
LETTER Communicated by Florentin Worgötter

Formal Modeling of Robot Behavior with Learning

Ryan Kirwan
ryankirwan85@gmail.com
Alice Miller
alice.miller@glasgow.ac.uk
School of Computing Science, University of Glasgow, Glasgow G12 8RZ,
Scotland

Bernd Porr
bernd.porr@glasgow.ac.uk
P. Di Prodi
robomotic@gmail.com
School of Engineering, University of Glasgow, Glasgow G12 8RZ,
Scotland

We present formal specification and verification of a robot moving in a
complex network, using temporal sequence learning to avoid obstacles.
Our aim is to demonstrate the benefit of using a formal approach to ana-
lyze such a system as a complementary approach to simulation. We first
describe a classical closed-loop simulation of the system and compare
this approach to one in which the system is analyzed using formal veri-
fication. We show that the formal verification has some advantages over
classical simulation and finds deficiencies our classical simulation did
not identify. Specifically we present a formal specification of the system,
defined in the Promela modeling language and show how the associated
model is verified using the Spin model checker. We then introduce an
abstract model that is suitable for verifying the same properties for any
environment with obstacles under a given set of assumptions. We outline
how we can prove that our abstraction is sound: any property that holds
for the abstracted model will hold in the original (unabstracted) model.

1 Introduction

Simulation is commonly used to investigate closed-loop systems. Here, we
focus on biologically inspired closed-loop systems where an agent interacts
with its environment (Walter, 1953; Braitenberg, 1984; Verschure & Pfeifer,
1992). The loop here is established as a result of the agent responding to
signals from its sensors by generating motor actions that change the agent’s
sensor inputs. More recently, simulation has been used to analyze closed-
loop systems in which the response of an agent changes with time due

Neural Computation 25, 2976–3019 (2013) c© 2013 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00493

Formal Modeling of Robot Behavior with Learning 2977

to learning from the environment (Verschure & Voegtlin, 1998; Kulvicius,
Kolodziejski, Tamosiunaite, Porr, & Wörgötter, 2010). This adds a new layer
of complexity where the dynamics of the closed loop will change and an
initially stable system might become unstable over time.

Simulation is a relatively inexpensive method for determining the behav-
ior of a system. Even single experiments are informative and by applying
statistical methods to a series of experiments, researchers can draw infer-
ences concerning overall trends in behavior. However, simulation alone is
not sufficient to determine properties of the form: in all cases property P
holds, or it is never true that property Q holds.

Formal methods have two major benefits when applied to this type of
system. First, formal specification of the system requires precision in system
description (e.g., in the rules determining an agent’s response to a particular
signal), thus avoiding redundancy and inconsistency. Second, verification
of a system can allow us to prove properties that hold for any run of the
system (i.e., that should hold for any experiment).

Formal methods have been used to analyze agent-based systems (Hi-
laire, Koukam, Gruer, & Müller, 2000; Hilaire, Simonin, Koukam, & Ferber,
2004; Da Silva & De Lucena, 2004; Wooldridge, Jennings, & Kinny, 2004;
D’Inverno, Luck, Georgeff, Kinny, & Wooldridge, 2004; Fisher, 2005). These
approaches involve new formal techniques for theoretical agent-based sys-
tems. In contrast, in this letter, we apply an appropriate automatic formal
technique to a real system that has previously been analyzed using classical
closed-loop simulation. We do this in order to compare the two approaches
and demonstrate the effectiveness of the application of formal methods in
this domain.

Model checking is even more important for agents that learn because
most learning rules are inherently unstable (Oja, 1982; Miller, 1996), espe-
cially at high learning rates. There is always the risk that weights grow
endlessly and eventually render the resulting system dysfunctional. Model
checking can guarantee that under a given learning rate, the system will
always learn successfully.

In this letter, we describe two formal models of a closed-loop system in
which an agent’s behavior adapts by temporal sequence learning (Sutton &
Barto, 1987; Porr & Wörgötter, 2006). Our first model is obtained from a fairly
low-level description of a particular environment. The second, which we
refer to as the Abstract model, is obtained from a higher-level representation
of a set of environments. The second model is more instructive but requires
expert knowledge to construct. We give a brief overview of how we would
prove that the Abstract model is sound, in that it preserves properties that
hold for the underlying set of environments.

Our models are obtained from specifications defined in the model spec-
ification language Promela, and verified using the model checker Spin. We
focus on the experiments described in Kulvicius et al. (2010) as an exam-
ple of temporal sequence learning. We describe how we have reproduced

2978 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

the experiments using classical closed-loop simulation and compare this
classical approach to that using formal verification.

