Cables, Trains and Types

Simon J. Gay*

School of Computing Science, University of Glasgow, UK.
Simon.Gay@glasgow.ac.uk

Abstract. Many concepts of computing science can be illustrated in
ways that do not require programming. CS Unplugged is a well-known
resource for that purpose. However, the examples in CS Unplugged and
elsewhere focus on topics such as algorithmics, cryptography, logic and
data representation, to the neglect of topics in programming language
foundations, such as semantics and type theory.

This paper begins to redress the balance by illustrating the principles of
static type systems in two non-programming scenarios where there are
physical constraints on forming connections between components. The
first scenario involves serial cables and the ways in which they can be
connected. The second example involves model railway layouts and the
ways in which they can be constructed from individual pieces of track.
In both cases, the physical constraints can be viewed as a type system,
such that typable systems satisfy desirable semantic properties.

1 Introduction

There is increasing interest in introducing key concepts of computing science in
a way that does not require writing programs. A good example is CS Unplugged
[2], which provides resources for paper-based classroom activities that illustrate
topics such as algorithmics, cryptography, digital logic and data representation.
However, most initiatives of this kind focus on “Theoretical Computer Science
Track A” [4] topics (algorithms and complexity), rather than “Track B” top-
ics (logic, semantics and theory of programming). To the extend that logic is
covered, the focus is on gates and circuits rather than deduction and proof.

In the present paper, we tackle Track B by describing two non-programming
scenarios illustrating the principles of static type systems. The first scenario
involves serial cables, and defines a type system in which the type of a cable
corresponds to the nature of its connectors. The physical design of the connec-
tors enforces the type system, and this guarantees that the semantics (electrical
connectivity) of a composite cable is determined by its type.

The second scenario is based on model railway layouts, where there is a de-
sirable runtime safety property that if trains start running in the same direction,
there can never be a head-on collision. Again, the physical design of the pieces
of track enforces a type system that guarantees runtime safety. The situation

* Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”.

Fig. 1. A serial cable with 25-pin female (left) and male (right) connectors.

here is more complicated than for serial cables, and we can also discuss the way
in which typability is only an approximation of runtime safety.

We partially formalise the cables example, in order to define a denotational
semantics of cables and prove a theorem about the correspondence between types
and semantics. A fully formal treatment would require more machinery, of the
kind that is familiar from the literature on semantics and type systems, but
including it all here would distract from the key ideas. We treat the railway
example even less formally; again, it would be possible to develop a more formal
account.

I am only aware of one other non-technical illustration of concepts from
programming language foundations, which is Victor’s Alligator Eggs [12] pre-
sentation of untyped A-calculus. When I have presented the cables and trains
material in seminars, audiences have found it novel and enjoyable. I hope that
these examples might encourage other such scenarios to be observed — and
there may be a possibility of developing them into activities along the lines of
CS Unplugged.

2 Cables and Types

The first example involves serial cables. These were widely used to connect com-
puters to peripherals or other computers, typically using the RS-232 protocol,
until the emergence of the USB standard in the late 1990s. Figure 1 shows a se-
rial cable with 25-pin connectors, and illustrates the key point that there are two
polarities of connector, conventionally called male and female. Figure 2 shows
a serial cable with 9-pin connectors, both female. The physical design is such
that two connectors can be plugged together if and only if they are of different
male/female polarity and have the same number of pins. From now on we will

ignore the distinction between 9-pin and 25-pin connectors, and assume that we
are working with a particular choice of size of connector.

For our purposes, the interesting aspect of a serial cable is that it contains
two wires for data transmission. These run between the send (SND) and receive
(RCV) pins of the connectors. There are other wires for various power and control
signals, but we will ignore them.

There are two ways of connecting the send/receive wires. If SND is con-
nected to SND and RCV is connected to RCV, then the cable is called a straight
through cable (Figure 3). This is just an extension cable. Alternatively, if SND
is connected to RCV and RCV is connected to SND, then the cable enables two
devices to communicate because the SND of one is connected to the RCV of the
other. This is called a null modem cable (Figure 4).

Fig. 2. A serial cable with 9-pin female connectors.

SND SND

RCV RCV

Fig. 3. A straight through cable.

With two ways of wiring SND/RCV, and three possible pairs of polarities
for the connectors, there are six possible structures for a serial cable. They have
different properties in terms of their electrical connectivity and their physical
pluggability. When choosing a cable with which to connect two devices, clearly
it is important to have the correct connectors and the correct wiring. Because
the wiring of a cable is invisible, there is a conventional correspondence between
the choice of connectors and the choice of wiring.

RCV S~—rov
Fig. 4. A null modem cable.

— A straight through cable has different connectors at its two ends: one male,
one female.

