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Abstract
The Robot Operating System (ROS) is the de facto standard platform
for modern robots. However, communication between ROS nodes
has scalability and reliability issues in practice. In this paper, we
investigate whether Erlang’s lightweight concurrency and reliability
mechanisms have the potential to address these issues. The basis
of the investigation is a pair of simple but typical robotic control
applications, namely two face-trackers: one using ROS publish/sub-
scribe messaging, and the other a bespoke Erlang communication
framework.

We report experiments that compare five key aspects of the
ROS and Erlang face trackers. We find that Erlang communication
scales better, supporting at least 3.5 times more active processes
(700 processes) than its ROS-based counterpart (200 nodes) while
consuming half of the memory. However, while both face tracking
prototypes exhibit similar detection accuracy and transmission
latencies with 10 or fewer workers, Erlang exhibits a continuous
increase in the total time taken to process a frame as more agents
are added, and we identify the cause. A reliability study shows
that while both ROS and Erlang restart failed computations, the
Erlang processes restart 1000–1500 times faster than ROS nodes,
reducing robot component downtime and mitigating the impact of
the failures.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Frameworks

Keywords Robotics, ROS, Erlang, fault tolerance, scalability

1. Introduction
Modern robots are typically highly concurrent, complex systems
that require intensive interaction between various hardware and soft-
ware components. Many of the services crucial to robot operation,
such as sensor monitoring, motor control, or gripper actuation, rely
on reliable and concurrent communication between hardware, soft-
ware and intelligence components. This interaction is commonly
mediated by the Robot Operating System (ROS) [23], a state of the
art robotic middleware. ROS supports concurrent synchronous and
asynchronous processes communicating by message passing, and
allows roboticists to compose systems from heterogeneous hardware
and software components.

[Copyright notice will appear here once ’preprint’ option is removed.]

Most of the development work behind ROS comes through contri-
butions from the inter-disciplinary robotics community, with strong
academic representation. ROS has grown organically to support a
large range of compatible robots. However, ROS exhibits a number
of scalability, inter-process synchronization, and reliability limita-
tions in practice. While these limitations are common knowledge
among ROS users, they have not been widely explored or reported
in the literature.

Erlang [3] offers the right combination of capabilities for
robotics, namely real time capabilities, lightweight scalable con-
currency, and world-leading reliability. In consequence there have
been numerous academic and industrial projects investigating these
synergies. These projects mainly use Erlang to control robots or
robot components e.g. [4, 25], or teach Erlang using robots [12]
(Section 2.2).

The approach presented here is novel in investigating whether
Erlang has the potential to address the scalability and reliability
issues with communication between ROS nodes. That is, we don’t
replace the entire Robot Operating System, only the communication
layer. We investigate the hypothesis by comparing the scalability
and reliability of two analogous middleware systems in a typical
robotic control context. The context is real-time face tracking, and
the main tasks are to extract a stream of video frames from a camera,
perform face recognition with a number of classifier workers, and
to redirect the camera to follow the face location. The ROS face
tracker communicates using publish/subscribe on ROS topics, while
the Erlang face tracker uses a bespoke Erlang framework.

We start with an overview of ROS and review prior work using
Erlang in robotics (Section 2). We present the design and imple-
mentation of the ROS and Erlang-based face trackers (Section 3).
We conduct five experiments that compare different aspects of the
ROS and Erlang face trackers. Namely we compare their scalability
(maximum number of concurrent workers: ROS nodes or Erlang
processes); message latency; quality of real-time face recognition;
reliability in the face of ROS node or Erlang process failures induced
by a Chaos Monkey [27]; and the impact of failures on face match
quality (Section 4).

2. Background
Since antiquity humans have been interested in automation, and
there have been numerous attempts to construct autonomous me-
chanical systems. While the early days of robotics did not yield
much in the way of full autonomy, since the second half of the 20th
century, robotics has gradually expanded to provide essential tools
in a range of domains like manufacturing, health-care, and space
exploration.

Robot vision is a particularly intriguing facet, as it is the principal
means through which intelligent systems analyse their surroundings.
In the case of robotic systems, the capture and interpretation of
visual stimuli is done via artificial sensors such as digital cameras.
It is evident that human brains have evolved to be very efficient at
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Figure 1. Example of a ROS Node Graph

visual data processing tasks such as feature extraction and object
detection. However, these tasks remain challenging for computer
systems, and solutions often stress physical limitations in memory,
clock speed, data transfer rates, and the energy consumption of the
hardware they utilise [16].

2.1 Robot Operating System
Modern robots are complex heterogeneous systems, and in recent
years more and more robotic applications have started to make
extensive use of the common platform provided by the Robot
Operating System (ROS) [23]. Originally developed at Stanford
Artificial Intelligence Laboratory, the project offers client libraries
mainly in C++ (roscpp [24]), Python (rospy [5]) and LISP, but also
experimentally in other popular languages such as Java, JavaScript,
Haskell, and Ruby [21].

Since its conception in 2007, it has become the most widely used
platform for robot control in both academic and industrial settings,
as more systems began to take advantage of its modularity, inter-
platform communication capabilities and in-built support for a wide
range of hardware components.

The main aim of ROS is to provide operating system-like
functionalities, for instance:

• hardware abstraction, which enables the development of portable
code which can interface with a large number of robot platforms;

• low-level device control, facilitating robotic control;
• inter-process communication via message passing;
• software package management, which ensures the framework is

easily extensible.

