
Economic Theory for Memory Management Optimization

(Position Paper)

Jeremy Singer
University of Glasgow, UK

jeremy.singer@glasgow.ac.uk

Richard E. Jones
University of Kent, UK

r.e.jones@kent.ac.uk

ABSTRACT
In this position paper, we examine how economic theory
can be applied to memory management. We observe the
correspondence between the economic notion of a consumer
and an instance of a virtual machine running a single pro-
gram in an isolated heap. Economic resource consumption
corresponds to the virtual machine requesting and receiving
increased amounts of heap memory from the underlying op-
erating system. As more memory is allocated to a virtual
machine’s heap, there is additional benefit (cf. economic util-
ity) from the extra resource. We also discuss production and
cost functions, which might assist in efficient memory alloca-
tion between multiple virtual machines that are competing
for a fixed amount of shared system memory.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

General Terms
Economics, Theory

Keywords
Microeconomics, Memory management, Garbage collection,
Virtual machines, Resource allocation

1. INTRODUCTION
One popular definition of economics is that it deals with

the allocation of scarce resources among alternative uses [9].
We have previously shown that microeconomic theory is ef-
fective in tuning the heap size of a garbage collected pro-
gram [11] but we feel that it may have wider applications in
the area of memory management for computer systems. In a
multi-tasking environment, various processes are competing
for shared resources. One of the fundamental commodities
that can be dynamically divided between the processes is
system memory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICOOOLPS’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0894-6/11/07 ...$10.00.

In this paper, we restrict our consideration to virtual ma-
chines (VMs). Each VM has its own distinct, garbage-
collected heap. A single managed program executes within
each VM instance. Each VM/program has a minimum heap
size threshold below which program execution fails due to
insufficient memory. If a VM is allocated more heap space,
then less garbage collection (GC) takes place, so the pro-
gram runs faster. In general, the more memory we assign to
a VM, the lower the GC overhead, the faster the program
executes.

Microeconomics offers a rich theory to account for the
behaviour of both consumers and producers. The concept
of economic utility theory involves measuring or predicting
how much benefit a consumer gains from additional resource
consumption. Production functions measure the change in
output due to a change in the quantity of some input. Cost
functions can be used to minimise the cost of the inputs sub-
ject to some constraint. In this work, we consider how these
theories can be applied concretely to the area of memory
allocation for multiple VMs. We posit that this theory can
provide a principled approach to selecting which VM will
gain the most benefit from receiving available free memory,
or which VM will be least affected when memory must be
taken from an existing process (e.g. due to system paging).

2. MOTIVATION
We envisage a system where multiple VM instances com-

pete for memory, and there is scope for substantive redis-
tribution of memory between VMs. A likely environment
is a large shared-memory server that executes multiple jobs
simultaneously. Each job is a single VM instance with an
associated heap. Examples include:

1. an enterprise Java server, running multiple Java appli-
cations, each in its own isolated JVM instance.

2. a multi-core Hadoop system, with each worker node
executing in its own isolated JVM instance [7].

3. a Xen server [3] running virtualized OS instances in a
compute-cloud.

In such systems, the underlying operating system or hy-
pervisor must determine how to apportion the available phys-
ical memory resources to the different VMs. There may be
different policies governing the distribution of memory. All
VMs may be given equal treatment, or some may have spe-
cific priorities. In a cloud computing scenario, there may be
service level agreements to maintain.

In this paper, we present microeconomic apparatus to
handle this kind of runtime resource allocation problem.
One common criticism of memory management is that it
uses ad-hoc techniques, low-level heuristics, and bottom-up
engineering practice. Our research goal is to phrase mem-
ory management problems in a high-level manner that is
suitable for the application of standard economic theory, in
order to derive viable solutions from a principled theoretical
framework.

Server configuration is a significant problem for systems
administrators. It is difficult since there are so many config-
uration options to tune, at a variety of levels in the execution
stack. OS and VM configuration often requires a heuristic
approach, or some automated tuning. We have a particular
interest in auto-tuning approaches to memory management,
e.g. [1, 10]. Our newly adopted, alternative philosophy is to
adopt a more abstract view, based on economic theory, that
allows higher-level tuning.

