Comparing Distributed Indexing: To MapReduce or Not?

Richard M. C. McCreadie
Department of Computing
Science
University of Glasgow
Glasgow, G12 8QQ

richardm@dcs.gla.ac.uk

ABSTRACT

Information Retrieval (IR) systems require input corpora to
be indexed. The advent of terabyte-scale Web corpora has
reinvigorated the need for efficient indexing. In this work,
we investigate distributed indexing paradigms, in particular
within the auspices of the MapReduce programming frame-
work. In particular, we describe two indexing approaches
based on the original MapReduce paper, and compare these
with a standard distributed IR system, the MapReduce in-
dexing strategy used by the Nutch IR platform, and a more
advanced MapReduce indexing implementation that we pro-
pose. Experiments using the Hadoop MapReduce imple-
mentation and a large standard TREC corpus show our
proposed MapReduce indexing implementation to be more
efficient than those proposed in the original paper.

1. INTRODUCTION

The Web is the largest known document repository, and
poses a major challenge for Information Retrieval (IR) sys-
tems, such as those used by Web search engines or Web
IR researchers. Indeed, while the index sizes of major Web
search engines are a closely guarded secret, these are com-
monly accepted to be in the range of billions of documents.
For researchers, the recently released TREC ClueWeb09 cor-
pus® of 1.2 billion Web documents poses both indexing and
retrieval challenges. In both scenarios, the ability to effi-
ciently create appropriate index structures to allow effective
and efficient search is of much value. Moreover, at such
scale, the use of distributed architectures to achieve high
throughput is essential.

In this work, we investigate the MapReduce program-
ming paradigm, that has been gaining popularity in com-
mercial settings, with implementations by Google [5] and
Yahoo! [21]. Microsoft also has a similar framework for dis-
tributed operations [10]. In particular, MapReduce allows
the horizontal scaling of large-scale workloads using clusters
of machines. It applies the intuition that many common
large-scale tasks can be expressed as map and reduce oper-
ations [5], thereby providing an easily accessible framework
for parallelism over multiple machines.

However, while MapReduce has been widely adopted with-
in Google, and is reportedly used for their main indexing

process, the MapReduce framework implementation and other

!See http://boston.1ti.cs.cmu.edu/Data/clueweb09/.
Copyright (©) 2009 for the individual papers by the papers authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. Thisvolume
is published by its editors.

LSDS-IR Workshop. July 2009. Boston, USA.

Craig Macdonald
Department of Computing
Science
University of Glasgow
Glasgow, G12 8QQ

craigm@dcs.gla.ac.uk

ladh Ounis
Department of Computing
Science
University of Glasgow
Glasgow, G12 8QQ
ounis@dcs.gla.ac.uk

programs using it remain (understandably) internal only.
Moreover, there have been few empirical studies undertaken
into the scalability of MapReduce beyond that contained
within the original MapReduce paper [5], which in partic-
ular demonstrates the scalability of the simple operations
grep and sort. More recently, a MapReduce implementa-
tion has been used to sort 1 terabyte of data in approx. 1
minute [17]. However, while Dean & Ghemawat [5] suggest
a simple formulation in MapReduce for document indexing,
no studies have empirically shown the benefits of applying
MapReduce on the important IR indexing problem.

This paper contributes a first step towards understanding
the benefits of indexing large corpora using MapReduce, in
comparison to other indexing implementations. In particu-
lar, we describe four different methods of performing doc-
ument indexing in MapReduce, from initial suggestions by
Dean & Ghemawat, to more advanced strategies. We de-
ploy MapReduce indexing strategies in the Terrier IR plat-
form [18], using the freely available Hadoop implementa-
tion [1] of MapReduce, and then perform experiments using
standard TREC data.

The remainder of this paper is structured as follows: Sec-
tion 2 describes a state-of-the art single-pass indexing strat-
egy; Section 3 introduces the MapReduce paradigm; Sec-
tion 4 describes strategies for document indexing in Map-
Reduce; Section 5 describes our experimental setup, research
questions, experiments, and analysis of results; Concluding
remarks are provided in Section 6.

2. INDEXING

In the following, we briefly describe the structures in-
volved in the indexing process (Section 2.1) and how the
modern single-pass indexing strategy is deployed in the open
source Terrier IR platform [18] on which this work is based
(Section 2.2). We then provide details of how an indexing
process can be distributed to make use of additional ma-
chines (Section 2.3).

2.1 Index Structures

To allow efficient retrieval of documents from a corpus,
suitable data structures must be created, collectively known
as an index. Usually, a corpus covers many documents, and
hence the index will be held on a large storage device - com-
monly one or more hard disks. Typically, at the centre of
any IR system is the inverted index [23]. For each term, the
inverted index contains a posting list, which lists the doc-
uments - represented as integer document-IDs (doc-1Ds) -
containing the term. Each posting in the posting list also
stores sufficient statistical information to score each docu-

ment, such as the frequency of the term occurrences and,
possibly, positional information (the position of the term
within each document, which facilitates phrase or proximity
search) [23] or field information (the occurrence of the term
in various semi-structured area of the document, such as ti-
tle, enabling these to be higher-weighted during retrieved).
The inverted index does not store the textual terms them-
selves, but instead uses an additional structure known as a
lexicon to store these along with pointers to the correspond-
ing posting lists within the inverted index. A document
index may also be created which stores meta-information
about each document within the inverted index, such as an
external name for the document (e.g. URL), and the length
of the document [18]. The process of generating these struc-
tures is known as indezing.

