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Abstract. Existing automatic image annotation (AIA) systems that de-
pend solely on low-level image features often produce poor results, partic-
ularly when annotating real-life collections. Tag co-occurrence has been
shown to improve image annotation by identifying additional keywords
associated with user-provided keywords. However, existing approaches
have treated tag co-occurrence as a static measure over time, thereby
ignoring the temporal trends of many tags. The temporal distribution
of tags, however, caused by events, seasons and memes, etc, provides a
strong source of evidence beyond keywords for AIA. In this paper we pro-
pose a temporal tag co-occurrence approach to improve AIA accuracy.
By segmenting collection tags into multiple co-occurrence matrices, each
covering an interval of time, we are able to give precedence to tags which
not only co-occur each other, but also have temporal significance. We
evaluate our approach on a real-life timestamped image collection from
Flickr by performing experiments over a number of temporal interval
sizes. Results show statistically significant improvements to annotation
accuracy compared to a non-temporal co-occurrence baseline.
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1 Introduction
With the amount of multimedia data rapidly increasing, it becomes important
to organize this content effectively. To be able to facilitate efficient multimedia
retrieval we must first categorize these objects with semantic features, such as
keywords. However, unlike traditional text retrieval which can infer topics di-
rectly from the distributions of words in a document, multimedia objects provide
little or no textual clues. Hence, content annotation with semantically related
keywords is therefore necessary before indexing and retrieval can take place.
The laborious nature of manual image annotation, however, combined with the
need for effective large-scale image search has increased research in the field of
automatic image annotation (AIA).

1 This research was supported by the the European Community’s FP7 Programme
under grant agreements nr 288024 (LiMoSINe)

2 For the remainder of this paper we refer to tags and keywords synonymously.
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Current state-of-the-art AIA models, however, produce poor results, espe-
cially when tested on ‘real-world’ image collections [2]. Such collections are con-
sidered problematic often because of their noisiness, sparsity and diversity of
image features. Bridging the semantic gap between low-level image features and
high-level human concepts is still an unsolved research problem [23]. In any case,
many fundamentally question if there even exists a correlation between these two
levels [21]. Much research has focused on looking beyond the pixel to incorporate
more robust evidence in the annotation process [20, 16]. We propose to explore
beyond the visual contents of images in the annotation process by exploiting
tag co-occurrence and temporality; by doing so we can avoid, to an extent, the
problems associated with content-based image annotation.

Since the quality of AIA is very poor, a number of image sharing websites
employ user tagging e.g. Flickr. However, the tagging process is either incomplete
or often inaccurate. Automatic tagging techniques are often exploited to improve
the quality of annotated tags. Tag co-occurrence has been used by existing tag
recommendation [22] and AIA systems [16] to improve performance by discov-
ering additional related tags. Tag co-occurrence for two keywords is defined as
the number of documents in which both keywords co-exist; in the field of AIA,
these documents are images. The motivation for exploiting tag co-occurrence
is that keywords exist in a specific distribution which can be exploited. In the
field of timestamped text analysis, a significant body of research has sought to
exploit dynamic term distributions, most notably for Topic Detection & Track-
ing [1] and IR [26]. Analysis of user tags shows that tag co-occurrence is often
linked with time. As such, two keywords which co-occur highly in June may not
have the same relationship in December. Figure 1 shows example normalised
tag distributions over time from a collated Flickr collection. Strong temporal
distributions are seen for seasonal keywords such as summer and winter, which
is expected. Further, tags related to weather cycles also observe a relationship
with time. For example, frost and snow are most prominent during the winter
months.

It may be argued, however, that only a restricted set of seasonal and weather
related keywords will display such strong temporal distributions in image anno-
tation but actually there are many tags with implicit temporality. For example,
keywords such as jet and pool are seen to increase during the summer months
i.e. typically when people go on vacation. Similarly, garden observes peaks during
May through September which is expected due to the increase in outdoor ac-
tivities in summer. By harnessing these temporal trends, we propose to improve
tagging accuracy of an existing state-of-the-art model. Finally, research into tag
co-occurrence has implications for a number of fields such as: tag recommenda-
tion systems as used on social bookmarking websites [5], query expansion [10],
event detection [27] and personalised IR [3].

