE) on the de-
velopment topic set provided for the task [13]. Each new
assessment is weighted via the linear combination of fea-
ture scores. Weighted assessments for a single document are
summed together to provide a final assessment value for that
document as shown below:

Assessment(A,W, d) =
1

|A|

|A|
X

i=1

Score(Ai, Wi, d) (1)

where d is the document being assessed, A is the set of as-
sessments for document d, W is the set of workers that made
the assessments in A and |A| is the size of A, i.e. the number
of assessors.

For the consensus task, we submitted one run, uogTrP2O4-
wtr that uses our learned model to calculate consensus judge-
ments. Table 2 reports the performance of our uogTrP2O4wtr
run at consensus calculation against a ground truth by TREC
assessors. Performance is measured in terms of classifica-
tion based measures (higher is better) and error based mea-
sures (lower is better). From Table 2, we observe that un-
der classification metrics, uogTrP2O4wtr achieved less than
the TREC median performance. However, under two of the
three error based metrics, i.e. Log-Loss and KL-Divergence,
uogTrP2O4wtr improved over the TREC median, i.e. a
lower overall error was observed. This indicates that our
learned model is good at expressing uncertainty, such as
when we have no prior evidence about the workers making
the assessments. However, as a consequence, assessments
from good workers that we have never seen before receive lit-
tle weight. Overall, our approach generates useful estimates
of the performance of a worker when prior evidence exists.
However, are currently further developing this approach to
better account for cases where little is known about a worker.

4. MICROBLOG TRACK:
REAL-TIME SEARCH TASK

The aim of the TREC Microblog track real-time search
task is to investigate approaches to retrieve relevant tweets
from before a point in time, when tweets are ranked in
reverse-chronological order [20]. Participants rank tweets
from the Tweets11 Twitter corpus for a set of query/timest-
amp pairs, referred to as topics. For our participation, we
investigate a learning to rank approach, with the aim of
learning a model that identifies tweets that can be discarded
from a reverse-chronologically ordered ranking, hence im-
proving relevance in the top ranks. In particular, this ap-
proach learns the features of a tweet that indicate when the
tweet should be discarded, e.g. when it has poor relevance
to the query or is written in a non-English language.

The Tweets11 corpus is unusual, in that it is not pre-
provided by TREC. Instead, a set of approximately 16 mil-
lion tweet identifiers are provided along with a tool for down-
loading the tweets for those tweet identifiers [20]. The corpus
is dynamic, i.e. the number of available tweets changes over
time, as users delete their own tweets, or spam accounts are
removed by Twitter itself. There are two alternate methods
via which the tweet downloading tool can collect tweets,
namely: JSON – where full details of the tweet are down-
loaded; or HTML – where instead the HTML page for each

Data Quality Value
Tweets11 Corpus Time Range 23/01/11 → 08/02/11

Days 16
# Tweets 15,663,909*
Avg. Tweets Per Day 978,994*
Unique URLs 2,274,350*
Unique Twitterers 5,218,687*

Table 3: Tweets11 corpus statistics. Values marked
with * are relative due to the dynamic nature of the
Tweets11 corpus.

tweet is scraped for content. We developed a customised ver-
sion of the tool that uses the HTML method to download the
corpus. Statistics of our version of Tweets11 are provided in
Table 3. Using the Terrier IR platform [19] in conjunction
with a new Twitter collection class to enable the parsing of
the corpus3, we indexed the Tweets11, removing stopwords
and stemming each tweet using the English Porter Stemmer.

Before applying our proposed learning to rank approach,
we first create a time-ordered ranking of tweets from Tweets11
for each topic. In particular, for a topic – comprised of a
query/timestamp pair – we retrieve a ranking of tweets con-
taining one or more query terms in reverse-chronological or-
der, which were posted before the timestamp. This ranking
is referred to as the sample. The sample has high recall but
low precision, i.e. most of the relevant tweets are within the
ranking, but due to the reverse chronological order these are
unlikely to occur in the top ranks. We then reduce the size
of the sample, by removing any tweets not containing one
or more hashtags (as we will show later, this proved to be a
mistake).