2.2 Single-pass|ndexing

When indexing a corpus of documents, documents are
read from their storage location on disk, and then tokenised.
Tokens may then be removed (stop-words) or transformed
(e.g. stemming), before being collated into the final in-
dex structures [23]. Current state-of-the-art indexing uses
a single-pass indexing method [8], where the (compressed)
posting lists for each term are built in memory as the cor-
pus is scanned. However, it is unlikely that the posting lists
for very many documents would fit wholly in the memory
of a single machine. Instead, when memory is exhausted,
the partial indices are ‘flushed’ to disk. Once all documents
have been scanned, the final index is built by merging the
flushed partial indices.

In particular, the temporary posting lists held in memory
are of the form list(term, list(doc-ID, Term Frequency)).
Additional information such as positions or fields can also
be held within each posting. As per modern compression
schemes, only the first doc-ID in each posting list is absolute
- for the rest, the difference between doc-IDs are instead
stored to save space, using Elias-Gamma compression [6].

2.3 Distributing Indexing

The single-pass indexing strategy described above is de-
signed to run on a single machine architecture with finite
available memory. However, should we want to take ad-
vantage of multiple machines, this can be achieved in an
intuitive manner by deploying an instance of this indexing
strategy on each machine [22]. For machines with more than
one processor, one instance per processing core is possible,
assuming the local disk and memory are not saturated. As
described by Ribeiro-Neto & Barbosa [20], each instance
would index a subset of the input corpus to create an index
for only those documents. It should be noted that if the
documents to be indexed are local to the machines doing
the work (shared-nothing), such as when each machine has
crawled the documents it is indexing, then this strategy will
always be optimal (will scale linearly with processing power).
However, in practical terms, fully machine-local data is diffi-
cult to achieve when a large number of machines is involved.
This stems from the need to split and distribute the corpus
without overloading the network or risking un-recoverable
data loss from a single point of failure.

Distributed indexing has seen some coverage in the lit-
erature. Ribeiro-Neto & Barbosa [20] compared three dis-
tributed indexing algorithms for indexing 18 million docu-
ments. Efficiency was measured with respect to local through-
put of each processor, not in terms of overall indexing time.

Unfortunately, they do not state the underlying hardware
that they employ, and as such their results are difficult to
compare to. Melnik et al. [15] described a distributed in-
dexing regime designed for the Web, with considerations for
updatable indices. However, their experiments did not con-
sider efficiency as the number of nodes is increased.

In [5], Dean & Ghemawat proposed the MapReduce para-
digm for distributing data-intensive processing across mul-
tiple machines. Section 3 gives an overview of MapReduce.
Section 4 reviews prior work on MapReduce indexing, namely
that of Dean & Ghemawat, who suggest how document in-
dexing can be implemented in MapReduce, and from the
Nutch IR system. Moreover, we propose a more advanced
method of MapReduce indexing, which, by the experiments
in Section 5, is shown to be more efficient.

3. MAPREDUCE

MapReduce is a programming paradigm for the process-
ing of large amounts of data by distributing work tasks over
multiple processing machines [5]. It was designed at Google
as a way to distribute computational tasks which are run
over large datasets. It is built on the idea that many tasks
which are computationally intensive involve doing a ‘map’
operation with a simple function over each ‘record’ in a large
dataset, emitting key/value pairs to comprise the results.
The map operation itself can be easily distributed by run-
ning it on different machines processing different subsets of
the input data. The output from each of these is then col-
lected and merged into the desired results by ‘reduce’ oper-
ations.

By using the MapReduce abstraction, the complex details
of parallel processing, such as fault tolerance and node avail-
ability, are hidden, in a conceptually simple framework [13],
allowing highly distributed tools to easily be built on top
of MapReduce. Indeed, various companies have developed
tools to perform data mining operations on large-scale datasets
on top of MapReduce implementations. Google’s Sawzall [19]
and Yahoo’s Pig [16] are two such examples of data mining
languages. Microsoft uses a distributed framework similar
to MapReduce called Dryad, which the Nebula scripting lan-
guage uses to provide similar data mining capabilities [10].
However, it is of note that MapReduce trades the ability to
perform code optimisation (by abstracting from the internal
workings) for easy implementation through its framework,
meaning that an implementation in MapReduce is likely not
the optimal solution, but will be cheaper to produce and
maintain [11].

MapReduce is designed from a functional programming
perspective, where functions provide definitions of opera-
tions over input data. A single MapReduce job is defined
by the user as two functions. The map function takes in a
key/value pair (of type <keyl, valuel>) and produces a set
of intermediate key/value pairs (<key2, value2>). The out-
puts from the map function are then automatically grouped
by their key, and then passed to the reduce function. The
reduce task merges the values with the same key to form a
smaller final result. A typical job will have many map tasks
which each operate on a subset of the input data, and fewer
reduce tasks, which operate on the merged output of the
map tasks. Map or reduce tasks may run on different ma-
chines, allowing parallelism to be achieved. In common with
functional programming design, each task is independent of
other tasks of the same type, and there is no global state,
or communication between maps or between reduces.