This paper is organised as follows. In Section 2 we present related work in
the field of automatic image annotation and temporal IR. Section 3 describes
the methodology behind our temporal co-occurrence based approach. In Section
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Fig. 1. Tag distributions over time from our Flickr Collection

4 we discuss our experimental setup. Finally, Section 5 presents the results of
our experiments and Section 6 concludes and discusses avenues for future work.

2 Related Work
The problem of image classification is often treated as a cross media modelling
problem where we try to map low-level features in vector format to high-level
textual concepts. Duygulu et al. [6] treated the problem of image annotation
using a machine translation approach where images are segmented into small
regions; keywords were then mapped based on a number of image features. In
2003, Joen et al. [9] adopted the cross lingual language model of Lavrenko et
al. [13], Cross-Media Relevance Models (CMRM), to predict the probability of
generating a word given blobs in an image in the training set. The model assumed
regions in an image can be described by a small vocabulary of blobs, which were
created from image features using clustering techniques. Lavrenko et al. [14]
then proposed the Continuous-space Relevance Model (CRM) which generalised
the previous CMRM to model highly dimensional continuous features without
clustering and quantization. Bag of Visual Words (BOVW) has gained much
interest in the field; Carneiro et al. [4] proposed a Gaussian mixture model using
the bag of local features approach for class conditional dependencies.

More recently, Makadia et al. showed that all of the previously stated models
could be outperformed by adopting a K-nearest neighbour approach trained on
Gabor and HAAR image features [18]. In a similar experiment, Athanasakos
et al. showed that these approaches were also out-performed by using an SVM
approach trained on global features [2]. Further, they highlighted problems of
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the evaluation approaches of state-of-the-art annotation (SOTA) models, which
are addressed in Section 4.2. We have chosen to implement the approach by
Athanasakos et al. as a baseline, due to its simplicity and performance against
other SOTAs.

Following research in text based IR [5, 10, 27, 3], tag co-occurrence has been
used as a secondary source of evidence in tag recommendation systems [22]
and image annotation models [17, 16]. Sigurbjornsson et al. proposed a tag rec-
ommendation strategy to support users annotating photos on Flickr [22]. The
relationships between tags were exploited to suggest highly co-occurring tags.
Sigurbjornsson et al. adopted two normalised measures for tag co-occurrence: the
Jaccard (symmetric) and Asymmetric coefficients. Our approach follows this re-
search by using these coefficients as a measure of keyword similarity. Llorente et
al. incorporated tag co-occurrence in their annotation model which formulated
the problem of image annotation as that of direct image retrieval [17]. Novelty
was achieved by not only exploring the dependencies between words and their
semantic context, but also between visual features and words.

Temporality has previously been studied and exploited in both information
seeking and retrieval systems. Despite this, its implication on automatic image
annotation has not yet been explored. Klieinberg et al. [12] developed a frame-
work for modelling periodic bursts of keywords in a corpus with hierarchical
structure using an infinite-state automaton. More recently, Leskovec et al. [15]
performed a large-scale study of “memes” diffusing throughout news media as a
result of temporal rhythms. As a result, a mathematical model was provided for
analysing the temporal variation in the context of news. We propose to exploit
these temporal trends of tags in a tag co-occurrence model.

3 Temporal Co-occurrence

In this section we present our temporal based co-occurrence approach for im-
proving the effectiveness of tag suggestions made by an existing AIA model.

3.1 Problem Statement

Let I = {i1, ..., im} denote an image collection, where m is the number of images
in the image set. We denote t as a tag and T = {t1, ..., tn} our vocabulary, where
n is the number of keywords in our collection. We define S(ix, ty) as a confidence
score of matching tag ty to image ix.

Every i ∈ I has a time-stamp of when it was taken. We aim to cluster images
based on time. We therefore define β to be the number of time intervals in the
year in which we wish to cluster images on. For example, β = 3 would group
images into three, 122 ( 366

3 ) day, time intervals. We define iz ⊂ I where iz is a set
of images taken between the start and end of time interval z, where 1 ≤ z ≤ β.

