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Event Detection

Research topic across many application areas
Early work in detecting news events leveraged NLP, named
entity recognition, operating on well-structured text

Nowadays, we’re interested in event detection

from social media
Twitterstand — breaking news from Twitter by clustering

similar tweets
Sakaki et al. do likewise using a SVM

Twitcident enables management of tweets during events as
they happen

These successfully detect global events based
on significantly increased tweet volume
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Our interest ?

Twitter often posts tweets about events which
are more local, community-based ... local flood,
a fire, road closure

Can we detect unusual events at a /local level,
within a city ... a smart neighbourhood ?

More chal_lenging because volume is less, but
very localised and representing semantic
consistency, yet semantic deviation from normal

V\_Ite focussed on geotagged tweets from Dublin
city
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Assumption

We assume a periodicity and consistency in
tweeting behaviour

We assume local events, which are reported,
cause semantic |rregular|t|es more recognisable
than visitors, holidays, or one-off tweets

Approach is to determine normal crowd
behaviour in a geographic region of the city,
monitor sudden increases in the number and
then focus on the topic




Data Used

English-only tweets, 2 month period, geotagged
and in a bounding box in Dublin ... 387,800 from
14,533 unique users ... availability ?

City-wide is too big, we divided into (25) sub-
areas, finding users tweet from few locations ...

Based on 5,875 users generating 95% of our
tweets, 44% tweet from only 1 or 2 (of 25)
partitions

23% users tweeted across +5 partitions with a
Power Law distribution, and these “random”
zones are of interest for detecting local events
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Users tweet at regular times

Focusing on 805, our most active users (+100),
clustered them using time-of-day and weekday/
weekend into 10 clusters

We observed recurring temporal patterns of
when people tweet
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Tweeting activity
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Users tweet at regular times

Focus on 805, our most active users (+100),
clustered them using time-of-day and weekday/
weekend into 10 clusters

We observed recurring temporal patterns of
when people tweet

So people exhibit temporal patterns of when,
and where they tweet
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Dublin Age 16-59 Population Density
Hover over a state

-> imbalance in population distribution

Dividing by population ?

-> imbalance in tweet usage

0-10
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200-500
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1000+
per km?

K-means clustering based on
geographical occurrences of
tweets

Partitioning into 25 regions




Partitioning the city

Dividing by grid ?

-> imbalance in population distribution
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Partitioning the

Dividing by grid ?

-> Imbalance in populatic
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Dividing by populati

-> imbalance in tweet us:
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K-means clustering based on
geographical occurrences of
tweets

Partitioning into 25 regions




Are partitions reasonable ?
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Population distribution (CSO) vs. Partitions




Measurements of Regularity (1)

Time of tweeting within partitions

We analyse weekday /
weekend separately

800

600

Regularity calculated based on :

o

24x hourly bins each with a -
rolling one-month window

400

200

Standard deviations from this A A
could indicate a local event

from 2012-01-11 17:00:00 to 2012-02-15 11:00:00




Measurements of Regularity (2)

Location of regular Tweets

Can be compounded by visitors, away from
home for work / vacation

For each partition we maintain a set of regular
active tweeters

If many visitors tweet from a partition could
indicate a local event
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Measurements of Regularity (3)

Semantic regularity of Twitter content, per
partition

Using Lemur, we built a language model for
each geo-tagged tweet in each partition to
represent semantic consistency

For each incoming ?eotagged tweet we rank
partitions by P of generating the tweet, use
KL divergence

Comparing predicted vs. actual partition, Mean
Reciprocal Rank = 0.429, 33% of predlctlons
are correct
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Measurements of Regularity

We then combine them ..

F = o.NT + B.NU + y.SR
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Evaluation ...

Boo !

There is no standardised test collection and few
standardised tasks on harvested Twitter
content, except TREC

But who is to know about slow traffic on M50
near Blanchardstown exit on morning of 5t
March 2013 ?

Instead we have anecdotal examples of local
events which occurred




Anecdotal events

Event and Date Time GPS Coordinates Related Twitter Content
Local flooding in 16:45:10 03.1809595,-6.1887448 | 'T'he flooding around #Glencreevalley
Glencree Valley #Enniskerry is crazy! @ Watch out
Jan 25, 2013 drivers! # Aaroadwatch
16:00:08 00.182842,-6.191808 my car 1s like a tloating boat #Ln-
niskerry #flooding
Car crash 17:28:32 53.1809595,-6.1887448 | @aaroadwatch bus and car collision on
on O’Connell Street o’Connell street sb
caused by heavy rain, 17:30:32 53.348604,-6.2597 @RobbieH46 slowly....it’s a fecking car
Jan 25, 2013 crash!!!!
17:30:50 03.347887,-6.259207 Poor man or women 1n car crash..
#sayapray dangerous driving in this
weather #5wordweather @Qspinl1038
Heavy traffic jam 17:17:11 53.3948484,-6.3912147 | massive traffic jam in blanch won’t be
Blanchardstown, home till Christmas
Mar 09, 2013 17:21:49 03.394718,-6.389326 traffic freaks me out!!!
17:00:01 09.393325,-6.593317 Caught 1n a trallic jam
Pipe burst, 14:22:16 8. 53.404341,-6.158719 | @DonnieWahlberg its raining we have
cut off water supply no water because of a burst pipe I am
Clongriffin bogged down in housework but I am
Jan 07, 2013 happy and having fun anyway :-)
22:32:06 03.2853,-6.22825 @seanm91 apparently while attempt-

ing to fix the water pipe they damaged
the gas line #incompetence




Conclusions

We examined dynamics of small, local areas
within a city through social media

Focus on consistencies across Twitter
behaviour covering location, time, and content
for each of 25 city regions

Experiments inconclusive but anecdotal
evidence of detection of local events
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