Our models are defined for a simplified environment or set of envi-
ronments. The purpose of this letter is to provide a proof of concept for
our approach. In section 7, we describe how to generate models for more
complex scenarios (with a fixed boundary, with additional robots, or more
closely packed obstacles, for example).

2 The System

We show how model checking can be used to verify properties of a sys-
tem that has previously been analyzed using simulation. The system we
focus on is that described in Kulvicius et al. (2010) in which simulation
is used to investigate how learning is affected by an environment and by
the perception of the learning agent. The ability of a robot to successfully
navigate its environment is used to assess its learning algorithm and sensor
configuration.

We first describe how the robot learns to move toward or away from
objects. This is achieved by using the difference between the signals received
from the left and right sensors, which can be interpreted as error signals
(Braitenberg, 1984). At any time, an error signal x is generated of the form

x = sensorleft − sensorright, (2.1)

where sensorleft and sensorright denote the signals from the left and right
sensors, respectively. The error is then used to generate the steering angle v,
where v = ωx, for some constant ω. The polarity of ω determines whether
the behavior is classed as attraction or avoidance (Walter, 1953). The steering
then influences the sensor inputs of the robot, and we have formed a closed
loop.

Having introduced the general concept of behavior-based robotics we
now formalize the agent, the environment, and the closed loop formed by
this setup. We have two loops, as shown in Figure 1C, because we have two
pairs of sensors passing signals to the robot. One pair of sensors reacts to
close-range impacts and is referred to as proximal sensors, with associated
signals xp. The other sensor pair reacts to more distant events and is referred
to as distal sensors, with associated signals xd. If the robot collides with an
obstacle, there is an impact on the proximal sensor, which may be preceded
by an impact on a distal sensor. This situation is referred to as a delay in the
environment. This can happen at any time while the robot interacts with
the environment and can be modeled as a stochastic process. It should be
noted that this principle is not limited to avoidance but can also be used to
learn attraction behavior (Porr & Wörgötter, 2006). However, here we focus
on avoidance behavior and how this is learned.

Formal Modeling of Robot Behavior with Learning 2979

distal

distal

proximal

proximal

delay

Figure 1: Generic closed-loop data flow with learning. (A) Sensor setup of
the robot consisting of proximal and distal sensors. (B1) Reflex behavior.
(B2) Proactive behavior. (C) Circuit diagram of the robot and its environment.
SP = set point, X is a multiplication operation changing the weight ωd, � is the
summation operation, d/dt the derivative, and hp, hd low-pass filters.

We introduce learning with the goal of avoiding triggering the proximal
sensors by using information from the distal sensors. In order to learn to
use the distal sensor information we employ sequence learning; this works
on the basis that different sensors react at different times to the presence
of an obstacle, causing a sequence of reactions. Figure 1A shows the pairs
of proximal and distal sensors at the front of the robot. Note that in our
simulation, the proximal and distal sensors are in fact collinear, that is, both
the right proximal and distal sensors point in same direction (and so on).
For ease of viewing in Figure 1A, this is not the case. Note that although
the sensors are collinear, there is no dual contact (i.e., with both sensors) at
the places where the sensors overlap. The distal sensor is nonresponsive to
contact over the overlapping sections.

The proximal signals cause a reactive behavior that is predefined (or
“genetic”) and guarantees success (see Figure 1B1). Specifically, when the
proximal sensor is hit directly by an obstacle, the robot will behave in such
a way as to ensure that it moves away from the obstacle (i.e., escapes).

2980 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Figure 1C shows the formalization of the learning system indicated by the
box “agent,” which contains a summation node

∑
, which sums the low-

pass (hp, hd) filtered input signals xp and xd where xp and xd are determined
from the signals from the corresponding sensor pairs (see equation 2.1). The
filtered input signals up and ud and the angular response v after an impact
to either sensor are determined by equations 2.2, 2.3, and 2.5,

up = xp ∗ hp, (2.2)

ud = xd ∗ hd, (2.3)

where ∗ is the convolution operation and hp, hd are low-pass filters defined
in discrete time as

h(n) = 1
b

ean sin(bn) ↔ H(z) = 1
(z − ep)(z − ep∗

)
. (2.4)

The real and imaginary parts of p are defined as a = real(p) = −π f/Q and
b = imag(p) = √

(2π f)2 − a2, respectively. Q = 0.51 and f = 0.1 are identi-
cal for both hp and hd, which results in a smoothing of the input over at least
10 time steps.