Next, we filter the sample using our new learning to rank
approach. In particular, we define six feature sets, each de-
scribing one aspect of the tweets in the sample. Table 4
describes these feature sets and lists the number of indi-
vidual features within each. Notably, the last two feature
sets – Referred Page and Twitterer – were extracted from
external corpora in a timely fashion, i.e. a crawled corpus
of documents linked from Tweets11 and from the Twitter
Gardenhose stream, respectively.

Using the Automatic Feature Selection [17] learning to
rank technique on a separate topic set comprised of 55 topics
crowdsourced using Amazon’s Mechanical Turk, we trained
models for estimating whether tweets should be filtered out.
In particular, we train one model using the 66 features from
the first four feature sets in Table 4, and two models using
the 76 features from all feature sets. The objective function
used was Normalised Discounted Accumulative Gain at rank
30 (NDCG@30).

Furthermore, during the training process, a time-decay
function can be applied to the score of each tweet to create
a model that promotes more recent tweets. In particular,
the time-decay function discounts the score for each tweet
as follows:

decay(score, age) = score · 1√
18 · π

· e−
age−15

9 + 0.3 (2)

where score is the score for a tweet as defined by one of our
learned models and age is the age of that tweet in compar-
ison to the query time (in hours). This particular function
was chosen to primarily promote tweets made during the 6

3http://ir.dcs.gla.ac.uk/wiki/Terrier/Tweets11



Classification Metrics Error Metrics
Ground Truth Run Accuracy Recall Precision Specificity Log-Loss KL-Divergence RMSE
TREC Assessors TREC Median 61.7% 73.3% 59.5% 50.2% 2047.6 2047.8 54.8%

uogTrP2O4wtr 44.1% 34.5% 42.7% 53.7% 931.7 931.7 58.8%

Table 2: Performance of uogTrP2O4wtr at consensus calculation against TREC assessors within the consensus
task of the Crowdsourcing track. The best run is highlighted for each measure.

Feature Set Internal Summary Number
Tweet Relevance ✔ Features encapsulating the relevance of the tweet to the query, e.g. document retrieval model scores like BM25 [23]. 38
Tweet Quality ✔ Features from the tweet that may be indicators of quality, e.g. URLs and tweet length. 7
Tweet Language ✔ Features generated describing the language of the tweet, e.g. the classification probability of being written in English. 17
Spam Detection ✔ Features from the tweet that may be indicate that it is spam, e.g. a high hashtag count [10]. 4
Referred Page ✖ Features extracted describing Web pages referenced from each tweet, e.g. stopwords contained [4] 5
Twitterer ✖ Features about the user that made the tweet, e.g. number of followers and statuses 5
Total 76

Table 4: A summary of all tweet filtering features used in the Microblog track real-time search task.

All Rel High Rel
Run Submitted MAP P@30 MAP P@30
TREC median - 0.1421 0.2229 0.1510 0.2343
uogTrUB2 ✔ 0.1014 0.1939 0.0714 0.0818
uogTrLqea ✔ 0.0625 0.1068 0.0402 0.0485
uogTrLqeabd ✔ 0.0625 0.1068 0.0402 0.0485
uogTrLqeabdd ✔ 0.0625 0.1068 0.0402 0.0485
uogTrUB2 NoFilter ✖ 0.0427 0.0532 0.0473 0.0559
uogTrLqeabd NoFilter ✖ 0.1136 0.2381 0.0973 0.2262

Table 5: Results of our submitted and unsubmit-
ted runs for the Microblog track under mean aver-
age precision (MAP) and precision at 30 (P@30) for
both the High Rel and All Rel topic sets.

hour period prior to the query time.
We apply a learned model, either with our time-decay

function or not, over 66 or 76 features on the tweet sample
to create each run. We submitted the following four runs to
the TREC Microblog track:

• uogTrUB2: The sample (with hashtag filtering) before
applying the learned model, as a baseline.

