
On Single-Pass Indexing with MapReduce

Richard M. C. McCreadie
Department of Computing

Science
University of Glasgow
Glasgow, G12 8QQ

richardm@dcs.gla.ac.uk

Craig Macdonald
Department of Computing

Science
University of Glasgow
Glasgow, G12 8QQ

craigm@dcs.gla.ac.uk

Iadh Ounis
Department of Computing

Science
University of Glasgow
Glasgow, G12 8QQ

ounis@dcs.gla.ac.uk

ABSTRACT
Indexing is an important Information Retrieval (IR) op-
eration, which must be parallelised to support large-scale
document corpora. We propose a novel adaptation of the
state-of-the-art single-pass indexing algorithm in terms of
the MapReduce programming model. We then experiment
with this adaptation, in the context of the Hadoop MapRe-
duce implementation. In particular, we explore the scale of
improvements that can be achieved when using firstly more
processing hardware and secondly larger corpora. Our re-
sults show that indexing speed increases in a close to linear
fashion when scaling corpus size or number of processing
machines. This suggests that the proposed indexing imple-
mentation is viable to support upcoming large-scale corpora.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

General Terms: Performance, Experimentation

Keywords: Indexing, MapReduce

1. INTRODUCTION
With the ever-growing test corpora being developed for

researchers, scalable implementations of common IR opera-
tions have become a necessity. Indeed, TREC in 2009 in-
creased the size of its largest collection by almost 12 times.
As MapReduce has gained popularity in commercial set-
tings, with implementations by Google [3], Yahoo! [2] and
Microsoft [5], it seems likely to be a viable tool for large-scale
data processing. To investigate this, we propose develop-
ment of a state-of-the-art indexing operation, in the context
of MapReduce. While the original MapReduce paper [3]
shows the scalability of MapReduce in general, it does not
give an in-depth explanation of how efficient indexing should
be performed within such a model.

In Section 2, we develop a novel indexing strategy in
MapReduce, inspired by the single-pass indexing of Heinz
& Zobel [4]. In particular, we employ Hadoop [2] - the only
freely available MapReduce implementation, developed by
Yahoo!. Section 3, presents experiments using our MapRe-
duce indexing strategy, to assess its scalability, in terms of
hardware and input data. The main contributions of this
work are three-fold: we show how the MapReduce paradigm
can be successfully applied to an existing IR system and
provide a working implementation to the community; we
provide a working example of MapReduce of significantly
greater complexity than the commonly-used MapReduce wo-

Copyright is held by the author/owner(s).
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
ACM 978-1-60558-483-6/09/07.

Figure 1: Correcting document IDs while merging.

rd count example; and we experiment to show the benefits
and scalability of the proposed implementation.

2. HOW-TO IMPLEMENT SCALABLE
INDEXING IN MAPREDUCE

We adapt the state-of-the-art indexing strategy - single-
pass indexing [4] for MapReduce. In single-pass indexing,
(compressed) posting lists for each term are built in memory
as the corpus is scanned. When local memory is exhausted,
the partial indices are ‘flushed’ to disk and the final index is
built from the merged flushes. Elias-Gamma compression is
used to store document-identifier (doc-id) deltas, ensuring
postings are fully compressed, both in memory and on disk.

We now propose a conversion for single-pass indexing into
MapReduce. Document processing is split over m map tasks,
with each map task processing its own subset of the input
data. However, when memory runs low or all documents for
that map have been processed, the partial index is flushed
from the map task, by emitting a set of <term, posting
list> pairs. As in single-pass indexing, the posting lists are
compressed to minimise the data that is transferred between
map and reduce tasks. Moreover, as each map task is not
aware of its context in the overall indexing job, the doc-ids
used in the emitted posting lists cannot be globally correct.
Instead, these doc-ids start from 0 in each flush.

The partial indices (flushes) are then sorted by term, map
and flush numbers before being passed to one or more re-
duce tasks. Each reducer collates the posting lists to create
the final inverted index for the documents it processed. In
particular, as the flushes are collected at an appropriate re-

duce task, the posting lists for each term are merged by
map number and flush number, to ensure that the posting
lists for each term are in a globally correct doc-id ordering.
The reduce function takes each term in turn and merges the
posting lists for that term into a full posting list. Figure 1
presents an example for a distributed setting MapReduce
indexing paradigm of 200 documents. Note that the num-
ber of reduce tasks therefore determines the final number of
inverted index shards created.

3. EXPERIMENTATION & RESULTS
To determine the extent to which MapReduce is a suitable

framework for efficiently processing large IR corpora, we in-
vestigate two research questions: does our Hadoop MapRe-
duce implementation attain linear speedup with machines
allocated (i.e. doubling machines would ideally half index-
ing time); and how does corpora size affect performance?
Our indexer uses the Hadoop MapReduce implementation
(v. 0.18.2) and we evaluate using four standard TREC cor-
pora of varying size, namely WT2G, WT10G, .GOV and
.GOV2. Of these, .GOV2 is the largest at 25M documents,
comprising 425GB when uncompressed.