These smoothed distal and proximal signals are then summed to form
the steering angle:

v = ωpup + ωdud. (2.5)

The distal weight ωd is set to zero at the start of the experiment so
that only the reactive (predefined) loop via signal xp and ωp is active. This
loop is set in such a way that the behavior when touching an obstacle is
successful (proximal reflex). However, such behavior is suboptimal because
the proximal sensor signal xp first has to be triggered, which might be
dangerous or even lethal for the agent. The task of learning is to use the distal
sensors (with signal xd) so that the agent can react earlier. Learning adjusts
the weight ωd in a way that the agent successfully performs this proactive
behavior by using the loop via signal xd. The learning we employ here is ICO
learning (input correlation learning; Porr & Wörgötter, 2006), which uses
low-pass filters to create correlations between distal and proximal events
(see Figure 1C). Low-pass responses (see equations 2.2 and 2.3) smear out
the signals and create a temporal overlap between the proximal and distal
signals, which can then be correlated by our learning rule to adjust the
predictive behavior:

ω̇d = λu̇pud. (2.6)

Formal Modeling of Robot Behavior with Learning 2981

Figure 2: Impact signal correlation with the help of low-pass filters. (A) The
input signals from both the distal and proximal sensors, which are τ temporal
units apart. (B) The low-pass filtered signals up, ud and the derivative of the
proximal signal u̇p.

The derivative of the low-pass filtered proximal signal up is used to create
a phase lead, which is equivalent to shifting its peak to an earlier moment
in time so that a correlation can be performed at the moment the proximal
input has been triggered. This is illustrated in Figure 2, which shows the
signals from the distal and proximal sensors. Signals are represented as
simple pulses in Figure 2A and low-pass filtered signals in Figure 2B. It
can be seen that the smearing out of the signals is necessary to achieve
a correlation. Learning stops if up is constant, which is the case when the
proximal sensor is no longer triggered. A sequence of impacts consisting of
at least one impact on a distal sensor followed by an impact on a proximal
sensor causes an increase in the response (by a factor λ known as the
learning rate). (See Porr & Wörgötter, 2006, for a more detailed elaboration
of differential Hebbian learning.)

While in Kulvicius et al. (2010), the main objective was to measure the
performance of the robot, here we concentrate on the performance of the
closed loop, which can be benchmarked in different ways using the prox-
imal sensor input xp and the weight ωd (the proactive weight). For model
checking, satisfaction of the following properties would indicate correct
behavior of the robot:

1. The sensor input xp of the proximal sensor will eventually stay zero,
indicating that the agent is using only its distal sensors.

2. The weight ωd will eventually become constant, indicating that the
agent has finished learning.

Note that the two properties are shown by simulation to be true in
most cases. However, one simulation leads to a counterintuitive result.
This is discussed further in section 3.1. In section 5.2, we discuss how
formal verification showed us that this seemingly incorrect result was due
to premature termination of the simulation run.

2982 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Figures 1B1 and 1B2 show two example behaviors before learning and
after learning, respectively. The behavior shows a typical transformation
from a purely reflexive behavior to proactive behavior. The agent begins
with a zigzag movement by reacting to the collisions (see Figure 1B1), then
progresses to smoother trajectories when it learns to respond to its distal
antennae (see Figure 1B2). This behavior is generated by the growth of the
weight ωd, which represents the loop via the distal sensors. After successful
learning, the proximal antennae will no longer be triggered, which causes
the weight ωd to stabilize.

Our goal is to verify the properties above using model checking. In
section 5, we describe how the system is specified in Promela. In section 5.2,
we show how these properties can be expressed in linear time temporal logic
(LTL) (Pnueli, 1981) and describe the process of verification. We demonstrate
that the LTL properties are satisfied for our model of the system.

3 Preliminaries

3.1 Simulation Environment. In order to recreate the simulation results
of Kulvicius et al. (2010), we created our own simulation environment,
using classical closed-loop simulation tools and ICO learning. In section 8
we compare this approach with that using formal verification. We focus our
modeling on how learning is affected by the complexity of the environment.
Note that the purpose of this letter is to present a proof of concept—that
of using model checking combined with abstraction to verify properties
of this type of environment. We have simplified our models, using a set of
assumptions in order to clarify our exposition. In section 7, we indicate how
our models could be extended to incorporate more realistic, or complex,
scenarios.