Our approach improves image annotation by promoting the most highly co-
occurring tags from our image classifier. For each subset of images taken within
a given time interval, iz ∈ I, we build a co-occurrence matrix Cz mapping the
number of images two tags co-occur in for the given time interval.
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C3 =


t1 t2 ... tn

t1 0 10 . . . 1
t2 10 0 . . . 0
...

...
...

. . .
...

tn 1 0 . . . 0

 (1)

where C3 is the matrix constructed from images taken within the 3rd interval
e.g. tag t1 occurs together with tag t2 in 10 images. Tag co-occurrence measures,
however, are actually normalised between 0 and 1, as explained in Section 3.3.
We define Coverall to be the co-occurrence matrix built from all images.

3.2 Content Based Annotation

Our proposed approach builds on top of a linear SVM based AIA approach.
SVMs have been used for many years in text based information retrieval cate-
gorisation systems [24]. More recently, this methodology has been used in AIA
systems and has been seen to outperform state-of-the-art annotation models [2].
Due to its performance against other baselines and simplicity in design, we will
use this model as our baseline to improve upon.

We implement the SVMlight model [11], which uses a linear kernel function,
trained upon the MPEG-7 Global Edge Histogram (GEH) image feature [19].
This feature was seen to give greatest annotation accuracy in [2]. Our approach
is to train n classifiers in an one-versus-all scheme, where n is the number of
classes (tags). We use the normalised distance −1 ≤ dxy ≤ 1 to the boundary
plane as a measure of how trustworthy a tag tx is for a given image iy. Therefore,
we define S(ix, ty) = dxy.

It could be argued that our approach could be improved by training n(n−1)/2
classifiers in the one-versus-one scheme where we train a SVM for every tag and
every tag combination, thus retaining prior classification data. We argue, how-
ever, that this would quickly become computationally challenging as n increases.
For example, for our collection containing 270 tags, we would potentially have
to train 36,315 SVMs. In a real-world collection where there are millions of
keywords [22], this solution would become unscalable. Further, this method re-
quires a heavily dense collection with each tag combination containing sufficient
training data, which is not true in on-line collections [25].

3.3 Improving Annotation through Tag Co-occurrence

To improve annotations made by the SVM, we increase or decrease S(ix, ty),
using tag co-occurrence measures. S(ix, ty) is therefore redefined as:

S(ix, ty) = λ · Psvm(ix, ty) + (1− λ) · Pcooc(ix, ty) (2)

where Psvm = dxy. Pcooc is the tag co-occurrence score for ty with the other
SVM suggested tags. λ is a parameter (0 ≤ λ ≤ 1) which weights the amount of
SVM and co-occurrence data we use for S(ix, ty). Pcooc(ix, ty) is as follows:
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Pcooc(ix, ty) =

∑
tw∈Tsvm−ty

C(tw, ty)

|Tsvm|
(3)

where Tsvm is the set of tags suggested by the SVM (where d ≥ 0), |Tsvm| is
the number of tags suggested by SVM and C(tw, ty) is the tag co-occurrence
frequency between tag tw and ty. Effectively, keywords in the SVM prediction
set are promoted if they co-occur highly with the rest of the predictions, and
demoted otherwise.

Baseline Our tag co-occurrence baseline takes normalised tag co-occurrence
frequencies C(tw, ty) from Coverall. Therefore, co-occurrence frequencies are static
and taken from the entire collection, thus ignoring temporality.

Temporal Our temporal approach takes co-occurrence frequencies from the
temporal interval in which the image was taken. e.g. if β = 12 (equivalent to 1
matrix per month) and an image is taken on the 15th of March, co-occurrence
scores are taken from C3.