Of particular interest amongst these is the process management
aspect. Indeed, the heavy reliance of ROS on its message-passing
communication infrastructure [20] is where most of its perceived
benefits and drawbacks lie. Processes are termed “nodes” in ROS,
as they form part of an underlying graph (Figure 1) that keeps
track of nodes and all the communications between them at a fine-
grained scale. Since most robotic systems are assumed to comprise
numerous components, all requiring control or I/O services, the
ROS node architecture expects each computation to be delegated
to a separate node, thus reducing the complexity of the control
systems. At the core of all the programs running on ROS is an
anonymized form of the publisher-subscriber pattern [7], i.e. ROS
nodes communicate anonymously due to the fact that connections
are not formed between named pairs of nodes, but rather channels
themselves are named, and then any topic can publish or listen to
the channels.

At the start of its execution, a node is expected to first register
with the master ROS service, roscore. The master node is the core
of a ROS system, responsible for providing naming and registration
to nodes connected to it. Its primary functionality is to act as a node
discovery hub, which means that after node addresses have been
relayed as needed, inter-node communication can be done peer-
to-peer. Newly-created nodes are therefore able to communicate
through unidirectional topics, request-reply RPC services, and a
globally-viewable parameter server for static variables.

The ROS message-passing architecture supports the easy inte-
gration of custom user code within its ecosystem and unifies the

different APIs that would normally be needed to access relevant
system information, such as sensor data and actuator positions. How-
ever, as the number of nodes grows scalability issues arise. Given
the fact that ROS adopts a graph model to store and manage its
network of nodes, either a substantial increase in the number of con-
nections or the forming of a complete graph (in essence an all-to-all
connection) is likely to affect its performance. In addition, ROS’
inter-process synchronisation mechanisms are based on time stamps,
which can induce failure in certain processes if the time stamps are
not received in order [6].

Furthermore, ROS provides limited mechanisms to detect fail-
ures and restart nodes. For example, ROS fault-tolerance consists
of restarting a process only when it terminates abruptly, without
considering network disconnections or runtime errors. The failed
ROS node poisons the system, e.g. all other ROS nodes that expect
data from the failed node can potentially stop working. The typical
solution is manual failure detection and reboot. All this makes ROS
not suitable for autonomous long-term operations. Industrial and
academic roboticists are aware of, and concerned about, the lack of
reliable and scalable communications in ROS, but these deficiencies
have remained largely undocumented in the literature.

2.2 Erlang in Robotics
Erlang [3] clearly provides the right combination of capabilities for
robot control, namely real time capabilities, lightweight scalable
concurrency, and world-leading reliability mechanisms. Hence, there
are a number of academic and industrial projects seeking to exploit
its capabilities.

One of the first projects was conducted at the University of
Catania in 2005 [25]. The goal of this work was to produce a
complete robotic framework in Erlang for a set of autonomous robots
participating in the Eurobot competition [18]. The project greatly
emphasised system modularity, which meant that the framework
was constructed using a layered architecture to separate each process
concern, starting with the low-level control layers that govern
physical movements and interface with robot hardware, to the higher-
level interpretation layers, such as planning and reasoning functions,
and control logic. Erlang’s concurrent features were also utilised
both in the AI aspects of the project and in the task of efficiently
parallelizing the robot’s control loops. While, traditionally, these
modules would have been implemented in languages like LISP [19]
and C/C++, the team asserts that Erlang can successfully merge
both language’s capabilities. The team later created ROSEN [26],
a robotic framework and simulation engine developed in Erlang
similarly designed to separate generic functionalities from the
idiosyncrasies of specific robotic systems.

The RT-Erlang project was conducted in 2009–2010 at the
National Institute of Advanced Industrial Science and Technology
(AIST) in Japan [4]. The initial goal of this project was to develop
an Erlang tool for the monitoring and orchestration of a network
of OpenRTM-aist [2] components. Much like the ROS framework,
OpenRTM-aist is an open source robotic middleware which provides
communication services to sensor and control programs designated
as RT-components. Following the completion of this tool, a much
more in-depth investigation of Erlang’s use in low-level robotic
control was launched, culminating with the development of a
complete re-implementation of OpenRTM-aist in Erlang.

Both Erlang Framework and RT-Erlang projects emphasised
the importance of ensuring proper functioning of separate, yet
dependent software components. In case of the former project, these
were represented by the various robot control loops that passed data
from one to the other (e.g. wheel control and speed sensing), while in
the RT-Erlang project, these came in the form of intercommunicating
RT-components.
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(a) ROS (b) Erlang

Figure 2. Architectures of the ROS and Erlang Face Tracking Programs

There have been industrial experiments using the Erlang family
of languages for robot control, e.g. a US based software developing
company Isotope11 developed drone demonstrators [1] in 2014
using Elixir [14]. This was a low cost side project that demonstrated
how to use Erlang and Elixir on Android mobile platforms.

Where the foregoing projects mainly seek to implement robot
control predominantly in Erlang, our approach is novel in preserving
ROS as a common platform, and replacing only the communication
layer between ROS nodes.

Erlang has also been taught through robotics, providing a robotic
platform. The project was a collaboration between RWTH Aachen
and the University of Kent [12]. The project’s goal was primarily
educational and focused on building an interactive framework to
teach Erlang via robotic simulation. The software artefact produced
as a result of the project was KERL [11], the Kent Erlang Robotics
Library. Here Erlang user level and middleware modules commu-
nicate with a robotic driver implemented in C++, which in turn
makes use of Player [9], a cross-language robot device interface
for a variety of control and sensor hardware, and Stage [29], a 2D
simulation environment simulator.

The combination of these technologies created a framework
which, in spite of being a research project with less conventional
applications, was nevertheless successful in providing a starting
point for robotics in Erlang. In contrast we neither aim to build a
robotic platform, nor use the technology as an Erlang teaching tool.