We restricted the definition of environmental complexity to be a measure
of the minimum spacing between obstacles (i.e., a more complex environ-
ment implies a smaller minimum space between obstacles). This makes
our models simpler. Environment boundaries are removed: when a robot
reaches the edge of the environment, it simply emerges again at the opposite
point on the environment edge. This simplification is unlike the situation in
Kulvicius et al. (2010) but agrees with the setup for our verifications, with
which we are comparing results. Removing the boundaries also helps us
to abstract our model in section 6. Figure 3 represents the geometry of the
simulated environment.

In our behavior-based simulation environment the robot is positioned
at coordinates rx(t), ry(t) and moves in a grid of pixels. At every time step,
the robot moves forward 1 pixel at angle θ (from north):

rx(t)= rx(t − 1) + cos(θ), (3.1)

ry(t)= ry(t − 1) + sin(θ), (3.2)

Formal Modeling of Robot Behavior with Learning 2983

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

X coordinate

Y
 c

oo
rd

in
at

e
Simulated lattice with robot

Figure 3: Example of the simulation setup.

where rx, ry and any derived coordinates for the sensor signals are stored as
floating point values. The coordinates are rounded to integer values when
used to determine whether a collision has occurred (for example), but their
floating point values are retained for future calculations. The steering angle
v is added to θ every time step: θ (t + 1) = θ + v. Obstacles are coded as
nonzero values in the grid. The sensor signals xd and xp are generated by
probing the pixel values along the left and right antenna coordinates and
calculating their differences (see equation 2.1). The resulting differences for
the proximal and distal sensors are then fed into first-order low-pass filters
(see equations 2.2 and 2.3) and then summed to generate the new steering
angle (see equation 2.5). Learning is implemented using equation 2.6. The
simulation environment is implemented in Matlab (Matlab, 2010).

Various simulations were run using this system. The results of some of
these simulations are plotted in Figure 4. For each simulation, the agent is
positioned in the center of the environment, facing a varying number of
degrees clockwise from north.

2984 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

F

G

D

B

E

C

A

Si
m

ul
at

io
n

ev
en

ts
Si

m
ul

at
io

n
ev

en
ts

Si
m

ul
at

io
n

ev
en

ts

Si
m

ul
at

io
n

ev
en

ts
Si

m
ul

at
io

n
ev

en
ts

Si
m

ul
at

io
n

ev
en

ts

Si
m

ul
at

io
n

ev
en

ts

Distal events
Proximal events

Distal events
Proximal events

Distal events
Proximal events

Distal events
Proximal events

Distal events
Proximal events

Distal events
Proximal events

Distal events
Proximal events

Figure 4: Simulation runs for a range of starting directions. (A) 0◦, (B) 15◦,
(C) 30◦, (D) 40◦, (E) 50◦, (F) 58◦, (G) 58◦, with extended running time.

The graphs in Figure 4 plot the total number of impacts on the distal
and proximal antennae over time, for a range of starting directions (i.e.,
the angle from north faced by the robot). Note that the weight development

Formal Modeling of Robot Behavior with Learning 2985

follows exactly the curve for the accumulated proximal events (scaled using
λ). This is due to the fact that (in our simplified system) the weight increases
every time the proximal sensor is been triggered.

In the graphs, the distal and proximal values are initially close together,
as the system cannot yet avoid using its proximal signals. As the agent
learns to use its distal antennae, the distal and proximal total impacts begin
to diverge. This is an indication that the agent is avoiding colliding with its
proximal antennae by learning avoidance behavior. Eventually the proximal
total stays constant, indicating that the agent is no longer colliding. This
is because the robot eventually finds a path between the obstacles and,
after reaching the boundary, emerges along the same path. This causes
continuous collision-avoiding behavior and is both desired and expected.

The simulation where the agent begins facing 58 degrees from north (see
Figure 4F) appears to be an exceptional case. In this graph, the proximal
value continues to rise. We consider this case in detail in section 5.2.

3.2 Model Checking versus Simulation. In this letter, we demonstrate
how model checking can be used to verify properties of a system comprising
a robot moving in an environment. The environment we use is identical to
that used for simulation, as described in section 3.1, so we can compare
the two approaches. Our system is simple and subject to a number of
assumptions. Indeed either approach requires assumptions to be made.
The important issue is that the same assumptions are made in all cases,
so that a fair comparison can be made. Our goal here is to illustrate the
technique rather than present a comprehensive suite of models. We explain
how our approach can be extended to other environments, or to situations
involving more robots, or a rigid boundary wall in section 7. We illustrate
the relationship between classical closed-loop simulation and our approach
in Figure 5.