3. MICROECONOMIC THEORY
This section outlines the basics of standard microeconomic

theory in Section 3.1. Then we show how this might be
applied to memory management for concurrently executing
virtual machine instances in Section 3.2.

3.1 Basic Theory
Microeconomic theory allows modelling from the view-

point of either the consumer or the producer. We believe
that both viewpoints can provide a more principled frame-
work for policy decisions in a memory manager.

3.1.1 Utility theory
Consumers desire a commodity because of its ability to

satisfy their want. This want-satisfaction property is known
as economic utility. As an individual consumer consumes
more of a commodity per time period, his/her satisfaction
(known as total utility) increases. Marginal utility is the ex-
tra satisfaction derived from consuming one additional unit
of the particular commodity per unit of time, while hold-
ing all other consumption constant. More mathematically,
marginal utility is the derivative of total utility.

In general, total utility increases with each additional unit
of commodity. However it generally increases by smaller
amounts as more and more of the commodity is consumed,
i.e. the marginal utility declines with increasing units of com-
modity. For example, consider the marginal utility that re-
sults from acquiring one additional penny. For someone who
only has one penny initially, an extra penny is significant.
However for a millionaire, obtaining one more penny is neg-
ligible. In this case, the marginal utility caused by acquiring
an extra penny decreases as wealth increases.

In some cases of excessive consumption, total utility reaches
a saturation point and then begins to decline. This is the
point at which the corresponding marginal utility becomes
negative. For example, consider a personal-health-based
utility function for hamburger consumption. For some value
of N > 0, there are detrimental health effects associated
with a daily intake of N hamburgers. For other commodi-
ties, the utility function is non-satiable. i.e. the marginal
utility is always positive.1

1One might expect the utility function for memory alloca-
tion to be non-satiable, i.e. increasing the heap size of a

The law of diminishing marginal utility means that the
first unit of consumption of a good or service yields more
utility than the second and subsequent units. This is re-
flected in the negative slopes of marginal utility curves.

One key issue concerns how to measure values of utility.
In economics, utility is a quantitative summary of consumer
satisfaction or happiness. Sometimes such values are difficult
to assess directly. It may be easier to use proxy measures
for utility.

3.1.2 Production functions
A production function specifies the output of a firm, in-

dustry or economy for all combinations of inputs. Unlike a
utility function, a production function is not based on con-
sumer choice but on external factors such as technology or
labour productivity. Production functions can be used to
measure the effect on output of varying the quantity of one
or more inputs. In practice, some inputs may be fairly fixed
or at least ‘lumpy’ (for example, it is expensive to open a
new factory but the gains from doing so are large) whereas
other inputs (such as the number of workers) may be more
flexible.

Economists are interested in MPk, the marginal physical
product of an input k. This is the change in output obtained
from increasing the quantity of input k, or mathematically
the partial derivative of the production function with respect
to the quantity of input k. If inputs are substitutable (for
example, the amounts of physical memory given to differ-
ent VMs), then we are also interested in the marginal rate
of technical substitution (RTS): the rate at which one in-
put can be substituted for another while holding the output
constant.

3.1.3 Cost functions
A cost function measures the cost of production of an out-

put as a function of the inputs and their costs. Typically, we
want to minimise the total costs given a constraint on the
inputs: a constrained minimisation problem. We can define
the marginal productivity per unit spent as the ratio of the
marginal physical product of an input and cost of that in-
put. The general solution to the cost minimisation problem
reveals that, to minimise costs, the marginal productivity
per unit spent should be the same for all inputs.

3.2 Application to Virtual Machines
In this section, we consider how to apply the notions of

microeconomic theory to memory management for virtual
machines (VMs).

3.2.1 Consumers and Producers
We can consider the analogy between economics and mem-

ory management either in terms of consumers and commodi-
ties, or in terms of inputs and outputs.

• The consumers are individual VM instances. Each
VM is competing with the other VMs for allocation of
memory, in the system. The commodity is system
memory, units of which can be allocated to a single
VM instance to form part of that VM’s heap.

program does not degrade its performance. However, when
the heap is extremely overprovisioned, system effects like
paging can degrade performance.

• A producer transforms inputs to outputs. We con-
sider the whole system to be the producer. The in-
puts are the units of system memory allocated to
each VM instance. The output might be the total
volume of bytes allocated by all programs, which is
clearly constant overall (so we have an isoquant2).