Counting term occurrences in a large data-set is an often-
repeated example of how to use MapReduce paradigm? [5].
For this, the map function takes the document file-name
(keyl) and the contents of the document (valuel) as input,
then for each term in the document emits the term (key2)
and the integer value ‘1’ (value2). The reduce then sums up
all of the values (many 1s) for each key2 (a term) to give
the total occurrences of that term.

As mentioned above, MapReduce jobs are executed over
multiple machines. In a typical setup, data is not stored in
a central file store, but instead replicated in blocks (usually
of 64MB) across many machines [7]. This has a central ad-
vantage that the map functions can operate on data that
may be ‘rack-local’ or ‘machine-local’ - i.e. does not have
to transit intra- and inter-data centre backbone links, and
does not overload a central file storage service. Therefore
high bandwidth can be achieved because data is always as
local as possible to the processing CPUs. Intermediate re-
sults of map tasks are stored on the processing machines
themselves. To reduce the size of this output (and there-
fore I0), it may be merged using a combiner, which acts as
a reducer local to each machine. A central master machine
provides job and task scheduling, which attempts to perform
tasks as local as possible to the input data.

While MapReduce is seeing increasing popularity, there
are only a few notable studies investigating the paradigm
beyond the original paper. In particular, for machine learn-
ing [4], Chu et al. studied how various machine learning
algorithms could be parallelised using the MapReduce para-
digm, however experiments were only carried out on single
systems, rather than a cluster of machines. In such a situa-
tion, MapReduce provides an easy framework to distribute
non-cooperating tasks of work, but misses the central data
locality advantage facilitated by a MapReduce framework.
A similar study for natural language processing [12] used
several machines, but with experimental datasets of only
88MB and 770MB, would again fail to see benefit in the
data-local scheduling of tasks.

In contrast, indexing is an 1O-intensive operation, where
large amounts of raw data have to be read and transformed
into suitable index structures. In this work, we show how
indexing can be implemented in a MapReduce framework.
However, the MapReduce implementation described in [5]
is not available outside of Google. Instead, we use the
Hadoop [1] framework, which is an open-source Java imple-
mentation of MapReduce from the Apache Software Founda-
tion, with developers contributed by Yahoo! and Facebook,
among others. In the next section, we describe several index-
ing strategies in MapReduce, starting from that proposed
in the original MapReduce paper [5], before developing a
more refined strategy inspired by the single-pass indexing
described in Section 2.2.

4. INDEXING IN MAPREDUCE

In this section, we show how indexing can be performed
in MapReduce. Firstly, we describe two possible interpre-
tations of indexing as envisaged by Dean & Ghemawat in
their original seminal MapReduce paper [5] (Section 4.1).
Then, we describe an alternative MapReduce indexing strat-
egy used by the Nutch IR platform, before finally showing

2A worked example and associated source code is avail-
able at http://hadoop.apache.org/core/docs/r0.19.0/mapred_
tutorial.html

how a more refined single-pass indexing strategy can be im-
plemented in MapReduce (Section 4.3).

It should be noted that in MapReduce each map task is
not aware of its context in the overall job. For indexing, this
means that the doc-IDs emitted from the map phases can-
not be globally correct. Instead, these doc-IDs start from
0 in each map. To allow the reduce tasks to calculate the
correct doc-IDs, each map task produces a “side-effect” file,
detailing the number of documents emitted per map. This
is true for all the indexing implementations described in this
section. We also note that for all our indexing implementa-
tions the number of reducers specified depicts the number
of final indices generated.

4.1 Dean & Ghemawat’s MapReduce
Indexing Strategy

The original MapReduce paper by Dean & Ghemawat [5]
presents a short description for performing indexing in Map-
Reduce, which is directly quoted below:

“The map function parses each document, and emits a se-
quence of <word, document ID> pairs. The reduce function
accepts all pairs for a given word, sorts the corresponding
document IDs and emits a <word, list(document ID)> pair.
The set of all output pairs forms a simple inverted index. It
is easy to augment this computation to keep track of word
positions.”

The implicit claim being made in the original MapReduce
paper [5] is that efficient indexing could be trivially imple-
mented in MapReduce. However, we argue that this over-
simplifies the details, and provides room for a useful study to
allow document indexing in MapReduce to be better under-
stood. For example, for an inverted index to be useful, the
term frequencies within each document need to be stored.
Though this is not accounted for in Dean & Ghemawat’s
paper, there are two possible interpretations on how this
could be achieved within the bounds laid out in the quo-
tation above. We detail these interpretations below in Sec-
tions 4.1.1 and 4.1.2, respectively.

4.1.1 Emitting Term,Doc-ID Tuples

The literal interpretation of the description above would
be to output a set of <term, doc-ID> pairs for each token
in a document. This means that if a single term appears n
times in a document then the <term, doc-ID> pair will be
emitted n times. This has the advantage of making the map
phase incredibly simple, as it emits on a per token basis.
However, this means that we will emit a <term, doc-ID>
pair for every token in the collection. In general, when a
map task emits lots of intermediate data, this will be saved
to the machine’s local disk, and then later transferred to
the appropriate reducer. However, with this indexing inter-
pretation, the intermediate map data would be extremely
large - indeed, similar to the size of the corpus, as each to-
ken in the corpus is emitted along with a doc-ID. Having
large amounts of intermediate map data will increase map
to reducer network traffic, as well as lengthening the sort
phase. These are likely to have an effect on the job’s overall
execution time. The reducer will - for each unique term -
sort the doc-1Ds, then add up the instances on a per doc-1D
basis to retrieve the term frequencies. Finally, the reducer
will write the completed posting list for that term to disk.
Figure 1 provides a pseudo-code implementation of map and
reduce functions for this strategy.