— A null modem cable has the same connectors at its two ends: both male, or
both female.

It is easy to convince oneself that this convention is preserved when cables are
plugged together to form longer cables. By thinking of the electrical connectivity
of a cable as its semantics, and the nature of its connectors as its type, we can
see the wiring convention as an example of a type system that guarantees a
semantic property. In the rest of this section, we will sketch a formalisation of
this observation.

Figure 5 gives the definitions that we need. Syntactically, a Cable is either
one of the fundamental cables or is formed by plugging two cables together via
the - operator. The fundamental cables are the straight through cable, straight,
and two forms of null modem cable, null; and nulls. Recalling that a null modem
cable has the same type of connector at both ends, the forms null; and null;
represent cables with two male connectors and two female connectors. It doesn’t
matter which cable is male-male and which one is female-female.

To define the type system, we use the notation of classical linear logic [8].
Specifically, we use linear negation (7)l to represent complementarity of connec-
tors, and we use par (’9) as the connective that combines the types of connectors
into a type for a cable. This is a special case of a more general approach to using
classical linear logic to specify typed connections between components [6]. We
use B to represent one type of connector, and then B+ represents the other type.
As usual, negation is involutive, so that (B+)+ = B. The notation B is natural
because we will use boolean values as the corresponding semantic domain. It
doesn’t matter whether B is male or female, as long as we treat it consistently
with our interpretation of null; and nully. The typing rule PLUG, which is a spe-
cial case of the cut rule from classical linear logic, specifies that cables can be
plugged together on complementary connectors. In this rule, A, B and C can
each be either B or B+.

Ezample 1. The cable straight - straight represents two straight through cables
connected together. It is typable by

straight : B o B straight : B o B

Pruc
straight - straight : B B+

Syntax

Cable ::= straight | null; | nully | Cable - Cable cables
A,B,C =B | B types
Type equivalence
(BY) =B
Typing rules
straight : B o B+ null; : BB nully : B 9 B+

c:A%B d:BlwcC

PLuc
c-d: AwC

Semantics

Writing BI*! to represent either B or B+, the denotational semantics of ¢ : B[+ B+

is
[c] C {true,false} X {true,false}

defined inductively on the syntactic construction of ¢ by:

[straight] = {(false, false), (true,true)} identity, id

[nully] = {(false,true), (true,false)} inversion, inv
[nullz] = {(false,true), (true,false)} inversion, inv
[c-d] = [c] o [d] relational composition

Fig. 5. Formalisation of cables.

This composite cable has the same type as a single straight through cable, and
we will see that it also has the same semantics.

Ezample 2. The cable nully - nulls is two null modem cables connected together,
which will also be semantically equivalent to a straight through cable. It is
typable by

nully : B B nully : B+ % B

PrLuc
nully - nully : B B+

Ezample 3. The cable straight- null; is a null modem cable extended by plugging
it into a straight through cable. Semantically it is still a null modem cable. It is
typable by

straight : B9 B+ null, : BB

straight - null; : B2 B

PLuc

To complete the formalisation of the syntax and type system, we would need
some additional assumptions, at least including commutativity of *® so that we
can flip a straight through cable end-to-end to give straight : B+ *2 B. However,
the present level of detail is enough for our current purposes.

We define a denotational semantics of cables, to capture the electrical con-
nectivity. We interpret both B and B+ as {true, false} so that we can interpret
a straight through cable as the identity function and a null modem cable as
logical inversion. Following the framework of classical linear logic, we work with
relations rather than functions. Plugging cables corresponds to relational com-
position.

Ezample 4. Calculating the semantics of the cables in Examples 1-3 (for clarity,
including the type within [—]) gives

[straight - straight : B> BL] =idoid =id = [straight]
[nully - nully : B9 BL] =invoinv =id = [straight]

[straight - null; : B2 B] =idoinv = inv = [null;]
This illustrates the correspondence between the type of a cable and its semantics.
The following result is straightforward to prove.
Theorem 1. Let A be either B or B+ and let ¢ be a cable.

1. If c: A9 A then [c] = inv.

2. Ifc: A AL then [c] = id.
Proof By induction on the typing derivation, using the fact that invoinv = id.
U

This analysis of cables and their connectors has several features of the use of
static type systems in programming languages. The semantics of a cable is its
electrical connectivity, which determines how it behaves when used to connect
devices. The type of a cable is a combination of the polarities of its connectors.
There are some basic cables, which are assigned types in a way that establishes
a relationship between typing and semantics. The physical properties of con-
nectors enforce a simple local rule for plugging cables together. The result of
obeying this rule is a global correctness property: for every cable, the semantics
is characterised by the type.