Model checking involves analysis of a state-space (a graphical repre-
sentation of all possible states reached by the system and the transitions
between them). While in the classical simulation, we could implement all
variables as floating point numbers (given analytical expressions of the en-
tire environment), in model checking, we need to discretize variables so
that we can set up our state-space. Generally the granularity of any dis-
cretization of a robot simulation is determined by the signal-to-noise ratio
of the sensors of the real robot and imperfections of its actuators (Grana,
2007; Tronosco, Sanches, & Lopez, 2007; Chesi, 2009). This holds true for
both classical simulation and model checking.

Simulation is equivalent to examining individual paths through a state-
space. Exhaustive simulation (to cover all eventualities) is either very time-
consuming or impossible. Model checking allows us to examine all possible
paths and to precisely express the property of interest (rather than relying
on observation of simulation output). As illustrated in Figure 5, a single
simulation is equivalent to a single path in our model. Often a simulation

2986 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

model

Promela code

all

Translation
rules

all possible

simulation

Simulation

Simulation

single single

Promela

Explicit model

Figure 5: Comparison of approaches.

run is equivalent to a prefix of a path in our model (consisting of the first
N states of the path for some finite number N). A simulation is necessarily
terminated at some point, whereas verification involves exploring all paths
until there are no further states or a cycle is detected.

Both simulation and model checking involve a degree of abstraction. The
user of the technique must decide which aspect of the system to represent
in the simulation or model. Our initial model (the Explicit model) is delib-
erately abstracted to the same degree as the simulation setup, so no addi-
tional information is lost. It is therefore straightforward to infer that we are

Formal Modeling of Robot Behavior with Learning 2987

modeling the same thing in each case. The power of model checking in this
case is that we can formally define a property and automatically check ev-
ery path. Note that in the single robot model, there are few decision points
in our model (and so there are few paths), but in general a state-space con-
tains many paths. For example, if there were multiple robots, the ordering
of steps taken by the different robots would lead to different paths with
different outcomes.

Having demonstrated the power of model checking with our Explicit
model, we introduce the Abstract model, which is a far more compact model
and not only merges symmetrically equivalent views (from the robot’s
perspective) but combines several equivalent environments into the same
model. There are two major benefits to this type of abstraction. The Abstract
specification is a much neater representation than the Explicit specification;
for example, fewer individual transitions need to be considered. In ad-
dition, results of verification hold for all environments considered in the
single model, which avoids the need to repeat the same experiments for
similar but different environments. A drawback of the approach is that it
requires expert knowledge of the system (e.g., intimate prior experience
with the Explicit model). In addition, it differs so greatly from the physical
system (and the simulation environment) that complex mathematical proof
is required to ensure that the abstraction is sound (i.e., that it preserves the
properties in question).

A comparison of model checking and closed-loop simulation, applied to
this system, is presented in section 8.

3.3 Formal Definitions. In order to be able to reason about our models,
we need formal semantics. We define a Kripke structure (Kripke, 1963) as
the formal model of our system. Note that for model checking, we do not
need to be aware of the underlying semantics (indeed, the model checker
represents the system as a Büchi automaton; Büchi, 1960; see section 4).
However, to prove that our Abstract model preserves LTL (linear time tem-
poral logic) properties (in section 6.1) we will reason about the underlying
Kripke structures of our Promela programs.

Definition 1. Let AP be a set of atomic propositions. A Kripke structure over
AP is a tuple M = (S, s0, R, L) where S is a finite set of states, s0 is the initial
state, R ⊆ S × S is a transition relation, and L : S → 2AP is a function that labels
each state with the set of atomic propositions true in that state. We assume that the
transition is total, that is, for all s ∈ S, there is some s ′ ∈ S such that (s, s ′) ∈ R.

A path in M is a sequence of states π = s0, s1, . . . , such that for all i, 0 ≤ i,
(si, si+1) ∈ R.

When AP is a set of propositions defined over a set of variables X (e.g.,
AP = {(x == 4), (y + z <= 3)}, we say that M is a Kripke structure over X.

2988 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Table 1: Common LTL Properties.