Dean & Ghemawat MapReduce Indexing -
Map function pseudo-code

1: Input
Key: Document Identifier, Name
Value: Contents of the Document, DocContents
2: Output
A list of (term,doc-ID) pairs, one for each token
in the document
: for each Term in the DocContents loop
Stem(Term)
deletelfStopword(Term)
if (Term is not empty) then emit(Term, doc-ID)
end loop
: Add document to the Document Index
if (lastMap()) write out information about the
0: documents this map processed (“side-effect” files)

S UL W

R

Dean & Ghemawat MapReduce Indexing -
Reduce function pseudo-code

1: Input

Key: A Term

Value: List of (doc-ID), doc-IDs
2: Output

Key: Term

Value: Posting List
3 : List Posting-List = new PostingList()
4 : Sort doc-1Ds
5 : for each doc-ID in doc-IDs loop
6 : increment tf for doc-ID
7 correct doc-1D
8 add doc-ID and tf to Posting-List
9 : end loop
10: emit(Posting-List)
Figure 1: Pseudo-code interpretation of Dean &
Ghemawat’s MapReduce indexing strategy (map
emitting <term,doc-ID>, Section 4.1.1).

4.1.2 Emitting Term,Doc-ID,TF Tuples

We claim that emitting once for every token extracted is
wasteful of resources, causing excessive disk 10 on the map
by writing intermediate map output to disk, and excessive
disk IO in moving map output to the reduce tasks. To re-
duce 10, we could instead emit <term,(doc-1D, ¢f)> tuples,
where tf is the term frequency for the current document.
In this way, the number of emit operations which have to
be done is significantly reduced, as we now only emit once
per unique term per document. The reduce method for this
interpretation is also much simpler than the earlier interpre-
tation, as it only has to sort instances by document to get
the final posting list to write out. It should also be noted
that the <term, doc-ID> strategy described earlier, can be
adapted to generate tfs instead through the use of a Map-
Reduce combiner, which performs a localised merge on each
map task’s output.

While the <term,(doc-ID, tf)> indexing strategy emits
significantly less than that described in Section 4.1.1, we
argue that an implementation in this manner would still be
inefficient, because a large amount of 10 is still required to
store, move and sort the temporary map output data.

4.2 Nutch’s MapReduce I ndexing Strategy

The Apache Software Foundation’s open source Nutch
platform [3] also deploys a MapReduce indexing strategy,

using the Hadoop MapReduce implementation. By inspec-
tion of the source of Nutch v0.9, we have determined that
the MapReduce indexing strategy differs from the general
outline described in Section 4.1 above. Instead of emitting
terms, Nutch only tokenises the document during the map
phase, hence emitting <doc-ID, analysed-Document> tu-
ples from the map function. Each analysed-Document con-
tains the textual forms of each term and their corresponding
frequencies. The reduce phase is then responsible for writing
all index structures. Compared to emitting <term,(doc-ID,
tf)>, the Nutch indexing method will emit less, but the
value of each emit will contain substantially more data (i.e.
the textual form and frequency of each unique term in the
document). We believe this is a step-forward towards reduc-
ing intermediate map output. However, there may still be
scope for further reducing map task output to the benefit of
overall indexing efficiency. In the next section, we develop
our single-pass indexing strategy (described in Section 2.2)
for the MapReduce framework, to address this issue.

4.3 Single-passMapReduce | ndexing Strategy

We now adapt the single-pass indexing strategy described
in Section 2.2, for use in a MapReduce framework. The in-
dexing process is split into m map tasks. Each map task
operates on its own subset of the data, and is similar to the
single-pass indexing corpus scanning phase. However, when
memory runs low or all documents for that map have been
processed, the partial index is flushed from the map task,
by emitting a set of <term, posting list> pairs. The par-
tial indices (flushes) are then sorted by term, map and flush
numbers before being passed to a reduce task. As the flushes
are collected at an appropriate reduce task, the posting lists
for each term are merged by map number and flush number,
to ensure that the posting lists for each term are in a glob-
ally correct ordering. The reduce function takes each term
in turn and merges the posting lists for that term into the
full posting list, as a standard index. Elias-Gamma com-
pression is used as in non-distributed indexing to store only
the distance between doc-IDs. Figure 2 provides a pseudo-
code implementation of map and reduce functions for our
proposed MapReduce indexing strategy.

The fundamental difference between this strategy and that
of Dean & Ghemawat described in Section 4.1, is what the
map tasks emit. Instead of emitting a batch of <term,doc-
ID> pairs immediately upon parsing each document, we in-
stead build up a posting list for each term in memory. Over
many documents, memory will eventually be exhausted, at
which time all currently stored posting lists will be flushed
as <term,posting list> tuples. This has the positive effect of
minimising both the size of the map task output, as well as
the number of emits. Compared to the Dean & Ghemawat
indexing strategies, far less emits will be called, but emits
will be much larger. Compared to the Nutch MapReduce in-
dexing strategy, there may more emits, however, the reduce
task is operating on term-sorted data, and does not require
a further sort and invert operation to generate an inverted
index. Moreover, the emit values will only contain doc-IDs
instead of textual terms, making them considerably smaller.