Using raw tag co-occurrence frequency is noisy, however, as the popularity of
tags is not taken into account. This gives rise to weighting popular tags higher
than less common keywords; we must first normalise these frequencies. We have
decided to use two measures as chosen by previous work, namely the Jaccard
and Asymmetric Measures: [22]:

J(ti, tj) =
|ti ∩ tj |
|ti ∪ tj |

P (tj |ti) =
|ti ∩ tj |
|ti|

(4)

Equation 4. The Jaccard (left) and Asymmetric (right)

Both measures which are used to compute tag similarity and relatedness have an
upper bound of 1 and a lower bound of 0. Previous work has stated that the Jac-
card measure is more useful for identifying synonyms whereas the Asymmetric
measure offers more diverse recommendations. We will compare the effectiveness
of both measures in our work.

4 Experiments

Our experiments compare annotation accuracy made by three systems:

– SVM (Contents) The first system is the state-of-the-art (as defined in [2])
which annotates using SVM data only.

– SVMCooc (Contents + Co-occurrence) Our baseline improves results
from the SOTA by exploiting tag co-occurrence data.

– SVMTempCo (Contents + Temporal Co-occurrence) Our experimental
approach improves on SVMCooc by exploiting temporal information in the
computation of tag co-occurrence measures.
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4.1 Collection

We tested our approach on a collated real life image collection from Flickr1. Real
life image collections pose problems for research as the tags are inconsistent,
often misspelt and sparse (many tags are used in only one image). We therefore
cleaned the collection to contain only tags which occurred in at least 40 images
and where images contained at least 3 tags. We also filtered out tags which, when
classified by WordNet [7], were not considered nouns. This would remove tags
which were not suitable for AIA; for example, subjective (e.g. so cute, nice)
and organisational tags (e.g. me, avoid). Once cleaned, the collection contained
12,985 images and 270 tags. Each image on average contained 4.07 tags.

4.2 Experimental Procedure and Settings

Our experiments are taken out in a two stage process. Initially, images are trained
and tested on the keywords using a linear SVM based on the Global Edge His-
togram feature, as described in Section 3.2. For each image, a list of keyword
scores is returned, measuring the likelihood of a tag occurring in an image. Tag
co-occurrence is then employed as a reweighing scheme by increasing or decreas-
ing the given score for a tag, based on its co-occurrence with the other tags in
the ground truth. After this reweighing stage, the tags with the highest scores
are selected for annotation; the amount of tags selected is equal to that of the
number of tags in the image’s ground truth.

We introduce temporality by computing the tag co-occurrence measures in
predefined intervals, whereas our baseline computes tag co-occurrence measures
over the entire year i.e. 1 co-occurrence matrix. We varied our temporal inter-
val size over a range of values from half a year to 2 days. Therefore, given a
new image ix, we select the co-occurrence measures from the co-occurrence ma-
trix which is built upon images taken in the same time interval as image ix.
We compare results when using the following number of co-occurrence matrices:
β = 2, 6, 12, 18, 40, 52, 70, 90, 120. For each interval size, we compare annotation
accuracy between our 3 approaches using 10-fold cross validation over 10 iter-
ations. For each iteration of the experiment we collate a subset of the overall
collection which is smoothed and normalised. By smoothed and normalised we
mean that most of the tags in the test collection contain approximately the same
number of training images. Alternatively, popular keywords, such as sky, and
unpopular keywords, such as hammer, are not selected for testing.

We have taken out this stage as using the whole collection would probably
create an easier evaluation setting due to the following reasons. Firstly, by eval-
uating on the entire collection, popular keywords would more likely be selected
for testing. Secondly, when annotating an image, the model would be more likely
to select a more frequent tag. By normalising our collection we create a fairer
evaluation test-bed where images are less likely to be annotated with tags based
purely on their popularity. We therefore normalise our collection as is explained

1 http://www.flickr.com/



8

in [2]. This stage is an important stage in our experiment, as it will reduce the
perceived accuracy of our state-of-the-art, as the test collection is more “difficult”
as the number of perceived “easy” keywords is reduced in the test collection.

For each iteration of the experiment, on average a subset of 1114 images
were used for training and 124 used for testing. We tested using 100 keywords
at each iteration, with each keyword containing at least 20 training images. In
our experiments we compute precision, recall and the number of words recalled.