3. Design and Methodology
3.1 Common Design
The ROS and Erlang face tracking systems follow a similar client-
server model, and for simplicity we describe a single architecture.
The system comprises an image capturing device and pan-tilt
actuators. The image capturing device (a pan-tilt enabled Logitech
QuickCam R© camera1) performs face detection on frames captured

1 http://support.logitech.com/en_us/product/
quickcam-sphere-af

in real time and then relays the results to camera pan-tilt actuators
to achieve face tracking. The decision of using a pan-tilt camera as
an archetypal robotic component is based on two major factors. The
first of these relates to the role that vision plays in robotics, which
makes imaging sensors a relatively ubiquitous piece of hardware for
autonomous robots. The second factor is due to the straightforward
way in which image manipulation programs can be distributed
and parallelized, thus facilitating the completion of scalability and
reliability experiments.

Software modules common to both ROS and Erlang face tracking
programs comprise the following [17].

• Off-the-shelf OpenCV face detection and localisation detectors.
Here, we use in-built OpenCV Haar feature-based cascade
classifiers [22].

• Software driver to control the Logitech QuickCam based on the
output from the face detector modules.

• User interface to report the state of the system and present a
view of the images currently being captured, annotated with any
detected faces and tracking data.

Figure 2 provides an overview of components and interactions
of the face tracking program implemented in ROS and Erlang. To
facilitate a common software architecture in both versions, we use
Python (highlighted in yellow) that performs the following: image
acquisition, face detection, frame display (to informally validate
tracking results), and camera operation. By having a common
and homogeneous software base, it allows us to focus on the
communication capabilities of ROS and Erlang while keeping
remaining functionality unchanged.

The key aspect examined in this design was distribution of the im-
age frames to the worker nodes/processes in both implementations.
We considered two alternatives:

1. random distribution of frames between workers (effectively
ensuring frames are never processed more than once);

2. broadcasting every frame to all worker nodes and synchronise
their detection results at the aggregation stage.
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While the broadcast method incurs negligible detection accuracy
penalties, and hence is a better fit for a system which performs a
mean-based face detection, it also presents some downsides. That is,
apart from increasing the volume of messages by a factor of n (where
n is the number of workers), such replication also requires additional
code that can determine when all of the results for a particular
frame have been received at the aggregator before actuating the
camera. Due to the complexity and added latency of the broadcast
method, we employ random frame cast approach. Broadcast-based
distribution is however used briefly in the face quality experiments
(Section 4.3), where it enables to expose a flaw in ROS’ message
synchronisation protocol.

3.2 ROS interface
The ROS face tracking program has two types of ROS nodes
(Figure 2(a)): main and worker. The main node acts as an interface to
the camera and is responsible for acquiring images from the camera
and distributing them to the worker nodes. The communication
between the main node and a set of worker nodes is asynchronous.
The worker nodes wait for frame inputs and subsequently detect
faces on the given image frame. Detected faces from each worker
node are sent back to the main node, where the face coordinates
(represented as a rectangular box) are averaged to obtain a single
face detection. The centre of the averaged rectangular box is then
used to compute the physical adjustment required for the camera
gaze to centre to the new face position.

The core of the ROS face tracking application is confined to a
single Python script. This node initialises its operations by regis-
tering itself with the ROS master node under a unique node name,
face_tracking_main. This is followed by the node establishing
the parameters of its topic interactions (Listing 1). That is, the main
node creates n topics, camera_frames_i, where i ∈ [0; n) – one
for each worker node it expects to engage – and reserves them for the
publishing of Image-type messages. Similarly, the node registers as
a subscriber for n face topics carrying Int32Numpy-type messages.
The most important parameter of the subscription process is the
callback function name, which specifies which of the main node’s
functions are to be invoked when a message is published to any of
its subscribed topics. In this particular case, the callback function
for all face topics is set to a function responsible for aggregating the
faces and issuing camera instructions.

Listing 1. Initialization of ROS Main Node
1 rospy.init_node('face_tracking_main')
2 cap = cv.VideoCapture(device_ID)
3 # Create frame topics
4 publishers = []
5 for i in xrange(expected_workers):
6 topic = 'camera_frames_'+str(i)
7 publishers += [rospy.Publisher(topic, Image,

queue_size=1000)]
8
9 # Subscribe to face topics
10 subscribers = []
11 for i in xrange(len(publishers)):
12 topic = 'camera_frames_'+str(i)
13 subscribers += [rospy.Subscriber(topic,

Int32Numpy, aggregate_faces, callback_args=[cap
])]

Notably, the face topics need to exist for the subscription process
to succeed, as the callback system employed by ROS ensures that
subscriber-topic interaction only occurs when a message is pub-
lished/received. Regarding the two image message types described
above: Image and Int32Numpy. The Image is an in-built ROS mes-
sage type that enables an efficient encoding of pixel matrices for
publishing to a ROS topic and is, therefore, highly suited for wrap-

ping frames retrieved from the camera. The Int32Numpy, on the
other hand, is a custom message type created solely for the purposes
of this application, which wraps a set of four integers of type int32,
a numerical type specific to the Numpy Python library [10].

Having defined the above message passing protocols, the main
node proceeds to open a continuous camera feed using OpenCV and
randomly selects a frame topic to publish each retrieved frame.

The second major component of the ROS application resides in
the code used by all worker node instances. This module features an
initialization process similar to the main node, registering itself
under a unique name, face_tracking_i (where i ∈ [0; n)),
defining the topic to which it intends to publish the results of face
detection, and finally subscribing to its dedicated frame topic. The
name of the callback function for the latter operation is in fact the
name of the worker module’s only function, aggregate_faces,
that carries out face detection.