Figure 3 presents an example for a distributed setting
MapReduce indexing paradigm of 200 documents. The doc-
uments are indexed by m = 2 map tasks, before the posting
lists for each term are grouped and sorted, and then reduced
to a single index. The posting lists output from each map
contains only local doc-IDs. In the reduce tasks, these are
merged into a list of absolute doc-IDs, by adding to each

Single-Pass MapReduce Indexing -
Map function pseudo-code

1: Input
Key: Document Identifier, Name
Value: Contents of the Document, DocContents
2: Output
Key: Term
Value: Posting list
: for each Term in the DocContents loop
Stem(Term)
deletelfStopword (Term)
if (Term is not empty) then add the current
document for that term to the in-memory
Posting List
7: end loop
8: Add document to the Document Index
9: if (lastMap() or outOfMemory()) then
emit(in-Memory Posting List)
10: if (lastMap()) write out information about the
11: documents this map processed (“side-effect” files)

o G W

Single-Pass MapReduce Indexing -
Reduce function pseudo-code

1: Input
Key: A Term
Value: List of (Posting List), PartialPostingLists
2: OQutput
Key: Term
Value: Posting List
3 : List Posting-List = new PostingList()
: Sort PartialPostingLists by the map and flush they
were emitted from
: for each PostList in PartialPostingLists loop
for each doc-ID in PostList loop
correct doc-ID
Merge PostList into Posting-List
end loop
10: end loop
11: emit(Posting-List)

N

© oo Ot

Figure 2: Pseudo-code for our proposed single-pass
MapReduce indexing strategy (Section 4.3).

entry the number of documents processed by previous map
tasks. However, note that in our indexing implementation,
the doc-IDs are flush-local as well as map-local. While this
is not strictly necessary, it allows smaller doc-IDs to be emit-
ted from each map, which can be better compressed.

5. EXPERIMENTS & RESULTS

In the following experiments, we aim to determine the ef-
ficiency of multiple indexing implementations. Specifically,
we investigate whether distributed indexing as laid out in
the original MapReduce paper (Section 4.1) is fit for pur-
pose. We compare this to our single-pass indexing strategy
developed both for a single machine architecture (Section 2)
and for MapReduce (Section 4.3). Note that in this paper
we do not investigate Nutch’s MapReduce indexing strat-
egy, however we expect it to be more efficient than Dean
& Ghemawat’s indexing strategy, while being less efficient
than our single-pass indexing strategy. We leave this for fu-
ture work. Furthermore, we investigate these approaches in
terms of scalability as the number of machines designated for
work is increased, and experiment with various parameters

Map Task 1 Output Map Task 2 Output
Partial Posting List : Docs 1-100 Partial Posting List : Docs 101-200 Each map task
outputs
compressed
partial posting
lists, with doc-ids
which are local to
itself.
Each reduce task
converts back to
absolute doc-ids
using ‘side-effect’
files output from
each map,
detailing which

Term 1:(4,6) (74,2)

 —
Map task output ~_ -

Ter;"l 1 (1,1) (4,2) (27,3) (104,6) (i74,2)
TErM 2 & i

- documents it
Reduce task output Q - Posting List : Docs 1-200
AV

Term 1: (1,1) (3,2) (24,3) (80,6) (94,2)

processed.

When writing the
final inverted

index, only the

doc-id deltas are

stored to

minimise storage

space and disk
writes.

Figure 3: Correcting document IDs while merging.

in MapReduce to determine how to most efficiently apply it
for indexing.

5.1 Research Questions

To measure the efficiency of our indexing implementations
and therefore the suitability (or otherwise) of MapReduce
for indexing, we investigate 3 important research questions,
which we address by experimentation in the remainder of
this section:

1. Can a practical application of the distributed indexing
strategy described in Section 2 be sufficient for large-scale
collections when using many machines? (Section 5.4)

2. When indexing with MapReduce, what is the most effi-
cient number of maps and reduces to use? (Section 5.5)

3. Is MapReduce Performance Close to Optimal Distributed
Indexing? (Section 5.6)

5.2 Evaluation Metrics

Research questions 1-3 require a metric for indexing per-
formance. For this, we measure the throughput of the sys-
tem, in terms of MB/s (megabytes per second). We calcu-
late throughput as collectionsize/timetaken where collec-
tion size is the compressed size on disk for a single copy of
the collection in MB (megabytes). The time taken is the full
time taken by the job (including setup) measured in seconds.

Research question 3 mandates suitability for indexing at
a large scale. We measure suitability in terms of throughput
(as above) and in terms of speedup. Speedup Sy, defined
as Sy, = %7 where m is the number of machines, T is the
execution of the algorithm on a single machine, and T, is
the execution time in parallel, using m machines [9]. This
encompasses the idea that not only should speed improve
as more resources are added, but that such a speed increase
should reflect the quantity of those resources. For instance,
if we increase the available resources by a factor of 2, then it
would be desirable to get (close to) twice the speed. This is
known as linear speedup (where S,, = m), and is the ideal
scenario for parallel processing. However, linear speedup
can be hard to achieve in a parallel environment, because
of the growing influence of small sequential sections of code
as the number of processors increases (known as Amdahl’s
law [2]), or due to overheads.

