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Abstract
Multiple virtual machine (VM) workloads are increasingly com-
mon, given the growth of managed enterprise application systems
and consolidated virtual servers. Until now, there has been no prin-
cipled approach to partitioning memory resource between multiple
co-located VMs. In this paper, we develop a general framework for
multi-VM heap sizing, based on the principle of utility maximiza-
tion from microeconomic theory. We apply utility maximization to
static heap sizing, and obtain performance improvements slightly
better than current best-practice static heap sizing, and compara-
ble with HotSpot ergonomics (current best-practice dynamic heap
sizing). The major advantage of our approach is its simplicity and
predictable resource utilization.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Allocation/de-
allocation strategies

Keywords virtual machines, microeconomics, resource allocation

1. Introduction
Multiprogram workloads consisting of isolated virtual machine
(VM) instances are now commonplace. Each VM hosts a single
managed application. Typical scenarios include enterprise applica-
tion platforms and consolidated virtual servers. An individual VM’s
heap size can vary with time, based on application heap mutation
and garbage collection (GC) behavior. At any particular point in
time, a VM has a minimum heap size required in order to make
progress. Heap sizes above this minimum value enable more rapid
progress, since less GC activity is required. For this reason, VM
heap sizing has a significant impact on managed application per-
formance.

At present, explicit heap size control is generally left to ex-
perts. For instance, Shirazi provides informal guidelines [20] for
heap size tuning. He advocates a trial-and-error approach to find
the best setting for an application, based on application-specific
performance metrics. Due to the complexity and effort involved in
tuning, most Java VM (JVM) users simply retain the default system
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settings. On OpenJDK versions 1.6 and 1.7 the default maximum
heap size is 25% of the physical RAM in the system [14]. For a
managed application running on such a VM, the heap size is not
permitted to exceed this hard limit.

However neither tuning nor the default heap sizing approach ef-
fectively addresses the situation when multiple VMs are running
concurrently. One possibility is to keep the default VM maximum
heap size, then abdicate responsibility to the underlying OS mecha-
nisms to manage paging and resident set sizes for each VM process.
The key problem is that most commercially available VMs do not
communicate with the OS to ensure sensible heap sizing to avoid
excessive paging problems, i.e. the OS does not know how much
or which region of a VM heap is actually free memory.

Recent research into paging awareness for VMs generally fo-
cuses on avoidance of page faults via anticipative forced GC to
reduce the working set size for a VM, e.g. [13] or by preventing
the garbage collector from chasing pointers into memory that is
swapped out, e.g. [12]. However these approaches do not explic-
itly aim to maximize throughput across all applications, nor do they
address fairness in memory distribution between VMs.

In this paper, we present a general theoretical framework for
multi-VM heap sizing, based on the concept of utility maximization
in microeconomic theory. Our technique enables the effective par-
titioning of system memory between multiple VMs that are execut-
ing concurrently. Given (a) an overall budget for available system
memory, (b) a standard measure of utility for managed application
execution, and (c) some profiling information about each managed
application, then we can divide the memory resources fairly be-
tween concurrently executing VM instances so as to maximize the
overall utility of the system.

Our results show that this utility-based approach to heap sizing
works well in practice. Our new approach performs at least as
well as two existing heap sizing practices: (1) divide memory
equally between VMs, and (2) allow the VM’s default dynamic
sizing policy to manage each VM independently while respecting
a total memory budget. In terms of overall system throughput, our
approach regularly outperforms (1) and sometimes outperforms (2)
for a range of benchmark-based VM workloads.

1.1 Contributions
This paper makes the following three contributions:

1. We introduce a novel and general theoretical basis for multi-
VM heap sizing, based on utility maximization in a microeco-
nomic framework.

2. We demonstrate how to solve the multi-VM heap sizing opti-
mization problem analytically (for two VMs) and numerically
(for an arbitrary number of VMs).

3. We provide an empirical study to show that our approach im-
proves throughput slightly for standard VM workloads (i.e. Da-



Capo running on OpenJDK) in relation to existing best practice.
Our approach is simple and has a formal analytical model.

2. Microeconomic Theory
Consumer theory [18] describes how spending should be split be-
tween commodities to maximize overall ‘happiness’. The same the-
ory can be applied to heap sizing in a system of concurrent VMs.
How should memory be partitioned between the VMs to maximize
overall throughput?

2.1 Utility and Throughput
A consumer’s ‘happiness’ (formally, utility) depends on how much
of each commodity is consumed. For a single commodity, this is
modeled by a utility function, U(x). Utility functions have two
general features. The more of the commodity is consumed, the
higher the utility1. However, the more the consumer already has,
the smaller the gain from consuming an additional unit. This is the
property of diminishing returns. More formally:

P1: U(x) is strictly increasing.

P2: dU
dx

is strictly decreasing, but always positive.