Property Common name Description

p → q If p is true at a state, then q is true at that state
[]p invariance p is true at every state
〈〉q q is true eventually
p ∪ q q will eventually be true. p will be true at the initial

state and will remain true until q becomes true
p → 〈〉q response If p is true at a state, then q will be true either at

that state or at a later state in the path

The logic CTL∗ is defined as a set of state formulas (properties that hold
from a given state) and a set of path formulas (i.e., properties that hold along
a given path), which are defined inductively below. The quantifiers A and
E are used to denote for all paths, and for some path, respectively (where,
if ¬ denotes negation, for path property φ, Eφ = ¬A¬φ). In addition, X
(nexttime) denotes in the next state, and 〈〉 and [] represent the standard
eventually and always operators (used to indicate that a proposition is true
for every state in a path or true at some state in a path, respectively). The
binary operator ∪ denotes until, where p ∪ q states that proposition p is true
in the current state and continues to be true until a state is reached at which
proposition q is true (and such a state will eventually be reached). Note that
〈〉φ = true ∪ φ and []φ = ¬〈〉¬φ.

Let AP be a finite set of propositions. Then if ∧ and ∨ denote the usual
and and or respectively,

� For all p ∈ AP, p is a state formula.
� If φ and ψ are state formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ .
� If φ is a path formula, then Aφ and Eφ are state formulas.
� Any state formula φ is also a path formula.
� If φ and ψ are path formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ , Xφ,

φ ∪ ψ , 〈〉φ and []φ.

The logic LTL (Pnueli, 1981) is obtained by restricting the set of (CTL∗)
formulas to those of the form Aφ, where φ does not contain A or E. When
referring to an LTL formula, one generally omits the A operator and instead
interprets the formula φ as “for all paths φ.”

For a model M, if the LTL formula φ holds at a state s ∈ S, then we write
M, s |� φ (or simply s |� φ when the identity of the model is clear from the
context).

We assume p, q, and r are propositions; some common LTL properties
are given in Table 1. In each case, the common name for the property is
given if such a name exists. Note that we omit the criterion for every path in
the description of the properties, as this is implied for all LTL properties.

Formal Modeling of Robot Behavior with Learning 2989

(For example, []p should be read as “for every path p holds at every state.”)
More examples of common LTL property patterns can be found in Dwyer,
Avrunin, and Corbett (1998).

3.4 Büchi Automata and LTL. One of the most efficient algorithms
for model checking LTL properties is the automata-theoretic approach (see
section 4.1). Although we will not describe the algorithms in detail, we
provide a little background theory here.

Definition 2. A finite state automaton (FSA) A is a tuple A = (S, s0, L , T, F)
where:

1. S is a nonempty, finite set of states.
2. s0 ∈ S is an initial state.
3. L is a finite set of labels.
4. T ⊆ S × L × S is a set of transitions.
5. F ⊆ S is a set of final states.

A run of A is an ordered, possibly infinite sequence of transitions

(s0, l0, s1), (s1, l1, s2), . . .

where si ∈ S and li ∈ L for all i > 0. An accepting run of A is a finite run in
which the final transition (sn−1, ln−1, sn) has the property that sn ∈ F.

In order to reason about infinite runs of an automaton, alternative notions
of acceptance (e.g., Büchi acceptance) are required. We say that an infinite
run (of an FSA) is an accepting ω-run (it satisfies Büchi acceptance) if and
only if some state in F is visited infinitely often in the run. A Büchi automaton
is an FSA defined over infinite runs (together with the associated notion of
Büchi acceptance).

Every LTL formula can be represented as a Büchi automaton (see, Wolper,
Vardi, & Sistla, 1983; Vardi & Wolper, 1994).

4 Model Checking

Errors in system design are often not detected until the final testing stage,
when they are expensive to correct. Model checking (Clarke & Emerson,
1981; Clarke, Emerson, & Sistla, 1986; Clarke, Grumberg, & Peled, 1999) is a
popular method that helps to find errors quickly by building small, logical
models of a system that can be automatically checked.

Verification of a concurrent system design by temporal logic model
checking involves first specifying the behavior of the system at an appropri-
ate level of abstraction. The specification P is described using a high-level
formalism (often similar to a programming language) from which an as-
sociated finite state model, M(P), representing the system is derived. A
requirement of the system is specified as a temporal logic property, φ.

2990 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

A software tool called a model checker then exhaustively searches the
finite state model M(P), checking whether φ is true for the model. In LTL
model checking, this involves checking that φ holds for all paths of the
model. If φ does not hold for some path, an error trace or counterexample,
is reported. Manual examination of this counterexample by the system
designer can reveal that P does not adequately specify the behavior of
the system, that φ does not accurately describe the given requirement, or
that there is an error in the design. In this case, either P , φ, or the system
design (and thus also P and possibly φ) must be modified and rechecked.
This process is repeated until the model checker reports that φ holds in
every initial state of M(P), in which case we say M(P) satisfies φ, written
M(P) |� φ.