It is possible, physically, to construct a cable that doesn’t obey the typing
rules, by removing a connector and soldering on a complementary one. For ex-
ample, connecting straight : B2 B+ and straight : B+ »® B, by illegally joining
B to B*, gives a straight through cable with connectors B> B. Such cables are
available as manufactured components, called gender changers. Usually they are
very short straight through cables, essentially two connectors directly connected
back to back, with male-male or female-female connections. They are like type
casts: sometimes useful, but dangerous in general. If we have a cable that has

been constructed from fundamental cables and gender changers, and if we can’t
see exactly which components have been used, then the only way to verify that
its connectors match its semantics is to do an electrical connectivity test — i.e.
a runtime type check.

Typically, a programming language type system gives a safe approximation
to correctness. Every typable program should be safe, but usually the converse
is not true: there are safe but untypable programs. Cable gender changers are
not typable, so the following typing derivation is not valid.

untypable untypable
changer; : B® B changer, : B+ » B+
changer, - changer, : B e B

Pruc

However, the semantics is defined independently of typing, and

[changer; - changer,y] = [changer,] o [changer,]
=idoid
= id

so that the typing changer, - changer, : B2 B+ is consistent with Theorem 1.

3 Trains and Types

The second example of a static type system is based on model railway layouts.
Specifically, the simple kind that are aimed at young children [1, 5], rather than
the elaborate kind for railway enthusiasts [3]. The examples in this paper were
constructed using a “Thomas the Tank Engine” [7] set.

Fig. 6. A figure eight layout.

Figure 6 shows a simple figure eight layout consisting of two circles linked by
a crossover piece. The blue lines (coloured in the electronic version of the paper)
show the guides for the train wheels — in these simple sets, they are grooves
rather than raised rails. Notice that there are multiple pathways through the
crossover piece. It would be possible for a train to run continuously around one
of the circles, but in practice the tendency to follow a straight path means that
it always transfers through the crossover piece to the other circle.

It’s clear from the diagram that when a train runs on this layout, it runs
along each section of track in a consistent direction. If it runs clockwise in the
left circle, then it runs anticlockwise in the right circle, and this never changes.
Consequently, if two trains run simultaneously on the track, both of them in the
correct consistent direction, there can never be a head-on collision. For example,
if one train starts clockwise in the left circle, and the other train starts anticlock-
wise in the right circle, they can never move in opposite directions within the
same circle. They might side-swipe each other by entering the crossover section
with bad timing, or a faster train might rear-end a slower train, but we will
ignore these possibilities and focus on the absence of head-on collisions as the
safety property that we want to guarantee.

5 : >

straight curve

crossover

-

S —

merge/split merge/split

Fig. 7. Basic track pieces.

Figure 7 shows a collection of basic track pieces. They can be rotated and
reflected (the pieces are double-sided, with grooves on the top and bottom),
which equivalently means that the merge/split pieces (bottom row) can be used
with inverted connectors. When a merge/split piece is used as a split (i.e. a
train enters at the single endpoint and can take either the straight or curved
branch), there is a lever that can be set to determine the choice of branch. We

will ignore this feature, because we are interested in the safety of layouts under
the assumption that any physically possible route can be taken.

The pieces in Figure 7 can be used to construct the figure eight layout (Fig-
ure 6) as well as more elaborate layouts such as the one in Figure 8. It is easy
to see that the layout of Figure 8 has the same “no head-on collisions” property
as the figure eight layout.

[LT

Fig. 8. A layout with multiple paths.

Each track piece has a number of endpoints, where it can be connected to
other pieces. We will refer to each endpoint as either positive (the protruding
connector) or negative (the hole). The pieces in Figure 7 have the property
that if a train enters from a negative endpoint, it must leave from a positive
endpoint. This property is preserved inductively when track pieces are joined
together, and also when a closed (no unconnected endpoints) layout is formed.
This inductively-preserved invariant is the essence of reasoning with a type sys-
tem, if we consider the type of a track piece or layout to be the collection of
polarities of its endpoints. If we imagine an arrow from negative to positive
endpoints in each piece, the whole layout is oriented so that there are never
two arrowheads pointing towards each other. This is exactly the “no head-on
collisions” property. It is possible to use the same argument in the opposite di-
rection, with trains running from positive to negative endpoints, to safely orient
the layout in the opposite sense.

This argument could be formalised by defining a syntax for track layouts in
the language of traced monoidal categories [9,11] or compact closed categories
[6,10] and associating a directed graph with every track piece and layout.

The track pieces in Figure 7 are not the only ones. Figure 9 shows the Y
pieces, which violate the property that trains run consistently from negative
to positive endpoints or vice versa. They can be used to construct layouts in
which head-on collisions are possible. In the layout in Figure 10, a train can

Fig. 9. The Y pieces.

run in either direction around either loop, and independently of that choice, it
traverses the central straight section in both directions.