Once a frame is published to the frame topic, the face detection
function begins to process it, calling upon the detectMultiscale()
function from the OpenCV library. The function applies a classifier
to a supplied image and returns a list of rectangles denoting deduced
face positions. Each of these rectangles is composed of the following
four Numpy integer elements, which aim to characterise the location
of a face with respect to the image plane:

• x_coord is the top left x-coordinate point of a rectangle that the
detector assumes circumscribes a face;

• y_coord is the top left y-coordinate point of the same rectangle;
• width is the width of the rectangle;
• height is the height of the rectangle.

To ensure that only one face is returned as a detection result, the list
of rectangles is condensed to a single value, i.e. the largest rectangle,
which is due to the nature of the cascade classification process that
considers it to be the likeliest face candidate. The resulting face data
is then sent back to the main node.

The function designated to receive faces at the main node is the
aggregator, whose role is to manage the large influx of face readings
and determine what movements the camera should execute. For
this, we employ a finite-size dequeue (double-ended queue) data
structure of variable capacity [13]. Declared as a global parameter,
the dequeue is gradually filled with each incoming face until it
reaches its maximum number of elements, at which point the oldest
element is discarded and the dequeue’s “tail” is shuffled backwards
to make space for a new face. This sliding window approach to face
storage is then paired with an aggregation operation, whereby the
face coordinates currently in the dequeue are averaged to produce
a single “best” face reading. Consequently, these features help
circumvent the issue of conflicting concurrent camera access and
ensure that the resulting face is a reasonable reflection of the real
face position at the time of aggregation.

Lastly, a ROS launch file is used to start both main and worker
nodes of the application, as well as the roscore node with which
all active nodes are registered. This XML-formatted file serves as a
configuration specification for the program, informing ROS of where
the nodes are located (i.e. which package and which host/machine),
what user-defined parameters they require, and whether their alive
status should be monitored. This last aspect is particularly significant
when it comes to protecting the system from unexpected failures
(Section 4.4).

3.3 Erlang interface
The Erlang face tracking program is conceptually similar in its
design to the ROS-based architecture, yet requires more modules
written in both Python and Erlang (Figure 2(b)). This added com-
plexity is due to us using Erlang only for the implementation of
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Table 1. ROS and Erlang Code Comparison
ROS interface Erlang interface

Processing Communication Reliability Processing Communication Reliability
Modules 2 1* 1 (ROS launch script) 2** 2 3 supervisors

Lines of code 194 1 22+ 104 139 81
Total 200+ lines of code 300+ lines of code

* Communication is handled implicitly by ROS, but the custom image message (Int32Numpy, Listing 1) was added to support float32 images
** One Python module for processing and one Erlang interface module to start the application

the message-passing middleware components. In ROS, however,
message-passing is provided though libraries as discussed in previ-
ous sections.

Mirroring the implementation of the ROS face tracking program
(Section 3.2), the Erlang face tracking program is also structured as
two primary modules: one corresponds to each instance of Python
worker processes and the other encompasses the aggregation oper-
ation. However, these modules are exclusively tasked to perform
message-passing. Diverging from ROS’ free-form code design, the
two Erlang modules follow standard Erlang gen_server behaviour
that models the server side of the program’s client-server communi-
cations. Accordingly, clients are represented by Python functions
that deal with image acquisition and processing, as well as camera
interaction. Note that the functional equivalence of the ROS and
Erlang applications considerably facilitates code reuse between the
two face tracking systems, meaning that the Python modules de-
veloped for use in ROS space requires minor re-structuring to be
ported as Erlang clients. Since these implementations are already
covered in the previous section, we do not go into further detail on
the Python functions, instead we proceed to the Erlang modules.

The face_server module listens for incoming image frame
messages from the Python camera driver and relays them to a Python
face detector. While the generic server specification provides code fa-
cilities for both synchronous and asynchronous messaging – through
the handle_call and handle_cast functions, respectively – only
the latter is used to resemble parallel ROS’ topic-based interaction
(Listing 2). For the Python interaction to take place, at the initializa-
tion the face server creates an instance of a Python interpreter via
the ErlPort library [28]. A reference to this instance is then passed
to each of the server’s functions as a “state” parameter.

Listing 2. gen_server Functions for the face_server
1 % Asynchronous handler for incoming frames;
2 % frames are pattern matched to ensure correctness
3 handle_cast({frame, Frame}, PyInstance) ->
4 % Call the Python detector, supplying the frame

and the Erlang Process ID
5 python:call(PyInstance,facetracking,detect_face,[

Frame,self()]),
6 {noreply, PyInstance};
7
8 % Synchronous message handler;
9 % set to issue no replies
10 handle_call(_Message, _From, PyInstance) -> {noreply

, PyInstance}.

Whenever a message is sent (or cast) to the face server, the
server matches the message against the {frame, Frame} pattern.
The handle_cast performs a call to the Python detector function
via the Python interpreter, where the call process can pass to Python
functions parameters of any type. The Erlang caller only resumes
operation once the Python function returns. Each face server has
its own associated Python interpreter, thus the server actors can
easily run independently from one another. A similar multi-threaded
behaviour is observed in ROS nodes.

Likewise, the aggregator module, aggregator_server, makes
use of its defined gen_server behaviour and a server state parame-

ter to communicate with Python functions outside of the VM, with
the exception that in this case the server pattern matches {face,
Face} messages received from all of the Python detectors and sends
the aggregated face position to a Python tracking control function.
A prominent feature of the aggregator server’s state is that it is a list
data type, in which the first element is its associated Python instance
and the second is a queue structure (shared amongst the server’s
functions) and designed to store the faces before aggregation. While
Erlang does not offer a built-in dequeue data structure in the same
way Python does, its functioning is simulated through additional
checks that probe the queue on fullness every time a new element is
added, and remove the oldest element if the queue is full. That is,
once a face message is cast to the aggregator, the server pushes it
onto the queue and computes the same mean-based grouping opera-
tion as in the ROS framework. The last step of the process involves
the relay and translation of these final face coordinates into usable
camera control instructions, via a call to a Python function.