Intuitively, we expect managed applications to behave in a sim-
ilar way. The larger the heap, the less time spent in GC, and
the higher the ‘throughput’. ‘Throughput’ is fully defined in Sec-
tion 3.2; for the moment it can be taken as equivalent to utility. As
Figure 1 shows, at least some programs behave in this way.
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Figure 1: Throughput of the lusearch benchmark with small input
and four threads. Each point denotes a looped execution of lusearch
for 20 minutes with a fixed heap size. This program behaves as the
utility model suggests.

2.2 Combining Utilities
Consumers buy many commodities. The individual utility functions
are combined to give a total utility function in terms of the quan-
tities of each commodity. For two commodities, this is U(x, y).
Sets of (x, y) points which give the same total utility are isoutility
curves (also called indifference curves), as shown by the contour
lines in Figure 2. An isoutility curve represents all the combina-
tions of commodities which make a consumer equally happy.

1 For some commodities (such as hamburgers), utility decreases after a
certain point. We do not consider this possibility at this stage; see Section 6.
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Figure 2: Combined utility of two commodities. The contour lines
are isoutility curves.

The isoutility curves in Figure 2 are convex to the origin be-
cause of the conditions P1 and P2 imposed on individual utility
functions, and the way the utility functions are combined. To en-
sure that isoutility curves have this shape, the overall utility func-
tion must also respect P1 and P2. For instance, multiplying the indi-
vidual utilities is acceptable, whereas negating one of them before
multiplication is not.

Although Figure 2 shows two commodities, the same properties
hold for many commodities. The isoutility surfaces (for three com-
modities) or hypersurfaces (for more than three commodities) are
also convex to the origin.

2.3 The Budget Constraint
A consumer’s goal is to maximize total utility. However, there are
limits to consumption. Commodities cost money, and the consumer
only has a certain amount to spend. The consumer is constrained
by a budget. Figure 3 shows a budget line superimposed on the
isoutility curves from Figure 2. The axes represent the total ex-
penditure on a commodity, i.e. the quantity consumed multiplied
by the price of a unit. The budget line divides the utility space
into two regions: feasible (under budget or exactly on budget),
and infeasible (over budget). The budget line is straight because
all combinations which are exactly on budget satisfy the equation
X ·PX +Y ·PY = B, by definition, where B is the budget, X and
Y are the quantities of two commodities, and PX and PY are the
unit prices of the two commodities. This generalizes to many com-
modities, where the budget plane or hyperplane is described by the
equation

∑N
i=1 Xi · PXi = B.

The consumer’s goal is to maximize utility while being within
budget2. This amounts to finding the quantities of each commodity
that maximize the total utility function within the budget constraint.
However, because the isoutility lines are convex to the origin, the
point of maximum utility occurs on the budget line, where the
budget line touches the highest isoutility curve which it touches.
At this point, the budget line is tangential to the isoutility curve,

2 The consumer is indifferent to the amount of money spent (as long as
it is within budget). Having money ‘left over for future use’ is not a
consideration. Only utility matters.
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Figure 3: Combined utility of two commodities with a budget line.
The best feasible point is on the isoutility curve where the budget
line is tangential to the curve.

so there is exactly one best point. Thus we only need to consider
points on the budget line, which has one less dimension than the
total utility space. This also generalizes to the many-commodity
case.

We must impose one more constraint on the total utility function
for this to be valid. A consumer cannot specialize; at least a little
bit of everything must be bought. This amounts to saying that the
isoutility curves must never touch the axes.

2.4 Application to Heap Sizing
Heap size h and throughput T are analogous to quantity consumed
and utility, respectively. Various models can be used which meet
the criteria for a throughput function. One is T (h) = ahb where
0 < b < 1 (which we call the ‘root’ model because it represents an
‘nth root’ function). Another is T (h) = a·ln(bh) (which we call the
‘log’ model). The constants in these models are program specific.
Section 3.1 describes how to determine them for any particular
program.

The ‘no specialization’ constraint follows from the problem def-
inition. We want all VMs to progress, so all must be allocated at
least some memory. We therefore combine throughputs by multi-
plication (rather than, say, addition) so that setting any of the allo-
cations to zero gives a total throughput of zero. This gives the total
throughput function T (h1, . . . , hN ) =

∏N
i=1 Ti(hi).

The budget constraint becomes the memory budget, M . This is
the total amount of memory we want to partition between the VMs.
In the simplest case, all megabytes are considered equal, so we have∑N

i=1 hi = M . By varying the ‘value’ of a megabyte for each VM,
we can introduce prioritization (see Section 6).

Heap sizing introduces an additional constraint: the minimum
heap size requirement. Each program has a minimum heap size
below which it cannot run. At the point of maximum throughput,
each VM must be allocated at least its minimum heap size.