Fig. 10. An unsafe layout using Y pieces.

It is possible to build safe layouts that contain Y pieces. Joining two Y pieces
as in Figure 11 gives a structure that is similar to the crossover piece (Figure 7)
except that the polarities of the endpoints are different. This “Y crossover” can
be used as the basis for a safe figure eight (Figure 12). However, safety of this
layout cannot be proved by using the type system. If a train runs clockwise in the
circle on the right, following the direction from negative to positive endpoints,
then its anticlockwise journey around the circle on the left goes against the
polarities. To prove safety of this layout, we can introduce the concept of logical
polarities, which can be different from the physical polarities. In the circle on
the left, assign logical polarities so that the protruding connectors are negative
and the holes are positive, and then the original proof works.

A more exotic layout is shown in Figure 13. This layout is safe for one direc-
tion of travel (anticlockwise around the perimeter and the upper right loop) but
unsafe in the other direction. More precisely, if a train starts moving clockwise
around the perimeter, there is a path that takes it away from the perimeter and

10

Fig. 11. Joining Y pieces to form a crossover.

Fig. 12. A safe figure eight using Y pieces. In the circle on the right, the direction of
travel follows the physical polarity, but in the circle on the left, the direction of travel
is against the physical polarity. To prove safety, assign logical polarities in the circle
on the left, which are opposite to the physical polarities.

11

then back to the perimeter but moving anticlockwise, so that it could collide
with another clockwise train.

Safety of the anticlockwise direction cannot be proved by physical polarities,
because of the Y pieces. Figure 14 shows that it cannot be proved even by using
logical polarities. This is because the section with dashed lines, where the arrows
diverge, would require a connection between two logically negative endpoints. To
prove safety we can observe that for the safe direction of travel, the section with
dashed lines is unreachable. Therefore we can remove it (Figure 15) to give an
equivalent layout in which safety can be proved by logical polarities. In fact the
layout of Figure 15 is safe in both directions.

x/\
S

Fig. 13. A layout using Y pieces that is safe in one direction (solid arrows) but not
the other (dashed arrows).

Fig. 14. This layout is safe for travel in the direction of the arrows, because the dashed
section of track is unreachable. However, the divergent arrows in the dashed section
mean that logical polarities cannot be used to prove safety.

13

Fig. 15. The layout of Figure 13 with the problematic section of track removed. This
layout is safe in both directions. For clockwise travel around the perimeter, following
the physical polarities, logical polarities are assigned to the inner loop.

14

4 Conclusion

I have illustrated the ideas of static type systems in two non-programming do-
mains: serial cables, and model railways. The examples demonstrate the following
concepts.

— Typing rules impose local constraints on how components can be connected.

— Following the local typing rules guarantees a global semantic property.

— Typability is an approximation of semantic safety, and there are semantically
safe systems whose safety can only be proved by reasoning outside the type
system.

— If a type system doesn’t type all of the configurations that we know to be
safe, then a refined type system can be introduced in order to type more con-
figurations (this is the step from physical to logical polarities in the railway
example).

As far as I know, the use of a non-programming scenario to illustrate these
concepts is new, or at least unusual, although I have not systematically searched
for other examples.

There are several possible directions for future work. One is to increase the
level of formality in the analysis of railway layouts, so that the absence of head-
on collisions can be stated precisely as a theorem, and proved. Another is to
elaborate on the step from physical to logical polarities, again in the railway sce-
nario. Finally, it would be interesting to develop teaching and activity materials
based on either or both examples, at a similar level to CS Unplugged.

Acknowledgements

I am grateful to Ornela Dardha, Conor McBride and Phil Wadler for comments
on this paper and the seminar on which it is based; to Joao Seco for telling me
about the Alligator Eggs presentation of untyped A-calculus; and to an anony-
mous reviewer for noticing a small error.

References

Brio. www.brio.uk.

CS Unplugged. csunplugged.org.

Hornby. www.hornby.com.

Theoretical Computer Science.
www.journals.elsevier.com/theoretical-computer-science.

Thomas & Friends. www.thomasandfriends.com.

6. S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and the founda-
tions of typed concurrent programming. In Manfred Broy, editor, Proceedings of
the NATO Advanced Study Institute on Deductive Program Design, pages 35—113,
1996.

W. Awdrey. Thomas the Tank Engine. Edmund Ward Ltd., 1946.

8. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

e

ot

=~

15

9. A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447468, 1996.

10. G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal
of Pure and Applied Algebra, 19:193-213, 1980.

11. G. Stefanescu. Network Algebra. Springer, 2000.

12. Bret Victor. Alligator eggs. worrydream.com/AlligatorEggs.

16