The reliability in the Erlang implementation is supported by a su-
pervision tree (Figure 3). The tree consists of two main supervisors
that monitor the execution of the face server processes and the aggre-
gator server process, respectively, and one top-level supervisor. The
top-level supervisor oversees the functioning of its direct children.
All of the tree’s vertices are configured as permanent children, im-
plying they must always be restarted upon failure. The supervisor
modules offer more customisability than the ROS’ .launch script,
allowing for different restart strategies to be employed. This imple-
mentation makes use of the strategy called one_for_one, whereby,
in the case of failures occurring in a multi-child supervisor, only the
failed child processes are restarted.

3.4 ROS vs. Erlang Implementation Comparison
Through an empirical testing and subsequent extensive refinements
we have determined that the two face tracking programs – ROS and
Erlang – are functionally equivalent. In Table 1 we summarise the
implementation details. It shows that the Erlang implementation
requires more code facilities than its ROS analogue. While this may

…

Top-level supervisor

Erlang face detecting worker processes

Erlang aggregatorprocess

Aggregator’s supervisor
Face detectors’supervisor

Figure 3. Supervision in the Erlang Face Tracking Application
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Table 2. Experiment Parameters
Variable Name Variable Description Value

Variables common to both ROS and Erlang

Device ID

The name under which the operating system identifies
the Logitech QuickCam R© camera port. The port labelling
is the choice of the OS and thus this variable must be
manually passed to the programs.

0 or 1

Cascade Classifier ID The name of the Haar features-based cascade classifier
used during the OpenCV face detection stage. haarcascade_frontalface_1

OpenCV Detector Arguments

The list of arguments passed to the detection function:
scaleFactor (how much the image size is reduced at
each step), minNeighbors (the confidence of face detec-
tion where higher values mean a more rigorous selection
process), minSize (faces smaller than this minimum rect-
angle size are ignored).

scaleFactor = 1.1, minNeighbors =
6, minSize = (50,50)

Aggregator Dequeue Length

The size of the sliding window the aggregator should take
into account. This parameter was experimentally found
to yield the best results at low values (Section 4.3), since
having more faces to aggregate causes the average face
value to “lag” behind the real-time position.

5

ROS-specific Variables

Publishing Rate The rate at which messages are published to a topic. 5 Hz, as imposed by rospy message
transmission latency.

Topic Queue Size

The number of messages temporarily stored by rospy
if it cannot immediately publish all of them to the topic.
Generally recommended to be the same as the publishing
rate.

5

Erlang-specific Variables

Supervisor Child Specification Child configuration parameters: restart, shutdown,
type.

restart = permanent (children are
always restarted upon failure),

shutdown = 20 ms (child processes that
do not respond within 20 ms to an exit
summons are automatically terminated),

type = worker/supervisor

Supervisor Restart Strategy Identifies child processes that are restarted in case of a
failure. Quantifies the importance of partial failures.

one_for_one (if one child process
terminates and should be restarted, only

that child process is affected)

Maximum Restart Intensity
The number of restarts allowed within a specific period of
time before the entire program is deemed faulty and shuts
down.

1000 restarts in 1 second

appear disadvantageous, the discrepancy is due to the fact that Erlang
is only a development tool, rather than a fully-developed ecosystem
such as ROS. Hence, communication and reliability facilities such as
topic interaction and the roslaunch package2 that are incorporated
into ROS, had to be implemented in the corresponding Erlang
program.

4. Experiments
To investigate Erlang potential to address the scalability and relia-
bility issues with communication between ROS nodes we conduct
the following experiments that compare the ROS and Erlang face
trackers.

• Scalability measured as the maximum number of concurrent
workers: ROS nodes or Erlang processes, and associated memory
consumption (Section 4.1).

• Message latency (Section 4.2).
• Variations of face quality with a real-time aggregation (Sec-

tion 4.3).

2 http://wiki.ros.org/roslaunch

• Reliability in the face of ROS node or Erlang process failures
induced by a Chaos Monkey [27] (Section 4.4).

• Variations of face quality with worker failures (Section 4.5).

The experiments are conducted on an Intel i7-4700HQ processor
(4 cores, 2 threads per core), at 2.4 GHz, with 16GB DDR3 in
RAM, running 64-bit Ubuntu 15.04, ROS Indigo, Erlang/OTP 18.0,
and OpenCV 3.0. Table 2 summarises the parameters used in both
programs. These help to eliminate bias in favour or against one of
the programs and ensure results derived from each test are valid
and meaningful. Below, we provide further justification for the
assignment of particular values.

• scaleFactor defines percentage of up-scaling between two
consecutive levels of the image scale pyramid. Here, 1.1 corre-
sponds to a 10% difference in scale, which, for the purpose of
the experiment, is an appropriate trade-off between performance
(speed of classification) and thoroughness of detection.

• minNeighbors affects the quality of face detection. The higher
the value, the better the quality (or accuracy) of the detected face,
but the less results (faces) are obtained from an image. We set it
to 6 as we only expect the dataset to have one face per image but
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this face must be detected accurately to best assess the impact of
failures on face quality.

• minSize. To keep the quality of detected faces high, they must
be at least 50x50 pixels. Smaller faces have less sharp features
(especially with the camera’s 640x480 resolution). Thus smaller
faces are harder to detect.

• Publishing rate of 5Hz is slower than the rate commonly used
(10 Hz) in ROS tutorials and example programs as we want to
ensure higher data completeness, i.e. all frames arriving at their
destination node.