• uogTrLea: uogTrUB2 filtered using a model learned
from 66 internal (extracted from the Tweets11 corpus)
features: Tweet Relevance, Tweet Quality, Tweet Lan-

guage and Spam Detection. The time-decay function
was not used during training.

• uogTrLqeabd: uogTrUB2 filtered using the same 66
internal features as uogTrLea, but adds the 10 external
features from the Referred Page and Twitterer feature
sets. The time-decay function was not used during
training.

• uogTrLqeabdd: uogTrUB2 filtered using the same 76
features as uogTrLqeabd, but where the time-decay
function was applied to create a model that promotes
more recent tweets.

Table 5 reports our run performances in terms of the mean
average precision (MAP) and precision at 30 (P@30) mea-
sures for the two official topic sets, namely: High Rel (only
highly relevant tweets) and All Rel (all relevant tweets) [20].
We observe that our runs are sub-median in effectiveness
and that our baseline run (uogTrUB2) – that only uses the

sample – outperformed runs that added the learned filter-
ing approach. Upon analysis we observed that the hashtag
filtering applied to the tweet sample proved to be overly
restrictive on the test topics, in that it filtered out many
(actually the majority) of relevant tweets. Further filtering
of this already over-filtered ranking by the learned model
could only harm performance. This shows that many rele-
vant tweets do not use hashtags at all, hence it is a mistake
to use it as a filter.

In light of this, to test our learned filtering approach, we
tested two additional unsubmitted runs, uogTrUB2 NoFilter
and uogTrLqeabd NoFilter that are also shown in Table 5.
uogTrUB NoFilter uses a sample without the hashtag-based
reduction or any learned model filtering. Meanwhile, uogTr-
Lqeabd NoFilter uses the same learned model as our third
official run (uogTrLqeabd), but does not filter the sample be-
fore applying the learned model. We see that the completely
unfiltered run, uogTrUB2 NoFilter, is markedly worse than
its filtered counterpart, i.e. uogTrUB2. But the additional
learned run, uogTrLqeabd NoFilter, improves over our ini-
tial baseline run and provides similar performance to the
TREC median. Indeed this run improves over the TREC
median under P@30 on the All Rel topic set. This result
is promising, as it indicates that our learning to rank ap-
proach that filters a reverse-chronologically ordered ranking
of tweets may be able to improve the quality and relevance
of a tweet ranking. Indeed, with training data more rep-
resentative of the topics, we expect that effectiveness will
improve.

5. WEB TRACK:
ADHOC TASK

In the adhoc task [8], our primary aim is to enhance
our data-driven learning infrastructure that has proven ef-
fective during previous participations [16, 28], such that it
becomes easier to generate and evaluate many learning to
rank models in a short timeframe. To this end, we extend
Terrier with a framework for the fast computation of doc-
ument features for learning to rank for web search. This
framework ensures that the postings of the documents most
likely to make it into the final ranking are readily available
for an on-the-fly computation of multiple query-dependent
features, without requiring multiple passes over the posting
lists in the inverted file. For instance, this permits learned



Features Total
Weighting models (DPH [2], PL2 [2], BM25 [23], LM, MQT [27]) 21
Fields-based models (PL2F [14]) 1
URL and link analysis features (e.g. PageRank, Absorbing Model* [22], EdgeReciprocity*) 13
Quality features (e.g., fraction of stopwords, table text [5]) 8
Click feature (click count) 1
Spam feature (Cormack’s fusion score [9]) 1
Term-dependence models (MRF [18], pBiL [21]) 2
TOTAL 45* / 47

Table 6: Document features used in the Web track. Category A runs use all features, except for the two
marked with a star (*). Category B runs use all features.