3.2.2 Utility
The measurement of utility is somehow related to reduced

garbage collection (GC) overhead. When an individual VM
has a larger heap, it performs less GC. This allows the overall
execution of the particular program to proceed faster.

The first suggestion is that total utility might be inversely
proportional to overall execution time spent in GC. We could
compute total utility, over the full execution of the program,
as:

TU = 100 − %GC time (1)

This is similar to our earlier work on allocation curves [11].
There we considered the number of GCs incurred through-
out program execution, at each VM heap size. However we
suppose that there is a high correlation between the number
of GCs and the time spent in GC. Using this measure for to-
tal utility, the marginal utility then becomes the derivative
of the allocation curve, which is equivalent to the metric we
defined in [11] as allocation elasticity.

A second suggestion is that the total utility might be di-
rectly proportional to the allocation rate of a program. A
program is likely to require increased heap memory (or in-
creased GC) if it has a high allocation rate. On the other
hand, if the program is not allocating new data, then it does
not require extra heap memory.

3.2.3 Cost
Whereas the previous two suggestions considered VM be-

haviour (time spent in GC) and mutator behaviour (allo-
cation rate) in relative isolation, our final suggestion is a
combined measure of both GC and allocation activity. This
is the mark/cons ratio, which is a standard GC metric, e.g.
[4]. Mark is a measure of GC activity (how many memory
cells are marked as live during a single GC trace). Cons is
a measure of mutator activity (how many new memory cells
are allocated on the VM heap during program execution be-
tween two consecutive GCs). When the mark/cons ratio is
high, there is a lot of GC in relation to allocation. When the
mark/cons ratio is low, there is a high amount of allocation
in relation to GC activity. A GC optimization is accepted
as useful if it reduces the mark/cons ratio, e.g. [2, 12].

As the VM heap size increases, so the amount of GC re-
duces; thus the mark/cons ratio should go down. Thus we
suggest that the mark/cons ratio might be another potential
proxy measurement for marginal utility for memory manage-
ment. The law of diminishing marginal utility is satisfied
empirically—in general, further heap increases gives smaller
reductions in the mark/cons ratio.

However a further option is to use the mark/cons ratio
as the productivity function for a VM instance. In fact, to
get the mathematics correct, we need to use the inverse of
the mark/cons ratio. This inverse ratio will increase as the

2An isoquant is a contour line running through a set of
points at which the same output is produced while varying
the quantities of the inputs.

amount of GC decreases, i.e. the productivity is correlated
with the proportion of useful work performed by the VM.

One factor in favour of the mark/cons ratio is that it is
already a well-known and accepted metric in the GC com-
munity. One advantage of considering the mark/cons ratios
of each executing program is that it takes into account both
the rate at which a program is allocating memory and its
volume of live memory. For example, it is likely to be desir-
able to differentiate in terms of memory resources given to
a program that is both allocating and freeing rapidly, and
one which has a much more steady-state behaviour. It may
therefore be better to phrase production or cost functions in
terms of mark/cons ratios.

4. DIRECTIONS FOR FUTURE RESEARCH
Our overall goal for this research project is to apply eco-

nomic theory in a multi-VM environment, to determine how
to share memory effectively between the VM instances. As
the system load varies dynamically, as new processes start
and existing processes complete execution, the OS has to
co-operatively resize heaps to allocate memory effectively to
the multiple VMs, whilst avoiding paging due to excessive
memory allocation. There are existing research systems that
do this (e.g. [5, 15, 14]) but none that work co-operatively
with all processes, and none that use economic theory to
determine their outcome.

Some questions remain, which will influence the system
design. There are issues about prioritization of VMs. Ini-
tially we will assume that they all have equal priority. How-
ever we can imagine situations where users set priorities for
different VMs, or there are service-level agreements to main-
tain which require VM prioritization.

Another question involves the measurement of utility, pro-
duction or cost curves. Given suitable profiling runs, it
might be possible for each Java program to have a repre-
sentative utility curve embedded in its meta-data. How-
ever there are weaknesses to this approach. We are aware
that Java program GC behaviour can be extremely input-
dependent [8] or that the meta-data could be modified to
give particular programs unfair advantages. Another possi-
bility is to keep a running measure of utility at runtime, com-
puted over a window of recent activity. This dynamic profil-
ing approach may incur extra overhead, but such statistics-
gathering techniques are common in adaptive runtime sys-
tems.