• Queue size is kept small (5), since no message drops or any other
performance impacts were observed. A smaller queue would
presumably also use less memory.

• Supervisor shutdown interval of 20ms allows for any non-
responsive process to be considered as hanged and that needs
a restarting protocol. We set this value to maintain real-time
constrains.

• Supervisor restart strategy one_for_one mirrors ROS restart-
ing behaviour, i.e. ROS only restarts the failed processes.

• Supervisor maximum restart intensity. The default values for the
max_restart and max_interval values are 1 and 5, respec-
tively; which means a maximum of 1 restart within a span of 5
seconds. This proved unsuitable for the purpose of the reliabil-
ity experiments, where the Chaos Monkey program would kill
processes much faster than that. Thus, through experimentation,
a 1000-in-1-second value was chosen to be compatible with
the Chaos Monkey failure rate.

Both ROS and Erlang face trackers are open source and can
be downloaded from https://github.com/AndreeaLutac/
Erlang-Camera-Control-Project.

4.1 Scalability
This experiment determines the scalability of the two systems by
measuring the maximum number of face detection workers, i.e.
the maximum number of ROS nodes or Erlang processes that the
corresponding programs can support while functioning correctly,
without a severe strain on the operating system and with no failures.
The experiment proceeds by increasing the number of workers (ROS
nodes or Erlang processes) until the programs start failing.

Figure 4 plots processing time (i.e. period between obtaining a
frame from the camera and delivering the result to the corresponding
face output) against the number of workers. This is weak scaling, i.e.
more workers means that there is more work to be done. The figure
shows that the ROS program scales up to 200 worker nodes, while
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Figure 4. Scalability: Maximum Number of Workers

Table 3. Scalability: Memory Consumption at 50 Agents
ROS system Erlang system
Python main node: Erlang VM:
∼64 MB x 1 instance ∼200 MB x 1 instance
Python worker nodes: Python interpreters:
∼50 MB x 50 instances ∼22 MB x 50 instances
Total: 2,564 MB Total: 1,300 MB

the Erlang program scales up to 700 worker processes. In the case
of the ROS system, these failures are due to unspecified Xorg (a
display server application for Ubuntu distribution) errors, while the
primary cause of the failures in the Erlang application is reaching
the OS’ maximum open socket limit. The attempts to increase this
limit have not resolved the issue, so we attribute the error to poor
socket recycling on the part of the ErlPort library (we further discuss
this in Section 5).

Memory may also limit the scalability of systems. To analyse
this, we compare memory consumption of ROS and Erlang face
recognition systems with 50 workers using measurements taken
from Ubuntu’s inbuilt task manager and the top command. Table 3
shows that both the main and the worker ROS nodes are relatively
resource-intensive, consuming 65MB and 50MB per node respec-
tively. The exact resource consumption of each individual Erlang
process could not be accurately determined, due to abstraction re-
sulting from the self-contained nature of the Erlang virtual machine.
However, assuming equal memory distribution, it can be extrapo-
lated that the Erlang middleware consumes approximately 200MB
per 50 processes = 4MB per process. If combined with the 22MB
consumed by each Python instance, the total consumption of an
Erlang processing unit amounts to 26MB, approximately half of the
corresponding ROS value.

From this experiment we conclude that Erlang communication
provides at least 3.5 times larger scalability (200 ROS nodes against
700 Erlang processes) while consuming half of the memory as
compared to a similar ROS implementation.

4.2 Message Latency
The aim of this experiment is to quantify the systems’ performance
as the number of nodes and processes increases. This is done
by measuring the time each message spends in transit from one
stage of the processing pipeline to another. In the case of ROS,
the verified latencies are the ones incurred by message passing
between the camera and each face detection node, and between the
face detection node and the aggregator function. In the case of the
Erlang application, measurements are made of the delays between
the Python camera accessors and the Erlang face detection processes,
between the Erlang face detection modules and the Python detector,
and between the Python detector and the Erlang aggregator process.
Additionally, the mean time taken for the OpenCV detection to
execute is measured for each program. We then sequentially start
instances of the ROS and Erlang programs running increasingly
more workers and processes in each run. For each program, we
obtain a message latency measure by taking the differences between
the recorded time stamps, and then take the mean of the 700 latency
measures.

Figure 5 shows the calculated latencies for ROS and Erlang
programs. On a small scale of up to 9 nodes the total message
latency is identical in both ROS and Erlang systems, and is ∼37
milliseconds (red line in Figure 5). However, starting at 9 workers
the time increases sharply for the Erlang system, while the ROS
system demonstrates constant time until it reaches its maximum
limit of 200 workers.

The delay induced by the OpenCV face detection operation
(magenta line in Figure 5) is very similar in both ROS and Erlang
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Figure 5. Face Tracking Processing Time

programs, thus it does not account for any performance differences.
The detection functions perform similarly, with slightly higher
ROS values being attributed to an additional step the detector must
perform to convert the frame from an Image-type topic message to
a usable pixel matrix.

Further analysis indicates that the spike correlates to the function
call from Erlang detector processes to the Python module (blue
line in Figure 5(b)). While a possible explanation for this anomaly
could relate to the size of the messages (large pixel arrays), the same
behaviour is not observed in the camera to Erlang process relay,
which deals with similar message sizes, and is also performed via
I/O socket. Therefore, we attribute the discrepancy to faults in the
behaviour of ErlPort’s socket interfaces.

While ErlPort is a convenient method of linking Python and
Erlang, its limited scalability significantly limits scalability of the
Erlang middleware. From this we conclude that Erlang is able
to offer processing times which are at least as good as the ROS
analogue, but great care should be taken in selecting the cross-
language or cross-platform communication libraries.