Assuming that the specification and temporal properties have been con-
structed with care, successful verification by model checking increases
confidence in the system design, which can then be refined toward an
implementation.

4.1 LTL Model Checking. The model checking problem for LTL can be
restated as, “Given M and φ, does there exist a path of M that does not
satisfy φ?” One approach to LTL model checking is the automata-theoretic
approach (Lichtenstein & Pnueli, 1985; Vardi & Wolper, 1986).

In order to verify an LTL property φ, a model checker must show that all
paths of a model M satisfy φ (alternatively, find a counterexample, namely,
a path that does not satisfy φ). To do this, an automaton A representing the
reachable states ofM is constructed together with an automatonB¬φ , which
accepts all paths for which ¬φ holds. The asynchronous product of the two
automata, A′ is constructed. In practice, A′ is usually constructed implicitly
by letting A and B¬φ take alternate steps. Whenever a transition is executed
in A, the propositions in φ are evaluated to determine which transitions
are enabled in B¬φ . If a path in A does not satisfy φ, the automaton B¬φ

may execute a trace along a path in which it repeatedly visits an acceptance
state. This is known as an accepting run (of A′), and it signifies an error. If
there are no accepting runs, the property holds, and M |� φ. Generally to
prove LTL properties, a depth-first search is used. As the search progresses,
all states visited are stored (in a reduced form) in a hash array (or heap)
and states along the current path are pushed on to a stack. If an error path
is found, a counterexample can be produced from the contents of the stack.

In Figure 6 we give Büchi automata for LTL properties []p (p is true at
every state) and 〈〉q (q is true eventually). Note that any path of an automaton
A has associated paths in the Büchi automaton. For example, consider the
Büchi automaton of Figure 6A. If π is a path in A for which p becomes false
at some state, s, say, it would be possible to loop around the state labeled
T0:init until s is reached, then make a transition to the (acceptance) state
labeled accept all. The infinite continuation of π would result in infinite
looping around the acceptance state in the Büchi automaton. Thus, π would

Formal Modeling of Robot Behavior with Learning 2991

Figure 6: Example Büchi automata. (A) []p. (B) 〈〉q.

be accepted. Similarly, a path π ′ in A for which q is never true would be
accepted by the Büchi automaton of Figure 6B. Note that the names of the
states are not significant (although an acceptance state is generally prefixed
with the term accept). The Büchi automaton in this example was generated
using Spin.

When we use model checking to prove properties of a system, the un-
derlying automata are constructed by the model checker itself. The user
must supply a specification of the system that is recognizable as a true
representation of the system and the translation to automata is unseen. In
section 4.2, we introduce Promela, the specification language for the model
checker Spin.

4.2 Promela and Spin. The model checker Spin (Holzmann, 2004) al-
lows one to reason about specifications written in the model specification
language Promela. Spin has been used to trace logical errors in distributed
systems designs, such as operating systems (Cattel, 1994; Kumar & Li,
2002), computer networks (Yuen & Tjioe, 2001), railway signaling systems
(Cimatti et al., 1997), wireless sensor network communication protocols
(Sharma et al., 2009), and industrial robot systems (Weissman, Bedenk,
Buckl, & Knoll, 2011).

Promela is an imperative-style specification language designed for the
description of network protocols. A user of Spin does not see the Büchi
automata associated with their Promela specification. The Promela spec-
ification is a clear and understandable representation of the system to be
modeled. Indeed, since Promela syntax is close to C-code, a Promela specifi-
cation is often very close to the implementation of the system to be modeled.
Underlying semantics allow a Promela specification and an LTL property to
be converted into their respective automata and combined as described in
section 4.1. The specification can be relatively short, whereas the associated

2992 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Büchi automata can contain thousands (or indeed millions) of states. It is
not therefore feasible to construct the Büchi automata by hand.