2.5 Finding the Maximum Throughput
Once the constants in the individual throughput functions have been
determined, and we have chosen a memory budget, how do we find
the point of maximum throughput?

Some models permit an analytical solution, so we can derive
a formula for the best point, for a particular number of VMs. For
instance, the formula for the ‘root’ model with two VMs is derived
as follows.

The total throughput function is T (h1, h2) = T1(h1)T2(h2) =
ah1

bch2
d, where the constants are taken from the individual

throughput functions. The best point occurs on the budget line,
so h1 + h2 = M . Each program must be allocated at least
its minimum heap size, so h1 ≥ p and h2 ≥ q, where p and
q are the respective minimum heap sizes. On the budget line,
h2 = M − h1. Substituting this into T gives a function of one
variable, Tbudget(h1) = ah1

bc(M−h1)
d. To find the global max-

imum of Tbudget, we set its derivative to zero, which gives the
following result:

max h1 =
bM

b+ d
(1)

Applying the minimum heap conditions, we get the following
result for the best value of h1:

best h1 =


max h1 if p ≤ max h1 ≤ M − q

p if max h1 < p

M − q if max h1 > M − q

(2)

In all cases, best h2 = M − best h1.
For this model, a similar formula can be derived for any given

number of VMs. Once derived, the formula can be evaluated in
constant time.

Other models, such as the ‘log’ model, do not permit an ana-
lytical solution. In this case, the best point must be found using
numerical optimization, which is considerably slower.

Because we only need to consider points on the budget line, we
reduce the number of dimensions in the problem by one, which
makes finding an analytical solution possible in those models that
permit it. (Without this constraint, the analytical solution would
be underconstrained.) For those models that require numerical op-
timization, it reduces the number of dimensions of the objective
function. For numerical optimization, we use the L-BFGS-B algo-
rithm [7] provided by the SciPy library [19]. In this case, reducing
the number of dimensions reduces the complexity of the optimiza-
tion.

3. Experimental Method
Economic theory predicts the best partition of memory between
concurrently executing VMs. But do these predictions match up to
reality? To test the theory, we must measure the total throughput
of concurrently executing VMs, at many heap size allocations, and
compare the results to the predictions made by the theory.

3.1 Individual Throughput Functions
The throughput models introduced in Section 2.4 contain unknown
constants. These constants characterize a specific program running
on a specific machine. We must find the constants for each program
individually, before we can run many programs concurrently.

If we measure a program’s throughput at many heap sizes, we
can use simple linear regression to fit the model to the data, and
find the constants. However, we must now define throughput, and
how we can measure it.

3.2 Measuring Individual Throughput
Managed applications make faster progress the less time is spent
in GC. Throughput is the rate of making progress. However, this is



difficult to measure directly without instrumenting the VM. A con-
venient proxy for throughput is the number of completed iterations
of a program per second. For deterministic programs, a single iter-
ation represents a fixed amount of progress. Changing the heap size
changes the number of completed iterations per second. Completed
iterations per second can be measured by running a program in a
loop for a fixed time, and dividing the total completed iterations by
the total length of the run.

The advantage of this approach is that it can be used with an
unmodified VM, and unmodified programs, simply by measuring
execution time. The obvious disadvantage is that it only works for
deterministic programs.

To get a single (heap size, throughput) pair from a run, the
heap size must be fixed for the duration of the run. This introduces
another limitation – the results are, in some sense, averages over the
whole run. They do not account for changes in program behavior,
and the average obtained may not actually be the ‘best’ value at any
given time. All these limitations are discussed in Section 6.

The DaCapo benchmark suite [6] provides several determinis-
tic Java programs ideally suited to this approach. These are open-
source programs wrapped in a benchmarking harness. The harness
runs the programs in a loop, and emits diagnostic messages after
each iteration. By running the harness for an extremely large num-
ber of iterations, we can terminate the harness at the end of the fixed
measurement time, and calculate how many iterations were com-
pleted. Additionally, the HotSpot JVM provides an option to fix
the heap size at invocation, which overrides the usual ergonomics
behavior. This configuration is used throughout.

3.3 Measuring Combined Throughput
Once we have the individual throughput functions, we can use
the theory in Section 2.5 to predict the best partition of memory
for any combination of programs. To test the prediction, we run
the programs concurrently and measure the actual throughput they
achieve.

The programs are run concurrently at many heap size alloca-
tions, including the best allocation predicted by theory, several allo-
cations on the budget line, and a selection of allocations elsewhere
in the feasible region of the throughput space. For each allocation,
the throughput of each program is measured over a fixed time, and
then all are combined as defined by the throughput model. In this
way, a map of the combination’s behavior throughout the through-
put space is built up.

There are several interesting points in a throughput space.

• The best measured throughput, at the allocation where the high-
est throughput actually occurs.