4.3 Face Quality Variations with Real-time Aggregation
In this experiment we assess the quality of face detection produced
by multi-agent instances of the ROS and Erlang systems, investigat-
ing an impact of scaling the number of workers on the performance
of the two programs.

For that we create a set of 100 (image, file) pairs, where the
images are snapshots taken by the camera, and the files contain
the coordinates of the primary face present in the image, deter-
mined through OpenCV detection with the same haarcascade_
_frontalface_1 classifier. In addition, we replace the real-time
camera feed of the ROS and Erlang programs with the prepared set
of 100 images and run instances of each program with agent num-
bers increasing as follows: 1, 100, 200 nodes/processes. For each
run, we record 100 face position results and, for each test image,
we compare the accuracy of the face position against a manually
annotated ground truth. The latter is performed by a metric derived
from the Jaccard index [15], that computes the similarity of two
sample sets. This variant metric, JQ, replaces the sets with rectangle
areas:

JQ(Adet, Aact) =
Aov

Adet + Aact −Aov
, JQ ∈ [0, 1], (1)

where Adet is the area of the rectangle that describes the predicted
face position, Aact is the area of rectangle that denotes the defini-
tively established face location, and Aov is the area of their overlap.

We then classify each index by its corresponding frame, program
version (ROS or Erlang), and worker node count. To establish the
differences between the two implementations in the context of face
quality, we average the indices and compare the resulting mean
data. To distribute frames to detectors we use a broadcast approach
discussed in Section 3.

From Table 4, we conclude that there is no significant difference
between the quality indices resulting from ROS and Erlang pro-
grams. However, common to the systems aggregator dequeue length
variable was observed to have a significant impact on face quality
when faces are randomly distributed amongst detectors. This is due
to the fact that the larger the dequeue size, the more out-dated faces
get aggregated in the final face reading. The results also illustrate
that if all output faces are considered individually (at dequeue size 1
and hence with no aggregation) the resulting JQ is very close to the
expected ground truth index JQactual = 1, while if aggregation is
performed, the values of JQ drops with each increase in dequeue
size.

Therefore, we conclude that Erlang’s ability as a middleware
to support application functions is not hindered by growth in the
number of worker processes.

4.4 Reliability
We investigate the reliability of the ROS and Erlang face trackers
by terminating face-detecting workers and aggregator, and then
measure the latency between their shutdown and restart. Termination
is done both by invoking the agents’ exit procedures, through a
standard termination signal, and also abruptly, by immediately
ordering the kernel to terminate the agents.

To terminate “living” agents from their respective face tracking
systems (ROS and Erlang) we have developed a pair of scripts
in Python and Erlang. These scripts are modelled after the Chaos
Monkey [27] reliability testing service introduced by Netflix. On
both ROS and Erlang systems running 100 workers, we instruct
the chaos monkey program to execute 200 random terminations
every 1 second. We then compute latencies for each system based

Table 4. Mean Indices of Face Quality
Dequeue Length

10 5 1
ROS 0.285 0.591 0.947
Erlang 0.302 0.608 0.922
Difference -5.62% -2.79% 2.71%
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Table 5. Reliability: ROS vs. Erlang Recovery Time
Process type Type of shutdown

SIGTERM SIGKILL
ROS

Main node 420ms 400ms
Worker node 369ms 291ms

Erlang
Supervisor process 0.368ms 0.352ms
Worker and aggregator process 0.224ms 0.249ms

on differences between the recorded time stamps, and then take the
average over 500 latency readings. We finally compare the resulting
mean data to establish which of the two systems is faster to restart
its failed agents.

The restart latency presented in Table 5 shows that ROS takes
between 291ms and 420ms to restart a failed node, whereas Erlang
restarts its processes in 0.224ms–0.368ms, which is approximately
0.06% to 0.08% of the time taken by ROS. These findings demon-
strate that Erlang is significantly more efficient than ROS at restart-
ing processes that fail randomly and unexpectedly (0.352ms and
0.249ms against 400ms and 291ms respectively). The significance
of this analysis in the context of robotics is that system uptime for
robots running an Erlang supervision mechanism has the potential
to be significantly higher compared to ROS-based robots.

4.5 Face Quality Variations with Worker Failures
In the final experiment we analyse the impact that random partial
failures have on the accuracy of the face detection process executed
by the two face tracking systems. For that, we use a set of 100 images
created for the experiment in Section 4.3 that contain pre-computed
faces to resemble a simulated “real-time” image feed while running
100 workers. We then instruct the chaos monkey script created for
the experiments in Section 4.4 to gradually terminate 10, 25, 50, 75
and 90 of the face-detecting workers, with no pause between the
terminations. For each run and each test image, we compare the
accuracy of the face positions against ground truth using the Jaccard
similarity coefficient (1). We then compare the variations in face
quality over time for each run of the two frameworks.

Similarly to the results in Section 4.4, we observed that the
Erlang program is more reliable in terms of the face detection, even
while experiencing sudden partial failures. Figures 6–10 show a
percentage-based representation of quality variations, as they are
observed during each phase of the testing (i.e. with 10, 25, 50, 75,
and 90 failed workers). We refer to these phases as the n-failure
sub-tests, where n ∈ [10, 25, 50, 75, 90].

The data series represented by the green line is the quality
baseline quantified by the pre-determined face coordinates for each
of the 100 images. The red and blue lines represent experimental face
quality registered after the point of mass agent termination (normal
and abrupt, respectively). The point of termination is depicted as
the purple dotted line, which we have tried to keep as consistent as
possible within the context of each sub-test.