5.3 Experimental Setup

Following [24], which prescribes guidelines for presenting
indexing techniques, we now give details of our experimen-

Number of Machines (Cores) 1(3) 2(6) 4(12) 6(18) 8(24)
Distributed Single-Pass 244 4.6 12.8 124 12.8
Dean & Ghemawat MapReduce || 1.15 1.59 4.01 4.71 6.38
MapReduce Single-Pass 259 519 945 13.16 17.31

Table 1: Throughput as the number of machines al-
located is increased using using a variety of indexing
strategies, measured in MB/sec.

tal cluster setup, consisting of 19 identical machines. Each
machine has a single Intel Xeon 2.4GHz processor with 4
cores, 4GB of RAM, and contains three hard drives: One
160GB hard disk, spinning at 7200rpm with an 8MB buffer,
is used for the operating system and temporary job scratch
space; Two 400GB hard disks, each spinning at 7200rpm
with a 16MB buffer, are dedicated for distributed file sys-
tem storage. Each machine is running a copy of the open
source Linux operating system Centos 5 and are connected
together by a gigabit Ethernet connection on a single rack.
The Hadoop (version 0.18.2) distributed file system (DFS)
is running on this cluster, replicating files to the distributed
file storage on each machine. Each file on the DFS is split
into 64MB blocks, which are each replicated to 2 machines®.
While each machine has four processors available at any one
time, only three of these are valid targets for job execution,
the last processor is left free for the distributed file system
software running on each machine. As our cluster is shared
by several users, job allocation is done by Hadoop on De-
mand (HOD) running with the Torque resource manager
(version 2.1.9) rather than using a dedicated Hadoop clus-
ter. Machines not allocated to a MapReduce job are avail-
able to be scheduled by Torque for other jobs not associated
with MapReduce. However on such nodes, the fourth pro-
cessor core is still free for distributed file system work?. We
also have in the same rack a RAID5 centralised file server
powered by 8 Intel Xeon 3GHz processor cores for use with
non-MapReduce jobs, providing network file system (NFS)
storage. For consistency, in the following experiments, we
employ the standard TREC web collection .GOV2. This is
an 80GB (425GB uncompressed) crawl of .gov Web domain
comprising over 25 million documents. Before the advent of
ClueWeb09, .GOV2 was the largest available TREC corpus.

5.4 |IsDistributed Indexing Good Enough?

First we determine if MapReduce is necessary for large-
scale indexing. If a simple distribution of the non-parallel
indexing strategy described in Section 2 is sufficient to index
large collections then there is no need for MapReduce. To
evaluate this, we distribute the single-pass indexing strat-
egy across n machines in our cluster, where we vary n =
{1,2,4,6,8}. To provide a comparative baseline, the non-
parallel single-pass indexing implementation in Terrier can
index the .GOV?2 corpus on a single processor core (not ma-
chine) in just over 1 day using the same algorithm. This
translates into a throughput of approximately 1MB/sec. For
distributed indexing to be sufficient for indexing large col-
lections, throughput should increase in a (close-to) linear
fashion with the number of processing cores added. As

3This is lower than the Hadoop default of 3, to conserve
distributed file system space.

“Hence, as each machine always has one processing core free
to handle distributed file system traffic, and the network
traffic of other cluster jobs is assumed to be low, then there
should be no impact on the validity of the experiments.

18000

16000 [1

14000 4

12000 [1

10000 4

Time Taken to Index (seconds)

8000 L L L L L
5 25 30 35

15 20
Number of Map Tasks

Figure 4: The effect of varying the number of map
tasks on indexing time (seconds) of .GOV2 collec-
tion: 4 machines, 1 reduce task.

mentioned in Section 2.3, when distributed indexing uses
machine-local data, indexing will achieve exactly linear scal-
ing. However, unless the document data is already present
on the machines (e.g. indexing takes place on the machines
which crawled the documents), there would be the need to
copy the required data to the indexing machines. In many
other scenarios, crawling or documents corpora storage may
not be on indexing machines. Moreover, local-only indexing
is not resilient to machine failure. Instead, we experiment
with the shared-corpus distributed indexing, where the cor-
pus is indexed over NF'S from a central fileserver. Local data
(shared-nothing) indexing would require the corpus subset
to be copied prior to indexing.

Table 1, row 1, shows how throughput increases as we al-
locate more machines (recall that each machine adds three
processor cores for indexing work). Here we can see that
throughput indeed increases in a reasonable fashion, How-
ever, once we allocate more than 4 machines we observe
no further speed improvements. This is caused by our cen-
tral file store becoming a bottleneck as it is unable to serve
all the allocated machines simultaneously. We can there-
fore conclude that this distribution method is unsuitable for
large-scale indexing using our hardware setup. Moreover,
we argue that even with better hardware this issue cannot
be overcome as the file server(s) will always be slower than
the combination of all worker machines.