• The best predicted throughput, at the allocation where the the-
ory predicts the best throughput should occur.

• The measured throughput at the allocation where the theory pre-
dicts the best throughput should occur. We call this the observed
throughput, because it is the throughput that will be observed
by a user who has set the heap sizes based on the predictions.
It is therefore the most important point for comparison with the
other points.

The absolute values of the throughputs at these points are not
interesting, because they are program specific. Far more interesting
are the relative values of the points. We can define several useful
comparisons.

• The prediction accuracy: the ratio of the best measured through-
put to the best predicted throughput. This shows how well the
theory predicts the value of the best throughput. Values closer
to one are better. Values less than one mean the theory overes-

timates the best throughput, and values greater than one mean
the theory underestimates.

• The Euclidean distance between the heap size allocation at the
best measured throughput, and the heap size allocation at the
observed and best predicted throughputs. This shows how well
the theory predicts where the best throughput will occur, and
smaller values are better. Note that this metric considers only
the heap sizes, not the values of the throughput (which are
considered by the previous metric), and is therefore a Euclidean
distance in one less dimension than the overall space.

These two metrics show how closely the measured throughput
surface matches the shape of the predicted throughput surface.
However, there is a third, more important, metric:

• The practical accuracy: the ratio of the observed throughput
to the best measured throughput. This is especially important
because a user will not sample the throughput space as we
have done, and so will not know where the best throughput
would occur. The user only cares that the theory recommends
heap sizes that give a throughput as close to the maximum as
possible, which is what this metric measures. This metric will
always be less than or equal to one, with higher values being
better.

3.4 Choosing a Memory Budget
Because the theory assumes that throughput always increases
with heap size, it ignores the effect of paging when the heap is
much larger than physical memory. If paging becomes significant,
throughput might decrease beyond a certain point, but the theory
does not take account of this (see Section 6). Therefore to ensure
that the theory’s assumptions remain valid, a total memory bud-
get should be chosen which is no more than the available physical
memory.

4. Empirical Evaluation
All experiments used programs from the DaCapo benchmark suite
version 9.12 ‘Bach’ [6], running in the HotSpot JVM from Open-
JDK v1.7.0 453. The experiments were carried out on machines
with quad-core Intel Core i5 processors running at 3.2 GHz, with
4 GB of memory, running Linux 2.6.32 x86 64. Measurement
scripts and the full results set can be found in our repository at
http://anyscale.org/icooolps14.tar.xz.

4.1 Individual Throughput Functions
Individual throughput functions were measured as described in
Section 3.2, for many DaCapo benchmarks, with different input
sizes and thread counts. Figures 1, 4, and 5 show examples of
programs that fit the ‘root’ model with varying degrees of accuracy.
Each point is the arithmetic mean of the completed iterations per
second of five 20-minute runs. The error bars show ± one standard
deviation.

4.2 Combined Throughput
The individual throughput functions were used to predict the best
allocation for various benchmark combinations. These combina-
tions were then measured at many heap size allocations. Figure 6
shows the measured throughput space for several two-program
combinations. Figure 7 shows the predicted throughput for each
of the points in Figure 6a, for comparison.

3 During the course of our experiments, the OpenJDK package on our cen-
trally managed Linux systems was upgraded from v1.7.0 45 to v1.7.0 51.
We repeated many of the measurements and observed that there was no no-
ticeable performance difference between these two minor release versions.

http://anyscale.org/icooolps14.tar.xz
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Figure 4: Throughput of the sunflow benchmark with default input
and one thread. This program almost behaves as the model sug-
gests.
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Figure 5: Throughput of the pmd benchmark with extra-small input
and one thread. This program does not fit the model, because b is
negative.

Figure 6a shows a typical case. The best measured through-
put lies close to the budget line, as expected. The Euclidean dis-
tance to the best predicted throughput is quite small. The predic-
tion accuracy is 0.91, and the more important practical accuracy
is 0.96, i.e. the throughput observed using the theory to choose
heap sizes is within 96% of the best possible throughput. The mea-
sured isothroughput lines have approximately the shape that the
theory predicts, suggesting that the theory predicts the shape of the
throughput space quite well in this case.

Figure 6b shows an exceptional case where the theory pre-
dicts the location of the best measured throughput exactly. The Eu-
clidean distance is 0, and the practical accuracy is 1. However, the
isothroughput lines are uneven, suggesting that in this case the the-
ory does not predict the throughput of other points in the space very
well.