5 Results and Discussion
The following sections detail the results of our experiments showing the poten-
tial of temporal modelling in the annotation process and the conditions where
accuracy is maximised.

5.1 Effects of Temporality

By exploiting temporality, we were able to achieve statistically significant im-
provements to annotation accuracy. Table 1 shows the results of our experiments
comparing both normalization methods over all interval sizes. From Table 1 we
can see that both coefficients give increases to recall, precision and number of
words recalled when compared to our static baseline. Using the Jaccard coef-
ficient produces marginally better results than when using the asymmetric co-
occurrence measure. It may be noted that the measures appear somewhat low
for a SOTA; this is a side effect of the collection normalisation as described in
Section 4.2. In effect our model is annotating on a difficult subset of an already
difficult real-life image collection, hence lower performance is expected.

Figure 2 illustrates the conditions where annotation accuracy is maximised.
The scores in Figure 2 are taken as an average of recall, precision and number
of words recalled over the baseline. The Jaccard coefficient produces best results
when the interval window size is set to 6 days (β = 70); statistically signifi-
cant improvements averaging 11.6% are observed. The Asymmetric coefficient
produces best results using approximately the same interval size, i.e. 5 days
(β = 90), achieving an 9.6% increase to annotation accuracy. By incorporating
the temporal trends of tags in images, as seen in Figure 1, we are able to give
precedence to temporally significant tags based on the time an image is taken,
thus improving the annotation accuracy.

Using a large interval size, 183 days for example, has a slight detrimental
effect on AIA accuracy however. This may be because temporal profiling barely
exists at these levels. We believe it may have the opposite effect of adding noise
to the co-occurrence measures. We therefore recommend that future temporal
profiling of keywords should use a interval size of around 5 days.

Finally, λ was trained giving a local maxima in annotation performance when
λ = 0.4. Interestingly we achieve greatest accuracy when we use a higher weight
of Pcooc than Psvm implying tag co-occurrence and temporality may be a more
reliable source than image contents in the annotation process.

5.2 Tag Distributions
The following section gives real life examples of tags with high temporal rela-
tionships. Figure 3 shows the co-occurrence frequencies of temporarily significant
keywords, snow and winter, with tree and landscape over 18 time intervals.
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Table 1. Each column denotes the scores for each measure using the given number of
intervals. On the left column, R, P and W stand for recall, precision and the number
of words recalled respectively. Bolded columns denote the interval size which produced
the largest average improvement over the baseline. Paired t-test statistical significance
comparing our experimental approach against the baseline are denoted as * being
p < 0.05, ** being p < 0.01 and *** being p < 0.001.

Using the Jaccard Co-efficient

Intervals 2 6 12 18 40 52 70 90 120

R
SVM 0.0809 0.0782 0.0796 0.0769 0.0778 0.0732 0.0807 0.0726 0.0745

SVMCooc 0.0839 0.0789 0.0825 0.0824 0.0778 0.0755 0.0814 0.0757 0.0782

SVMTempCo 0.0842 0.0816 0.0853 0.0836 0.0838** 0.0813** 0.0909*** 0.0842** 0.0855*

P
SVM 0.0697 0.0619 0.0712 0.0598 0.0759 0.0596 0.0637 0.0691 0.0619

SVMCooc 0.0719 0.0588 0.0750 0.0637 0.0720 0.0610 0.0613 0.0709 0.0632

SVMTempCo 0.0717 0.0625 0.0738 0.0640 0.0742 0.0649 0.0695*** 0.0784* 0.0718*

W
SVM 20 19.5 20.3 18.9 20 18.4 18.1 19.3 18.5

SVMCooc 20.4 19.4 21 19.7 19.9 18.7 18.2 19.7 19.1

SVMTempCo 20.2 19.8 21.3 20.3 21.1** 20.3*** 20.1*** 21.5** 20.7*

+/- Over Baseline -0.3% +3.9% +1.0% +1.7% +5.6% +7.6% +11.9% +10.3% +10.5%

Using the Asymmetric Co-efficient

Intervals 2 6 12 18 40 52 70 90 120

R
SVM 0.0809 0.0782 0.0796 0.0769 0.0778 0.0732 0.0807 0.0726 0.0745

SVMCooc 0.0849 0.0824 0.0855 0.0823 0.0786 0.0778 0.0862 0.0787 0.0795

SVMTempCo 0.0837* 0.0848 0.0886 0.0862 0.0834** 0.0843** 0.0909* 0.0873** 0.0851*