5.5 Investigating MapReduce Parameters

In Section 5.4, we showed that the distributed indexing
strategy described in Section 2 is unsuitable for the scal-
able distributed shared-corpus indexing of large collections.
However, before we can evaluate MapReduce as an alternate
solution we need to investigate how to maximise its efficiency
in terms of its input parameters. The fundamental parame-
ters of a MapReduce job are m - the number of map tasks
that the input data is divided across - and r, the number of
reduce tasks. A higher number of map tasks means that the
input collection of documents is split into smaller chunks,
but also that there will be more overheads, as more tasks
have to be initialised and latterly cleared. To determine
what effect this has on performance, we vary m while index-
ing the .GOV2 corpus, using a set 4 machines. The results
- in terms of indexing time - are shown in Figure 4. We see
that when the number of maps is small (i.e. less than the
12 processors available from the 4 machines), parallelism is
hindered, as not all processors have work to do. When the
number of map tasks is < 14, we also note that indexing
time is still high. On examination of these jobs, we found

9500
9000
8500
8000

7500
7000
6500
6000
5500
5000
4500
4000
0

Time Taken to Index (seconds)

Figure 5: The effect of varying the number of reduce
tasks on indexing time (seconds) of .GOV2 collec-
tion: 6 machines, 72 map tasks.

that the balance of work between map tasks was not even,
with one map task taking markedly longer than the others®.
When the number of map tasks is increased to 16, balance
is restored.

In previous work [14], we have shown that the time taken
by the reduce step is an important factor in determining in-
dexing performance. Therefore, it is important to know how
many reduce tasks it is is optimal to create - subject to ex-
ternal constraints on the number of reducers (e.g. having 8
query servers suggests 8 reducers are used so that 8 final in-
dices are created). To test the effect of the number of reduce
tasks on efficiency, we index .GOV2 while varying the num-
ber of reduce tasks. Here we used 6 machines and 72 map
tasks. The indexing time results are shown in Figure 5. As
we would expect, while the number of reduces is below the
available processors (for the 6 machines allocated, 18 pro-
cessors) the speed increases as we add more reducers, since
we are effectively providing more parallel processing power.
Once we are beyond the number of processors however, in-
dexing time increases. This is intuitive, as there is more work
to be done than available processors. Therefore, we can con-
clude that the number of reduce tasks should be a multiple
of the number of processors. Unlike map tasks, however,
there is an incentive to have less reduce tasks, resulting in
fewer indices, but this needs to be traded off against the pos-
sibility of failures and the associated time wasted through
re-running.

5.6 IsMapReduce Performance Closeto
Optimal Distributed Indexing?

We now investigate whether MapReduce is an efficient al-
ternative to distributed indexing. Moreover, we evaluate
MapReduce against optimal distributed indexing in terms
of performance, i.e. the extent to which it scales close to
linearly with processing power. The core advantage of Map-
Reduce is the ability to apply the distributed file system
(DFS) to avoid centralised storage of data (creating a sin-
gle point of failure), and to take advantage of data locality
to avoid excess network 10. This meanwhile, is at the cost
of additional overheads in job setup, monitoring and con-
trol, as well as the additional IO required to replicate the
data on a DFS. As the centralised file-system was identi-
fied as the bottleneck for distributed indexing, we would

5Hadoop actually supports speculative ezecution, where two
copies of the last task, or the slowest tasks, will be started.
Only output from the first successful task to complete will be
used. This uses otherwise idle processing power to decrease
average job duration.

expect MapReduce to perform better since it uses a DFS.
For evaluation, we perform a direct comparison on through-
put between indexing strategies. Note that while distributed
indexing creates n index shards, where n is the number of
processors allocated, MapReduce instead produces r index
shards where 7 is the number of reduce tasks created. For
these experiments we always allocate 72 map tasks and 24
reduce tasks. This means that for distributed indexing a
smaller number of index shards were created when indexing
on {1,2,4,6} machines. However, we believe that this has
no significant impact on the overall throughput.

First, we investigate whether the MapReduce indexing
strategy proposed by Dean & Ghemawat is more efficient
than distributed indexing. Table 1 shows how the through-
put increases as we allocate more machines - in particular,
row 2 shows results for Dean & Ghemawat’s strategy, inter-
preted as emitting term <doc-ID,tf> tuples (Section 4.1.2).
We also implemented the other interpretation which emits
term,doc-ID tuples, however, it consumed excessive tempo-
rary storage space during operation due to its large number
of emit operations. This made it impossible to determine
throughput, as the worker machines ran out of disk space
causing the job to fail. Our implementation of Dean & Ghe-
mawat’s indexing method also creates the additional data
structures described in Section 2.1 - i.e. the lexicon and
document index - and uses the compressed Terrier inverted
index format. From Table 1, row 2, we can see that this
implementation performs very poorly in comparison to dis-
tributed indexing. Indeed, with 8 machines it indexes only at
half the speed of distributed indexing with the same number
of machines. Upon further investigation, as expected, this
speed degradation can be attributed to the large volume
of map output which is generated by this approach. How-
ever, it should be noted that unlike distributed indexing,
performance improvements do not stall after 4 machines.
This would indicate that while the indexing strategy is poor,
MapReduce in general will continue to garner performance
improvements as more machines are added. Therefore, we
believe this makes it more suitable for processing larger cor-
pora, where larger clusters of 100s-1000s of machines are
needed to index them in reasonable amounts of time.