Figure 6c shows a surprising result. The theory performs worst
for combinations where two instances of the same benchmark are
run together. On average, these combinations have a larger Eu-

clidean distance and a lower practical accuracy than combinations
of different benchmarks. The highest measured throughput tends to
be towards the edge of the space, with one instance near its mini-
mum heap size. We would expect the throughput to be highest when
memory is partitioned equally between the benchmarks, but this is
not the case. A preliminary investigation using strace shows that
when memory is partitioned equally, the total time spent execut-
ing system calls is significantly higher in some cases than when
the heap sizes differ. We surmise that when two identical bench-
marks with identical heap sizes are executing together, they contend
for shared system resources more than out-of-phase benchmark in-
stances with different heap sizes.
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Figure 7: Predicted combined throughput of lusearch with default
input and 1 thread, and sunflow with default input and 3 threads,
using the ‘root’ model. The memory budget is 1 GB.

Figure 8 shows the combined throughput for a three-program
combination. Since we are now attempting to visualize a four-
dimensional dataset, the three heap sizes are shown on the axes,
and the throughput of each allocation is represented by its color,
from black for lower throughputs, to white for higher. The best
measured and best predicted points both lie on the budget plane,
as expected, and they have a similar Euclidean distance to the two-
program cases. The practical accuracy is also in a similar range.

The results of many combinations4 are shown in Table 1, in
terms of the metrics defined in Section 3.3. In each combination,
the total number of benchmark threads has been kept less than the
number of cores (four, in this case), so that these threads will get as
much CPU time as possible. The errors in the prediction accuracy
and practical accuracy are standard deviations, propagated through
calculation from the standard deviations of the measured through-
puts. The errors in the average Euclidean distance are the standard
deviations of the absolute Euclidean distance values. Combinations
where several instances of the same benchmark are run together
have, on average, a higher Euclidean distance and lower practical
accuracy than combinations of different benchmarks. When run-
ning different benchmarks together, the theory predicts heap sizes
which give a throughput that is, on average, 97% of the best possi-
ble throughput.

4 There was not enough time to exhaustively measure all possible combi-
nations. These combinations were chosen based on how well the individual
throughput functions fit the model, and so that the total number of threads
was never more than the number of cores on the measuring machines.
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(a) lusearch with default input and 1 thread, and sunflow with default input and 3 threads.
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(b) lusearch with large input and 1 thread, and xalan with large input and 1 thread.
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(c) Two instances of lusearch with default input and 1 thread.

Figure 6: Combined throughput of two-benchmark combinations, using the ‘root’ model. The memory budget is 1 GB. Each left graph is the
view from above of the right graph. Contour lines show isothroughput.



Benchmarks (name, input size, threads) Euclidean distance Prediction accuracy Practical accuracy
avrora large 1, avrora large 1 411.54 0.56± 0.01 0.99± 0.01

avrora large 1, lusearch large 1 229.10 0.95± 0.01 0.99± 0.02
avrora large 1, sunflow large 1 351.00 0.95± 0.02 0.95± 0.02
avrora large 1, sunflow large 3 35.36 0.60± 0.01 0.96± 0.02

lusearch default 1, lusearch default 1 507.55 1.01± 0.01 0.88± 0.02
lusearch default 1, sunflow default 1, xalan default 1 233.70 0.94± 0.03 0.94± 0.03

lusearch default 1, sunflow default 3 214.66 0.91± 0.01 0.96± 0.02
lusearch large 1, lusearch large 1 640.01 1.01± 0.01 0.92± 0.02
lusearch large 1, sunflow large 3 345.77 0.88± 0.01 0.97± 0.03
lusearch large 1, xalan large 1 0.00 0.98± 0.02 1.00± 0.03

pmd large 1, avrora large 1 332.23 0.72± 0.01 0.98± 0.02
pmd large 1, lusearch large 1 18.38 0.82± 0.02 1.00± 0.02

pmd large 1, pmd large 1 97.58 0.66± 0.00 0.99± 0.02
pmd large 1, xalan large 1 251.51 0.80± 0.00 0.98± 0.02

sunflow default 2, sunflow default 2 508.34 0.99± 0.01 0.97± 0.02
sunflow large 1, pmd large 1 196.58 0.81± 0.02 0.98± 0.03

sunflow large 2, sunflow large 2 640.01 1.02± 0.03 0.95± 0.02
xalan large 1, xalan large 1 313.70 0.97± 0.01 0.97± 0.04

xalan large 2, sunflow large 2 188.09 0.98± 0.02 0.98± 0.02
Average, all (19 combinations) 290.27± 185.93 0.87± 0.00 0.97± 0.01

Average, same-benchmark combinations (7 combinations) 445.53± 178.50 0.89± 0.01 0.95± 0.01
Average, different-benchmark combinations (12 combinations) 199.70± 117.84 0.86± 0.00 0.97± 0.01

Table 1: Comparison between predicted and measured throughputs for various benchmark combinations, using the ‘root’ throughput model.
Data for other models is similar and can be found in our repository. A prediction accuracy greater than 1 indicates that the best measured
throughput is higher than the best predicted throughput; a prediction accuracy less than 1 indicates that the best measured throughput is lower
than the best predicted throughput.
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Figure 8: Combined throughput of lusearch, sunflow, and xalan,
each with default input and 1 thread, using the ‘root’ model. The
memory budget is 1 GB.

