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TRIIBE project 

 Feature Value 

Number of users: 120,548 

Number of AP association: 907,084 

Number of Web accesses: 18,008,018 

Number of days covered: 406 



Findings 

 - Basic Indoor Information Behaviours 

• Distribution of the URLs over URL categories 

 19% - Social Network 

 15% - Computer and Internet Info 

 13% - Content Delivery networks 

 10% - Search Engines 

 10% - Business and Economy 

 

• Different from general mobile surfing 

– 3.2% for Email and Social Network in [4] 

– 23.1% for these two in our data set. 

 

• Either the indoor context leads to a  different information behaviour, or 

• the information behaviour of mobile users has shifted since publication of [4]. 



Methodology  

• We explore the associations between 

– users’ physical spatial context, and 

– their Web information behaviours in the shopping mall. 

 

• Spatial context 

– is investigated at the level of access point: 

– the spatial indoor context for each access point        is defined as a 

vector of shop categories           . 
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Methodology  

 - user information Behaviour 

• The user information Behaviour at access point      is defined as a vector of 

Web page categories            , 

 

 

 

 

 

• At the level of access points,  

– the influence of spatial context on users’ information behaviours  

– can be viewed as the correlation between        and          . 

• In this study, we apply Pearson Correlation Coefficient (PCC)  

– between       and           

– to investigate this association. 
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Findings 

 - Influence from Different Locations(1) 

• There are differences in the types of shops served by different Wi-Fi APs. 

• These shop categories describe the indoor context at each AP. 

 

• Our hypothesis: 

– the proximity of different types of shops lead to a different Web Information 

behaviour. 

 

• To investigate this,  

– we analyse the average PCC value for every pair of       . 

– the overall average PCC reflects the similarity of Web activates. 

– a small PCC value indicates  

– user information behaviour vary at different locations. 
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Findings 

 - Influence from Different Locations(2) 

• When using all URL categories,  

– the PCC value is 0.9619, 

– which seems to show little differences among different APs. 

 

• However, this is not true, and is caused by popular URL categories, 

– e.g. the top 5 URL categories take over 57.8% of overall URL records, 

– and this skewed Web behaviour introduces a bias in PCC calculation. 

• Access entropy for URL category 

 

 

 

 

• A high access entropy means that       is common among all users. 
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Findings 

 - Influence from Different Locations(3) 

Fig. 1. The distribution of            Fig. 2. PCC values without common      

•           is defined over user visits. 

• PCC is defined based on       at 

access point       .  

• Thus, no logical influence between 

PCC and the removal of       . 

When common URLs are 

removed, differences in 

information behaviours at 

different access points appear. 
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Findings 

 - Influence of Indoor Context (1) 

• To show the influence of indoor context, we apply 

– clustering algorithm to group similar access points based on     

• If users’ information behaviour is influenced by the indoor context, 

–       in the same cluster should have higher PCC value (within), while 

–       in the different clusters should have lower PCC value (between). 

• within: the average PCC of each pairs of        in the same cluster. 

 

 

• between: the average PCC of each pairs of       in different clusters. 

 

 

• average: the average PCC of pairs of Bi. 
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Findings 

 - Influence of Indoor Context (2) 

Table 1. Correlation of user information behaviours in groups of access points with similar spatial context 

Table 2. Paired t-test results 



Conclusion 

• We found 

– The users’ indoor information behaviour  

– manifests a significant location-based bias when the common 

information behaviour is excluded. 

– Users in similar indoor contexts  

– tend to access similar Web pages, while 

– users in dissimilar indoor contexts  

– tend to request dissimilar Web pages. 

 

• This study has raised many new research questions: 

– What are the specific differences in user Web behaviours? 

– How to utilize the differences in information behaviours? 
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