In the case of the 10-failure tests (Figure 6) and the 25-failure
tests (Figure 7), the Erlang application indicates no face quality
penalties, which is due to the worker processes being restarted
before the camera has a chance to cast any frames to failed workers.
The graph lines resulting from these observations thus coincides
entirely with the “ground truth” line. This, however, does not hold
for the ROS program, where even for a relatively small number of
terminated nodes, the high latency of node restarts causes some
frames to be published to topics that are no longer connected to their
dedicated workers.

Unlike other log- and topic-based message passing frameworks,
such as widely used in the area of big data Apache Kafka [8], ROS

does not keep track of undelivered messages to topic subscribers,
meaning that all messages that do not have a subscriber are per-
manently lost. This characteristic is observed in Figures 6–10 as a
sudden and steep decrease in face detection accuracy immediately
after the terminations occur, followed by fluctuations in the quality
percentage. These latter fluctuations are believed to be caused pri-
marily by the aggregator receiving an unexpected face reading for
a frame fi and aggregating it with readings associated with “older”
frames, fi−k, fi−k−1, etc., thus skipping over the k lost frames and
resulting in a final aggregation product that “lags” behind the ground
truth reading.

As the sequence of frames relayed through the detectors nears
its end, the red and blue series sink sharply to a 0% flat line For
each of the n-failure tests, this drop occurs increasingly sooner into
the image feed and is considered to be indicative of the number of
faces lost as a result of progressively more nodes being shut down.
Throughout the execution of the tests, the ROS system was observed
to routinely be unable to restart all of its terminated workers before
the last image is transmitted.

Starting with the 50-failure sub-test, the Erlang program also
exhibits drops in face quality, following similar patterns to the ones
described above for the ROS detectors. However, the impact is
relatively small since Erlang worker processes are largely able to
recover before the end of the image sequence. Thus, by virtue of its
sub-millisecond restart delays, the Erlang face tracking system is
always able to finish its operation with all 100 processes alive.

The last aspect to be addressed in the analysis of the experi-
ment’s findings relates to the sharp quality decline between frames
73 and 75 of most n-failure tests. The precipitous decrease is hy-
pothesised to be caused by an anomaly in the OpenCV detection
process, whereby for a short period the “real-time” detectors do
not detect faces in an array of consecutive frames, even though the
“static” (ground truth) detector does. As its causes have yet to be
unequivocally determined, we may further examine the issue in the
future.

From this experiment we conclude that Erlang is capable not
only to reduce robot component downtime, but also mitigate neg-
ative impact of these failures. These findings become particularly
compelling when considering the fact that many modern robots
operate in safety-critical environments and any periods of unstable
behaviour can result in hazardous functioning.

5. Conclusion
We investigate whether Erlang has the potential to address the
scalability and reliability issues with communication between ROS
nodes in robotic systems. The basis of the investigation is a pair of
simple face-tracking applications: one using ROS message relay via
topics, and the other a bespoke multi-process Erlang framework to
transmit messages between functional units that reside outside of
the Erlang VM. Both applications interface with an external PTZ
camera to capture frames in real time and rely on Python-based Haar
cascade classification to perform distributed human face detection
on these images.

We conduct five experiments to compare key aspects of the
ROS and Erlang face trackers (Section 4). We find that Erlang
communication scales better, supporting at least 3.5 times more
active processes (700 processes) (Figure 4) than its ROS-based
counterpart (200 nodes) while consuming half of the memory
(Table 3). However, while both face tracking prototypes exhibit
similar detection accuracy and transmission latencies when kept
under 10 workers, Erlang exhibits a continuous increase in the total
time taken to process a frame as more agents are added (Figure 5).
Since the cause of this phenomenon is thought to lie with the external
VM linking library, the implication is that a highly concurrent
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(a) ROS (b) Erlang

Figure 6. Quality Variation with 10% Failed Workers

(a) ROS (b) Erlang

Figure 7. Quality Variation with 25% Failed Workers

(a) ROS (b) Erlang

Figure 8. Quality Variation with 50% Failed Workers

(a) ROS (b) Erlang

Figure 9. Quality Variation with 75 Failed Workers
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(a) ROS (b) Erlang

Figure 10. Quality Variation with 90% Failed Workers

Erlang middleware would require and equally performant interface
to efficiently interface with robotic components.

A study of reliability in the face of ROS node or Erlang process
failures induced by a Chaos Monkey shows that both ROS and
Erlang restart failed computations. However the Erlang processes
restart 1,000–1,500 times faster than ROS nodes, e.g. it takes Erlang
worker processes 0.352ms to restart while ROS worker nodes take
400ms). This enables Erlang not only to reduce robot component
downtime, but also mitigate negative impact of these failures. For
example, Figures 8 demonstrates that a successful completion of
Erlang-based face tracking task is only mildly affected even when
50% workers fail.

As a direct improvement and continuation of the experiments
presented in this paper, different variants of the face trackers could
be developed and tested. For instance, they may benefit from writing
files to a RAM disk or ROS’ C++ API and Erlang-to-C/C++ natively
implemented functions (NIFs) and port drivers. These may reduce
some of the relay latency and remove the bias introduced by ErlPort
(Figure 5(b)). It would be interesting to further investigate ROS
and Erlang memory consumption providing detailed analysis of
the data presented in Table 3. Our preliminary investigation would
also benefit from other typical robot applications, like processing
different types of sensor data and action coordination.

While the paper has focused solely on comparing ROS and
Erlang as completely separate robotic middleware solutions, we
believe that an integration of the two systems will create a more
versatile communication platform. By harmonising both ROS’ rich
and well-documented library ecosystem – brought about by its
popularity in the robotic community – and Erlang’s demonstrated
capabilities for concurrent communication and reliability, a more
stable and better performing middleware can be developed. This
would involve Erlang processes monitoring the execution of child
processes represented by ROS nodes, and providing all inter-node
communication in robots.
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