5. RELATED WORK
As already mentioned, we have explored some of the analo-

gies between microeconomics and memory management in
our earlier work [11]. We introduced allocation curves as an
analogue of demand curves. An allocation curve plots the
number of GCs incurred during program execution against
the fixed VM heap size used for that execution. As remarked
in Section 3.2, this could give rise to a possible measure of
utility. Further work in [11] controls heap growth based
on the allocation elasticity metric, which is computed from
changes in the heap size and the GC activity.

Hertz et al [6] present a heuristic-based approach to op-
timize memory management for multiple VMs in a shared
memory environment. Vengerov [13] presents an analyti-
cal model for reducing the time a single VM spends in GC,
based on the relative sizes of the young and old generations

in the heap, and the promotion criterion. Again, this is a
heuristic-based technique. We hope to achieve similar goals
using an application of economic theory.

6. CONCLUDING REMARKS
In this position paper, we have proposed that there is a

rich vein of economic theory that we can apply to memory
management.

This includes concepts such as:

• utility functions 3.1.1

• production functions 3.1.2

• cost functions 3.1.3

• supply and demand [11]

We argue that economic theory gives a broad selection of
tools to correlate inputs and outputs, supply and demand,
minimising cost etc. We aim to apply these tools to the
domain of memory management or, at least, use them as a
source of inspiration.

7. REFERENCES
[1] E. Andreasson, F. Hoffman, and O. Lindholm. To

collect or not to collect? machine learning for memory
management. In Proceeedings of the 2nd Java Virtual
Machine Research and Technology Symposium, pages
27–39, 2002.

[2] H. G. Baker. Infant mortality and generational
garbage collection. SIGPLAN Notices, 28:55–57, April
1993.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, pages 164–177, 2003.

[4] W. D. Clinger and F. V. Rojas. Linear combinations
of radioactive decay models for generational garbage
collection. Science of Computer Programming,
62(2):184–203, 2006.

[5] M. Hertz, Y. Feng, and E. D. Berger. Garbage
collection without paging. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 143–153,
2005.

[6] M. Hertz, S. Kane, E. Keudel, T. Bai, C. Ding,
J. Bard, and X. Gu. Waste not, want not:
Resource-based garbage collection. In Proceedings of
the 2011 International Symposium on Memory
Management, 2011. (to appear).

[7] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi.
Evaluating mapreduce on virtual machines: The
hadoop case. In Cloud Computing, volume 5931 of
Lecture Notes in Computer Science, pages 519–528,
2009.

[8] F. Mao, E. Z. Zhang, and X. Shen. Influence of
program inputs on the selection of garbage collectors.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments, pages 91–100, 2009.

[9] D. Salvatore. Microeconomics theory and applications.
Oxford University Press, 5th edition, 2008.

[10] J. Singer, G. Brown, I. Watson, and J. Cavazos.
Intelligent selection of application-specific garbage
collectors. In Proceedings of the 6th International
Symposium on Memory Management, pages 91–102,
Oct 2007.

[11] J. Singer, R. E. Jones, G. Brown, and M. Luján. The
economics of garbage collection. In Proceedings of the
2010 International Symposium on Memory
Management, pages 103–112, 2010.

[12] D. Stefanović, M. Hertz, S. M. Blackburn, K. S.
McKinley, and J. E. B. Moss. Older-first garbage
collection in practice: evaluation in a Java virtual
machine. In Proceedings of the 2002 Workshop on
Memory System Performance, pages 25–36, 2002.

[13] D. Vengerov. Modeling, analysis and throughput
optimization of a generational garbage collector. In
Proceedings of the 2009 International Symposium on
Memory Management, pages 1–9, 2009.

[14] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. Cramm: virtual memory support for
garbage-collected applications. In Proceedings of the
7th Symposium on Operating Systems Design and
Implementation, pages 103–116, 2006.

[15] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and
M. Ogihara. Program-level adaptive memory
management. In Proceedings of the 5th International
Symposium on Memory Management, pages 174–183,
2006.