Run Category NDCG@20 ERR@20
TREC median 0.1876 0.1061
uogTrA45Nm A 0.3043 0.1481
uogTrA45Vm A 0.3052 0.1485

uogTrB47Vm B 0.2278 0.1231

Table 7: Results of the three submitted runs for
the Web track adhoc task under the normalised dis-
counted cumulative gain at rank 20 (NDCG@20)
and expected reciprocal rank at rank 20 (ERR@20)
measures.

models to efficiently combine multiple standard weighting
models (e.g. PL2 [1]), proximity models (e.g. Markov Ran-
dom Fields [18]), and fields-based models (e.g. PL2F [14]).
Moreover, the framework is compatible with dynamic prun-
ing strategies such as MaxScore [31] and WAND [7] (which
permit increased efficiency without loss of effectiveness), en-
suring that learned models deploying many features can be
efficiently and effectively applied.

We index the category A (∼500M English documents)
and category B (∼50M English documents) subsets of the
ClueWeb09 corpus without stemming or stopwords. At re-
trieval time, a weak Porter stemmer and the DPH [2] weight-
ing model are used to identify 5000 documents to re-rank
using the learned models. In particular, our category A
and B runs use a total of 45 and 47 features, respectively,
as described in Table 6. For learning, we employ the AFS
algorithm [17], with the 98 TREC 2009 and 2010 queries
used as training data. In particular, we consider two basic
learning scenarios: with and without validation data. In the
former scenario, the 98 queries are randomly split into train-
ing (60%) and validation (40%), so as to prevent overfitting;
in the latter scenario, all queries are used for training and
no validation is performed.

We submitted three runs to the adhoc task:

• uogTrA45Nm (category A) deploys ranking models lea-
rned using 45 features, without a validation step;

• uogTrA45Vm (category A) deploys ranking models lea-
rned using 45 features, with a validation step;

• uogTrB47Vm (category B) deploys ranking models lea-
rned using 47 features, with a validation step.

Table 7 reports the performance of the three submitted ad-
hoc runs under the normalised discounted cumulative gain
at rank 20 (NDCG@20) and expected reciprocal rank at
rank 20 (ERR@20) measures. We observe that we are sub-
stantially above the TREC median for the adhoc ranking
task. Indeed, run uogTrA45Vm outperforms the median by

66% for NDCG@20 and 39% for ERR@20. Moreover, it was
the best submitted run by NDCG@20 among all participat-
ing groups in the adhoc task of the Web track, and second
ranked by ERR@20 [8]. Furthermore, our category A run
that used validation marginally improved over the category
A run that did not use validation, indicating that the use
of validation data might be useful in an adhoc setting. Fi-
nally, we note the higher performance of the category A runs
compared to the category B run, contrasting with previous
experiences in the 2009 and 2010 TREC Web track [26].
This suggests that our learned models for category A runs
are better able to identify high quality documents within the
larger category A corpus than in previous years. Overall, we
find that our learned approach for Web search has been very
effective for the 2011 Web track adhoc task.

6. WEB TRACK:
DIVERSITY TASK

Category
ERR-IA α-NDCG NRBP

task
@20 @20

TREC median 0.4079 0.5160 – diversity
uogTrA45Nm A 0.5069 0.6118 0.4642 adhoc
uogTrA45Nmx2 A 0.5284 0.6298 0.4872 diversity
uogTrA45Vm A 0.5025 0.6103 0.4596 adhoc
uogTrA45Vmx A 0.5238 0.6304 0.4799 diversity
uogTrB47Vm B 0.4646 0.5611 0.4304 adhoc
uogTrB47Vmx B 0.4674 0.5649 0.4312 diversity

Table 8: Results of the submitted runs to the diver-
sity task of the Web track.

In the diversity task [8], we continue to improve our state-
of-the-art xQuAD framework for search result diversifica-
tion [24, 25, 27, 30]. In particular, xQuAD models an am-
biguous query as an ensemble of the multiple possible infor-
mation needs underlying this query, represented as different
query aspects [29]. Given an initial ranking R for the query
q, and a set of aspects A identified for this query, xQuAD
iteratively builds a re-ranking S by selecting, at each itera-
tion, a document d∗ ∈ R \ S such that:

d
∗ = arg max

d∈R\S

(1 − λ)P(d|q) + λ P(d, S̄|q), (3)

where P(d|q) is the probability that a document d satisfies
q and P(d, S̄|q) is the probability that d, but none of the
documents in S , selected in previous iterations, satisfies the
multiple aspects of q. In practice, these two probabilities can
be thought of as representing the relevance and the diver-

sity of d, respectively, with the parameter λ controlling the
trade-off between the two probabilities. Additionally, the



probability P(d, S̄|q) can be further expanded as follows:

P(d, S̄|q) =
X

a∈A

P(a|q)P(d|q, a)
Y

dj∈S

P(d̄j |q, a), (4)

where the aspect a ∈ A is one of the possible aspects un-
derlying the query q, P(a|q) conveys the importance of this
aspect in light of q, P(d|q, a) estimates the coverage of d
with respect to a, and

Q

P(d̄j |q, a) estimates the novelty of
any document satisfying a, given how badly this aspect is
satisfied by the previously selected documents dj ∈ S .

In TREC 2011, we deploy learning-to-rank to produce re-
fined estimations for two key components of xQuAD: the
relevance of a search result to the initial query (i.e., P(d|q)),
and the coverage of this result with respect to each of the
aspects identified for this query (i.e., P(d|q, a)). In our par-
ticipation, we exploit query reformulations from a commer-
cial search engine in order to identify multiple query as-
pects [24]. For learning the relevance and coverage compo-
nents of xQuAD, we leverage the same document features
used for our adhoc runs described in Section 5. In particular,
we estimate P(d|q, a) as:

P(d|q, a) =
X

i

wifi(d, q, a), (5)

where fi is one of the features from Table 6, and wi is its
learned weight, obtained using the AFS algorithm [17], as
described in Section 5. As in the adhoc task, we also consider
two basic learning scenarios: with and without validation
data, based upon the same set of 98 queries.

We submitted three runs to the diversity task, all of which
leverage machine learned models within xQuAD:

• uogTrA45Nmx2 (category A) deploys xQuAD to diver-
sify the top 1000 results retrieved by our adhoc uog-
TrA45Nm run, with document coverage learned with-
out validation;

• uogTrA45Vmx (category A) deploys xQuAD to diver-
sify the top 1000 results retrieved by our adhoc uog-
TrA45Vm run, with document coverage learned with
validation;

• uogTrB47Vmx (category B) deploys xQuAD to diver-
sify the top 1000 results retrieved by our adhoc uog-
TrB47Vm run, with document coverage learned with
validation.

Table 8 shows the diversification performance of our sub-
mitted runs to the diversity task, as well as their correspond-
ing baseline adhoc runs from Section 5. From the table, we
first observe that all our category A runs are substantially
above the TREC median (up to 29.5% and 14% above the
median ERR-IA@20 and α-NDCG@20, respectively). Con-
trarily to previous editions [16, 28], but similar to our adhoc
task observations this year, we note the higher performance
of our diversity task category A runs compared to our cat-
egory B run [26]. More importantly, we observe that our
diversity runs consistently improve upon our strongly per-
forming adhoc runs, once again attesting the effectiveness
of our xQuAD framework for search result diversification.
As for the investigated learning scenarios, we observe no
marked benefit in deploying separate validation data dur-
ing learning. Finally, we note that run uogTrA45Nmx2

achieved the highest ERR-IA@20 and NRBP out of all sub-
mitted runs to the Web track 2011 diversity task, while uog-
TrA45Vmx achieved the overall best performance in terms
of α-NDCG@20 [8].

7. CONCLUSIONS
In TREC 2011, we participated in the Web adhoc and di-

versity tasks, the Microblog real-time search task and Crowd-
sourcing assessment and consensus tasks, using our Terrier
IR platform. In particular, we focused on improving our
infrastructure and support for efficient data-driven ranking
models within Terrier for the Web and Microblog tracks,
and then developed an effective new data-driven filtering
approach for tweet search. For the Crowdsourcing track,
we integrated a crowdsourcing infrastructure into Terrier
for achieving fast generation of relevance assessments based
upon Amazon’s Mechanical Turk and proposed a new ma-
chine learning approach for calculating consensus over mul-
tiple assessors.
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