4.3 Comparison with Existing Mechanisms
We have examined the accuracy of the predictions made by the
economic approach. However, it is also useful to compare the
performance of the economic approach with other methods of
partitioning memory among VMs.

In the equal partition approach, N VMs are each allocated 1/N
of the memory budget. This does not take account of the character-
istics of the programs, and is therefore the baseline that any more

complex approach must beat. The equal partition is included in the
sets of allocations measured in Figures 6 and 8.

Alternatively, the VM’s default sizing policy (in this case,
HotSpot ergonomics [24]) can be given full control over the heap
size. This is the unconstrained approach. Rather than fixing the
heap size at the beginning of a run, each VM will adjust its heap
size throughout the run with no knowledge of the other VMs. To
keep the comparison fair, we do not allow the VMs to be fully
unconstrained. Instead, we use Linux control groups (cgroups) to
impose a memory budget on the VMs, so that paging will be in-
curred if the heaps grow beyond this limit. To be worthwhile, our
utility-based approach must give better performance than the ex-
isting default technique or we must demonstrate another improved
non-functional characteristic, e.g. predictability or fairness.

The throughput of the unconstrained approach was measured
for each of the benchmark combinations in Table 1. These measure-
ments were taken in the same way as for the points in the economic
throughput space.

Figure 9 shows the throughput of the equal partition, the best
predicted throughput, and the observed throughput, relative to the
throughput of the default unconstrained sizing policy. These val-
ues are averaged over all measured benchmark combinations, those
where the benchmarks are the same, and those where the bench-
marks are different. Several observations can be made.

• The default sizing policy is usually better than the equal par-
tition. This is as expected, since the equal partition takes no
account of program characteristics.

• The economic approach usually performs better than the equal
partition.

• The observed throughput with the economic approach is usually
at least as good as the default sizing policy, and sometimes
slightly better. That is, the economic approach is as good as
the default sizing policy even though it fixes the heap sizes at
startup, and even with the limitations discussed in Section 6.
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Figure 9: Throughput measurements for three heap sizing policies,
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best predicted point. We report arithmetic means over ‘all’ mea-
sured benchmark combinations from Table 1, then consider con-
current instances of the ‘same’ benchmark and of ‘different’ bench-
marks.

We conjecture that if these limitations were to be overcome, the
economic approach could perform better still.

5. Related Work
5.1 Application of Mathematical Frameworks
This section reviews how memory management researchers inter-
pret garbage collection in the context of existing principled mathe-
matical frameworks.

There is a long tradition of analyzing GC by means of analogy
with well-understood physical systems. Baker [5] relates memory
management to statistical thermodynamics. In this scheme, mem-
ory storage locations are mapped to the conserved energy in the
system. Baker argues that mutators increase entropy, whereas col-
lectors reduce entropy. In some sense, a garbage collector acts like
a refrigerator. Baker [4] also considers a hypothetical case in which
object lifetimes are distributed in the same way as radioactive half-
life decay times. He proposes this model as a convenient mathemat-
ical abstraction, to show that the mark-cons ratio is the same for all
generations with this kind of object lifetime distribution, even when
the weak generational hypothesis is empirically valid, i.e. most ob-
jects die young.

Clinger and Hansen [8] explore this radioactive half-life anal-
ogy further. They present a meta-analysis to suggest that long-lived
objects have lifetimes that are independent of age (i.e. half-life de-
cay), whereas the majority of young objects die very quickly. They
use this insight to construct a new collector that has two genera-
tions, with the old generation being collected using a non-predictive
policy (i.e. it does not make assumptions about object lifetimes
when collecting the old generation). Clinger and Rojas [9] show
that many benchmarks’ object lifetime distributions may be char-
acterized by a linear combination of radioactive decay models with
different half-lives and proportions. They give empirical evidence
to show that such models are appropriate for many real-world ob-
served programs / benchmarks.

As an over-simple generalization, it seems that GC models
derived from physical systems deal well with how and when to
collect, but these models do not provide particular assistance for
heap sizing.

Since economics deals with the distribution of scarce resources
among competing entities, it has long been considered a natural
fit for resource allocation problems in distributed systems, e.g.
[16, 27].

Singer et al. [22] appear to be the first to apply microeconomic
principles to GC in managed runtime environments. Using an anal-
ogy with demand theory, they treat heap memory as a price and
GC overhead as a consumable good. They show how this fits with
simple supply and demand concepts such as the law of diminishing
returns. The main limitations of this work are that it only applies
to a single VM in isolation, and that there is no notion of through-
put optimization in their formalism. Simão and Veiga [21] present
a semi-formal description of an adaptive resource sharing scheme
that has the explicit objective of maximizing yield across multiple
VMs. However this preliminary work does not present a concrete
implementation and is not explicit about the optimization technique
used to maximize the yield metric.