Firstly, we test to determine if the distributed (MapRe-
duce) indexing will complete the same indexing process in a
shorter time as we increase the processing power available.
To show this, we measure the mean indexing time of .GOV2
(5 repetitions), running on 1-8 machines, when using a sin-
gle reduce task. From the single reducer curve in Figure 2,
we observe that indexing time decreases as more machines
are added (i.e. speedup increases). However, by examining
the trends observed as the number of machines increases,
we see that linear speedup is not achieved, as indexing time
speedups level off after approximately 6 machines.

On further analysis, we suggest that this is due to the use
of a single reduce task, with this becoming the bottleneck of
the indexing job, i.e. the (sequential) single reduce task lim-
its the speedup achievable as described in Amdahl’s law [1].
To test this, we then experimented indexing when using 24
reducers. The results are presented in the multiple reducer
curve in Figure 2. Indeed, this shows that by using multi-
ple reduce tasks we achieve marked performance improve-
ments beyond 6 machines. As an illustration to this success,
we note that the single-pass (single-threaded) indexing took
over a day (1605 minutes) to index .GOV2. However, when
running the multi-threaded MapReduce implementation on
a single three-core machine, indexing completed in less than
8 hours (472 minutes), while for 8 machines this is reduced
to just over an hour (73 minutes). This represents a 6.5
times speedup for the MapReduce implementation between
1 and 8 machines.

However, as this is still sub-linear scaling, we further sug-
gest that this can be explained in terms of a lack of file local-
ity to the machines doing the work. As of v. 0.18.2, Hadoop
ignored file locality when assigning multiple files to each map
task1. To investigate the impact of this, we increased the
availability of .GOV2 until all machines had their own copy
- thereby eliminating the need to transfer files. The results
are also presented in Figure 2, which clearly shows scaling
close to linear in nature. We can therefore conclude that our
MapReduce indexing implementation scales with processing
power in a fashion which is appropriate for efficient compu-
tation. Moreover, linear speedup can be achieved through
maximisation of file locality.

1Later Hadoop versions have made improvements in this area.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

 (
T

im
es

 F
as

te
r)

Number of Allocated Machines

Linear speedup
.GOV2 Single Reducer

.GOV2 Multiple Reducers
.GOV2 Multiple Reducers + Replicated

Figure 2: .GOV2 indexing speed increase curves as

more machines are allocated. Single reducer exper-

iments are repeated 5 times - error bars are shown.

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000T
im

e
T

ak
en

 to
 in

de
x

(s
ec

on
ds

)

Compressed size for various collections (MB)

WT2G

WT10G
.GOV

.GOV2

WT2G
WT10G

.GOV

.GOV2
1 Machine

8 Machines

Figure 3: Indexing time for all 4 collections using

both 1 and 8 machines, and 24 reduce tasks.

Next, we show that the MapReduce indexer scales well as
the size of the input data increases. To test this, we index
each of our corpora, using 1 machine, and 8 machines. Fig-
ure 3 presents the MapReduce indexing times (not speedup)
for various compressed sizes of corpus. From this figure, we
observe that indexing of all corpora takes less time using
more machines. As expected, when the corpus size is in-
creased, indexing takes longer, however, the general trends
of the curves are slightly convex in nature, indicating that
scaling with corpus size is marginally sub-linear.

4. CONCLUSIONS
In this paper we have shown how to distribute a common

IR task within the MapReduce paradigm, namely index-
ing. Our results show that indexing could be successfully
distributed across a cluster of machines, using the Hadoop
MapReduce framework. Moreover, we show that the MapRe-
duce indexing implementation is well suited for processing
of large-scale collections as its performance scales close to
linearly with processing power and collection size. The im-
plementation described in this paper is freely available for
use by the community as part of the Terrier IR Platform2.

5. REFERENCES
[1] G. Amdahl. Validity of the single processor approach to

achieving large-scale computing capabilities. In Proceedings
of AFIPS, pgs. 483–485, 1967.

[2] Apache Software Foundation. The Apache Hadoop project.
http://hadoop.apache.org/, accessed on 25/01/2009.

[3] J. Dean and S. Ghemawat. Simplified data processing on
large clusters. In Proceedings of OSDI 2004, pgs. 137–150.

[4] S. Heinz and J. Zobel. Efficient single-pass index const-
ruction for text databases. JASIST, 54(8):713–729, 2003.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. In Proceedings of EuroSys 2007, pgs. 59–72.

2
http://terrier.org