We now experiment with our proposed implementation of
single-pass indexing in MapReduce, as described in Section
4.3. Our expectation is that this strategy should prove to
be more efficient as it lowers disk and network IO by build-
ing up posting lists in memory, thereby minimising map
output size. Table 1, row 3 shows the throughput of the
single-pass MapReduce indexing strategy. In comparison to
Dean & Ghemawat’s indexing strategy, we find our approach
to be markedly faster. Indeed, when using 8 machines our
method is over 2.7 times faster. Moreover, Figure 6 shows
the speedup achieved by both approaches as the number of
machines is increased. We observe that our single-pass based
strategy scales close to linearly in terms of indexing time as
the number of machines allocated for work is increased. In
contrast, the scalability of Dean & Ghemawat’s approach is
noticeably worse (5.5 times for 8 processors, versus 6.8 times
for single-pass based indexing). We believe that this makes
our proposed strategy suitable for scaling to large clusters of
machines, which is essential when indexing new large-scale
collections like ClueWeb09.

. Linear speedup —
.GOV2 Single-Pass MapReduce Indexing -—-+-

T .GOV2 Dean and Ghemawat -
T
@ °r "
©
L
D st -
£
= -
a 4T] x
> o
ko] e
@ g
O 3
joR
n

2k

et x"'
1 - L L . L .

3 4 5 6
Number of Allocated Machines

Figure 6: Speedup of .GOV2 indexing as more Map-
Reduce machines are allocated.

6. CONCLUSION

In this paper, we detailed four different strategies for ap-
plying document indexing within the MapReduce paradigm,
with varying efficiency. In particular, we firstly showed that
indexing speed using a distributed indexing strategy was
limited by accessing a centralised file-store, and hence the
advantage of using MapReduce to allocate indexing tasks
close to input data is clear. Secondly, we showed that the
MapReduce indexing strategy suggested by Dean & Ghe-
mawat in the original MapReduce paper [5] generates too
much intermediate map data, causing an overall slowness
of indexing. In contrast, our proposed single-pass indexing
strategy is almost 3 times faster, and scales well as the num-
ber of machines allocated is increased.

Overall, we conclude that the single-pass based MapReduce
indexing algorithm should be suitable for efficiently index-
ing larger corpora, including the recently released TREC
ClueWeb09 corpus. Moreover, as a framework for distributed
indexing, MapReduce conveniently provides both data lo-
cality and resilience. Finally, it is of note that an imple-
mentation of the MapReduce single-pass indexing strategy
described in this paper is freely available for use by the com-
munity as part of the Terrier IR Platform®.

7. REFERENCES

[1] Apache Software Foundation. The apache hadoop
project. http://hadoop.apache.org/, as of
15/06/2009.

[2] G. Amdahl. Validity of the single processor approach
to achieving large-scale computing capabilities. In
Proc. of AFIPS, pp. 483-485, 1967.

[3] M. Cafarella and D. Cutting. Building nutch: Open
source search. ACM Queue, 2(2):54—61, 2004.

[4] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R.
Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for
machine learning on multicore. In Proc. of NIPS 2006,
pp. 281-288.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proc. of OSDI
2004, pp. 137-150.

[6] P. Elias. Universal codeword sets and representations
of the integers. Information Theory, IEEE
Transactions on, 21(2):194-203, 1975.

Shttp://terrier.org

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. SIGOPS Oper. Syst. Rev.,
37(5):29-43, 2003.

[8] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. JASIST,
54(8):713-729, 2003.

[9] M. D. Hill. What is scalability? SIGARCH Comput.
Archit. News, 18(4):18-21, 1990.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proc. of EuroSys 2007,
pp. 59-72.

[11] R. E. Johnson. Frameworks = (components -+
patterns). Commun. ACM, 40(10):39-42, 1997.

[12] M. Laclavik, M. Seleng, and L. Hluchy. Towards large
scale semantic annotation built on mapreduce
architecture. In Proc. of ICCS (3), pp. 331-338, 2008.

[13] C. D. Manning, P. Raghavan, and H. Schiitze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[14] R. McCreadie, C. MacDonald, and I. Ounis. On
single-pass indexing with mapreduce. In Proc. of
SIGIR 2009, in press.

[15] S. Melnik, S. Raghavan, B. Yang, and
H. Garcia-Molina. Building a distributed full-text
index for the web. In Proc. of WWW 2001, pp.
396-406.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for
data processing. In Proc. of SIGMOD 2008, pp.
1099-1110.

[17] O. O’Malley and A. C. Murthy. Winning a 60 second
dash with a yellow elephant. TR, Yahoo! Inc., 2009.

[18] I. Ounis, G. Amati, V. Plachouras, B. He,

C. Macdonald, and C. Lioma. Terrier: A high
performance and scalable information retrieval
platform. In Proc. of OSIR workshop, SIGIR-2006,
pp. 18-25.

[19] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming, 13(4):277-298, 2005.

[20] B. A. Ribeiro-Neto, E. S. de Moura, M. S. Neubert,
and N. Ziviani. Efficient distributed algorithms to
build inverted files. In Proc. of SIGIR 1999, pp.
105-112.

[21] E. Schonfeld. Yahoo! search wants to be more like
google, embraces hadoop, 2008.
http://www.techcrunch.com/2008/02/20/
yahoo-search-wants-to-be-more-1like
-google-embraces-hadoop/, as of 15/06,/2009.

[22] A. Tomasic and H. Garcia-Molina. Performance of
inverted indices in shared-nothing distributed text
document information retrieval systems. In Proc. of
PDIS 1993, pp. 8-17.

[23] 1. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

[24] J. Zobel, A. Moffat, and K. Ramamohanarao.
Guidelines for presentation and comparison of
indexing techniques. SIGMOD Record, 25(3):10-15,
1996.