5.2 Empirical Analysis
This section reviews quantitative characterizations of GC, gener-
ally involving regression analysis to fit an analytic equation to the
observed GC behavior. For each paper, we summarize what is mea-
sured, the form of the equation(s) and the regression technique
where relevant.

Stefanović et al. [23] consider mathematical models for object
lifetimes and compare these models with observed behavior for
58 Smalltalk and Java programs. They find that the mathematical
models do not agree entirely with observed behavior, but they
generally follow a gamma distribution. This is consistent with the
analogies of radioactive half-life in Section 5.1.

Hertz and Berger [11] report an empirical study to measure
the runtime overhead of GC relative to explicit memory manage-
ment. They observe that the frequency of GC is inversely pro-
portional to the heap size. They further observe that the relative
time spent in GC for an Appel-style generational collector is in-
versely proportional to the square of the heap size, h. They pro-
ceed to fit parameters for a simple quadratic equation of the form
time(h) = a/(b − h2) + c. Above three times the minimum
heap size for an application, there is little difference between the
overheads of explicit memory management and GC. In contrast,
we study combined throughput across multiple applications as well
as individual application throughput functions. Also, we combine
characteristic equations for single VM workloads within a princi-
pled economic framework.

Tay et al. [25, 26] derive an equation to predict the number of
page faults a managed application will incur during its execution.
This depends on the application, the VM and the underlying system
configuration. They rearrange the page fault equation to formulate a
dynamic heap sizing rule which has four parameters. These param-
eters are not directly interpretable, but they must be empirically de-
termined for an application running with a specific input on a spe-
cific platform. The parameter fitting requires offline calibration via
linear regression or online calibration via sliding window averages.
Our work is similar to theirs. However we impose a user-defined
memory budget rather than a soft ‘available memory’ limitation.
Also, we attempt to maximize combined throughput of multiple
managed applications in a single equational framework, whereas
their approach is based on local optimization for each individual
VM.

White et al. [29] treat a single VM as a black-box process and
use control-theoretic tuning to fit a proportional-integral-derivative



(PID) controller equation to the heap sizing mechanism of the
memory manager. The tuning is a manual process requiring domain
expertise. They control heap sizing via a user-specified throughput
value. Our work improves on their approach since we handle multi-
VM workloads and we automatically maximize throughput rather
than requiring user-specified values.

Lengauer and Mössenböck [17] describe a black-box tuning
approach to the HotSpot GC system. They simultaneously tune
multiple parameters for a single VM (although not including the
maximum heap size) using search-based techniques to maximize
an individual application’s throughput.

5.3 Resource Sharing Virtual Machines
This section reviews related work that deals with multiple virtual-
ized workloads in a single system and shares resources between the
concurrently executing VMs.

Hertz et al. [13] describe a scheme to optimize throughput for
multiple distinct VMs executing heterogeneous workloads. They
present an information-sharing approach, where all VMs provide
dynamic metrics about page faults and resident set size to a central
controller. The controller uses heuristics to determine when to force
full-heap GCs for particular VMs to reduce overall system memory
pressure, with the aim of avoiding page faults. This scheme oper-
ates orthogonally to heap sizing in that it only adds an extra reactive
trigger for full-heap GC when paging is imminent.

Alonso and Appel describe an advisor service [1] which is a
user-level daemon that dispenses heap sizing advice to concurrently
executing SML/NJ runtimes. Each runtime registers with the dae-
mon and provide dynamic metrics about its execution time and
heap space requirements at each GC. In return, the daemon speci-
fies how the runtime should resize its heap. The service aims to im-
prove overall throughput by ensuring the working sets of all VMs
fit into physical memory. This is similar to our work, except we
perform static rather than dynamic sizing. We do not require VM
instrumentation, only ahead-of-time profiling. Also, we use a prin-
cipled economic framework, whereas they derive specialized equa-
tions for their model based on expert knowledge of the underlying
GC algorithm, which may not be transferable.

The multitasking virtual machine (MVM) [15] hosts isolated
container-based Java applications in a single managed runtime en-
vironment. Each application has its own local nursery space; how-
ever all applications share a system-wide global space for mature
objects. The MVM uses a best-effort system to support fair resource
allocation. The Resource Management Interface (RM) [10] is a
small, customizable API that enables the enforcement of resource
management policies in MVM. This framework enables resource
limits to be placed on memory usage of individual isolates but RM
does not specify how to divide resources between isolates. It is
a mechanism for resource sharing, but not a high-level decision-
making framework.