P
SVM 0.0697 0.0619 0.0712 0.0598 0.0759 0.0596 0.0637 0.0691 0.0619

SVMCooc 0.0720 0.0628 0.0724 0.0630 0.0689 0.0589 0.0639 0.0722 0.0615

SVMTempCo 0.0711* 0.0628 0.0742 0.0662 0.0677 0.0644** 0.0714** 0.0786* 0.0676

W
SVM 20 19.5 20.3 18.9 20 18.4 18.1 19.3 18.5

SVMCooc 20.4 19.8 21.2 19.8 19.7 18.9 18.6 19.9 19.1

SVMTempCo 20* 19.9 21.5 20.4 20.7** 20.5** 20.5*** 21.7** 20.1

+/- Over Baseline -1.6% +1.1% +2.5% +4.3% +3.1% +8.7% +9.1% +9.6% +7.4%

Table 2. Jaccard and Asymmetric scores

Measure Scores @ Interval

Time Interval All 2 10
J(tree, snow) 0.09 0.10 0
A(tree, snow) 0.18 0.28 0
J(landscape, winter) 0.05 0.08 0
A(landscape, winter) 0.09 0.22 0

We can clearly observe the key-
words’ correlation with time. Both
sets of keywords co-occur highly at
the beginning and end of the year
with almost no co-occurrence during
time intervals 5 through 16. This pro-
duces different Jaccard and Asymmet-
ric measures at different periods in the year. Table 2 compares these co-
occurrence measures at different time intervals.

The temporal distribution shown in Figure 3 highlights that keyword co-
occurrence measures should consider time in these calculations. In our example,
snow only exists along side images of trees in images during the winter months.

Our baseline which ignores temporal profiling of tag co-occurrences can be
represented by the entire column of Table 2. Columns 2 and 10 show the co-
efficient scores for the given time intervals only. These intervals were chosen as
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Fig. 2. Co-occurrence measures Fig. 3. Tag Co-occurrence distributions

they are the most divergent coefficient scores for the given keywords over the
year. The coefficients in time interval 2 are 73% higher, on average, than those
taken over the whole year. We believe this is logical as the keywords, tree with
snow and landscape with winter, co-occur most frequently in this time interval.
Similarly, all the coefficients compute as 0 in interval 10 as the keywords never
co-occur in this time period. We believe this is sensible: if two keywords never
co-occur in a given time period, they should produce a co-occurrence coefficient
of 0 regardless of if they co-occur in other time intervals. By ignoring this noise
and placing higher precedence to temporally significant keywords, we are able to
achieve improvements to AIA accuracy.

6 Conclusion and Future Work

Accurate automatic image annotation is highly desired to be able to build effec-
tive multimedia retrieval systems. In this work we present a novel temporal based
tag co-occurrence technique for the improvement of a state-of-the-art SVM based
automatic image annotation model. Results from our experiments show that by
exploiting temporal tag co-occurrences, we can produce statistically significant
improvements to AIA accuracy.

This paper argues that static measures of normalised tag co-occurrence as
used by previous methods are insufficient and that keywords co-occur in a non
linear temporal distribution which can be exploited. We achieve this by con-
structing a number of co-occurrence matrices, one for each predefined interval,
instead of building a co-occurrence matrix over the entire year. We further exper-
iment by changing the interval sizes used to construct the co-occurrence matrices.
We conclude that best results are achieved when the size of the temporal window
is set to 5 or 6 days. Future work will look at extending our exploitation of tem-
poral tag co-occurrence for AIA by incorporating more sophisticated techniques
from temporal text-based IR systems.
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