KaffeOS [2, 3] is another runtime system that supports Java ap-
plication isolation and enforcement of resource consumption lim-
its. This system supports per-application accounting for memory
resources and GC overhead. Each application has a separate heap
with its own decoupled GC. Each heap has a size limit, which
is specified when the heap is created and not updated afterwards.
There appears to be little dynamicity in heap sizing; a heap can
grow to its limit, but must not exceed it.

Many resource sharing mechanisms are also applicable in
system-level virtualization schemes such as Xen (e.g. [28]).

6. Limitations and Future Work
Our approach to heap sizing has several limitations.

Static Sizing: The best allocation is predicted statically. It is
calculated before the programs run and fixed throughout the run.

This requires programs to be profiled ahead of time, to determine
their individual throughput functions, which takes a long time.
Finding each of the throughput functions in Figures 1, 4, and 5
took around sixteen CPU-hours. The constants in the throughput
functions are machine-specific because the same program running
on a faster machine will complete more iterations per second, so
the profiling must be done on machines identical to the one used
for running. Profiling is therefore a considerable practical burden.

This approach is likely to be applicable for cloud-based server
farms, where individual jobs might recur frequently but the dy-
namic mix of concurrent jobs is unpredictable.

Statically calculated throughput functions are in a sense ‘aver-
ages’ over the whole run. They do not account for changes in pro-
gram behavior or inputs. Better throughput might be achieved by
monitoring the behavior at runtime, and periodically adjusting the
throughput functions to match the current behavior.

Throughput Metric: Using completed iterations as a proxy for
throughput is another limitation. The benefit of this metric is that
it can be measured from outside the VM, but it only works for
deterministic programs. For input-dependent programs (i.e. almost
all interesting programs), the same input must be used for profiling
and running, so the throughput functions are accurate. In practice
this rules out all programs that interact with a user. Even for batch
programs like the DaCapo benchmarks, some nondeterminism is
introduced by the OS. Scheduling, contention for I/O devices, and
so on, are all unpredictable influences on the length of an iteration.
This may account for some of the difference between the predicted
and measured throughputs. Short of being the only processes on the
system, which is impractical in realistic environments, there is little
that can be done about this.

To overcome these limitations, we propose to investigate a ‘dy-
namic’ approach. In this system, VMs will measure throughput in-
ternally, using more reliable metrics such as allocation rate or GC
time. Each VM will periodically report its current heap size and
throughput to an external process. Based on recent measurements,
this process will periodically generate throughput functions, use
them to predict the best allocation of memory at the moment, and
send heap size recommendations to the VMs. It will remove the re-
quirement for deterministic programs, and for profiling beforehand,
making it much more useful in practice.

Paging: Regardless of whether a static or dynamic approach is
used, there are limitations in the underlying theory which must
be addressed. Section 2 defines individual throughput functions
as strictly increasing. This is valid for programs that fit entirely
in physical memory, but for large programs that require paging,
allocating very large heaps may actually decrease throughput. This
is because common garbage collection techniques violate locality
of reference, and performing a collection requires much of the
virtual address space to be paged in. The best allocation may no
longer lie on the budget line, but could be anywhere in the feasible
region of the throughput space.

Equal Priorities: Throughout this paper we have assumed that
a megabyte of allocation has the same value to one process as to an-
other. In economics, units of different commodities may have dif-
ferent prices, as described in Section 2.3. In the heap sizing case,
we have set Pi = 1 for all values of i. By allowing different pro-
grams to have different values of P , we can change the relative
priorities of the programs, and change the calculated memory allo-
cation. This could be a useful enhancement both to the static and
dynamic cases.

Workload Interference: The theory also combines throughputs
on the assumption they are independent. This ignores the effects
of contention and paging. To counter this, it might be useful to
investigate the effect of the number of running processes on the



accuracy of predictions, and whether particular combinations of
programs affect the results in any predictable way.

Additionally, we have only considered heap sizing, but the eco-
nomic approach could be applied to the allocation of other re-
sources, such as hardware threads, in a similar way. We have only
applied the economic approach to the HotSpot VM, but in theory it
could be applied to any VM, or even to a heterogeneous collection
of VMs. All of these are directions for future investigation.

7. Conclusions
In this paper, we have applied principles of microeconomic utility
to the problem of heap sizing for multi-VM workloads. We have
shown empirically that our utility-based static resource allocation
scheme performs better than current best-practice static schemes
and is comparable with current best-practice dynamic schemes in
most cases.

Our utility-based heap sizing approach is simple and offers
predictable resource utilization. Given the growing significance of
multiprogramming for virtualized systems, e.g. in the context of
cloud computing frameworks, we expect that utility-based resource
allocation schemes will become increasingly relevant.

In the future, we aim to devise a dynamic version of our utility-
based heap sizing scheme. We will also consider utility-based allo-
cation for other computational resources apart from heap memory.
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