In general, a Promela specification consists of a series of global variables,
channel declarations, and proctype (process template) declarations. Indi-
vidual processes can be defined as instances of parameterized proctypes. A
special process—the init process—can also be declared. This process will
contain any array initializations, for example, as well as run statements to
initiate process instantiation. If no such initializations are required and pro-
cesses are not parameterized, the init process can be omitted and processes
declared to be immediately active via the active keyword. Properties are
specified using assert statements embedded in the body of a proctype (e.g.,
to check for unexpected reception), an additional monitor process (to check
global invariance properties), or by LTL properties. We do not give details
of Promela syntax here but illustrate the structure of a Promela program
and some common constructs by way of our example system in appendix
B. LTL properties that are to be checked for the system are defined in terms
of Promela within a construct known as a never claim. A never claim can
be thought of as a Promela encoding of a Büchi automaton representing the
negation of the property to be checked.

Spin creates a finite state automaton for each process defined in a Promela
specification. It then constructs the asynchronous product, A, of these au-
tomata and a Büchi automaton ¬B corresponding to any never claim de-
fined. As described in section 4.1, in practice A and ¬B are executed in
alternate steps—the propositions in ¬B being evaluated with respect to the
current values of the variables in A. Automaton A can be thought of as a
graph in which the nodes are states of the system and in which there is
an edge between nodes s1 and s2 if at state s1, some process can execute
a statement (make a transition) that results in an update from state s1 to
state s2.

The system that we are modeling here is not concurrent: there is just a
single robot moving in an environment. However, our model does involve
nondeterministic choice. When a head-on collision occurs, the robot moves
to the left or right of the obstacle. When the collision occurs at the farthest
point on the shell from the center of the robot (i.e., at a point equidistant from
the antennae), the direction of movement is chosen nondeterministically.
Spin allows us to check every path through a model for counterexamples
(i.e., paths that violate a given property) without having to manually con-
struct a set of test cases. This includes infinite (looping) behavior, which
cannot possibly be checked using simulation alone. Future work (see sec-
tion 7) will involve us adding robots. This will be a simple case of adding
further instantiations of the robot process template.

In our model, it is important that the movement of the robot in its en-
vironment is represented as accurately as possible. Due to the limitations
of the Promela language, this precision is not possible with Promela alone.
However, it is possible to embed C code within a Promela specification.

Formal Modeling of Robot Behavior with Learning 2993

Note that the calculations performed in the C code are visible to the Promela
specification and the values of variables contained in it used to determine
transitions in the automata. However, we can choose that some variables
used for intermediate calculations that are not relevant (i.e., do not influence
transitions) are not visible and do not form part of each state. In appendix A,
we describe how embedded C code is used in our Promela specification.

5 The Promela Specification: Explicit Model

In this letter we describe two Promela specifications, the Explicit speci-
fication, which describes a low-level representation of the system for a
particular environment, and the Abstract specification, which allows us to
capture all paths of a robot in any environment (with some restrictions).
The associated models are the Explicit model and the Abstract model.
Figure 5 illustrates the relationship between our models and the relation-
ship between simulation and model checking.

The Explicit specification is so low level that it closely resembles simu-
lation code. This is an advantage: it is easy to convince system designers
that our specification (and hence the resulting model) is correct. Verifica-
tion of the underlying model is more powerful than simulation alone but is
restricted to proving properties for a single environment. In addition, the
state-space associated with such an unabstracted model can be prohibitively
large. (This is not true in our case but applies to systems with a high level
of concurrency and nondeterminism.) The Abstract specification is much
further removed from the simulation code and requires expert knowledge
to construct. The benefit of the Abstract model is that we can verify proper-
ties for any environment (under the given assumptions), and memory and
time requirements are much smaller (than the combined requirements for
all environments). However mathematical proof is required to show that
the Abstract model does indeed capture the behavior of a single robot in
any suitable environment.

In this section we describe the Explicit specification.

5.1 Assumptions. We assume that the environment, the robot, and the
obstacles are all circular (see Figure 7). The robot setup is illustrated in
Figure 7. The length of an antenna is 60 units, and the angle between the
antennae is 60 degrees. The diameter of the robot is 40 units (see Figure
7C), and the diameter of an obstacle is twenty units (see Figure 7B). The
environment has diameter at least 100 units—the radius of the robot plus
the length of an antenna plus the diameter of an obstacle (see Figure 7A).

We assume that the complexity of the environment is such that at most,
one obstacle can touch any part of the robot at any time. We denote the
minimum allowable distance between obstacles as δ0.

An environment is a circular region, represented by a set of polar
coordinates C = {(r, θ) : 0 ≤ r ≤ ρ, 0 ≤ θ < 360}, where ρ is the radius of

2994 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Figure 7: Robot setup. (A) Distance from the center of robot to the far edge of
the obstacle. (B) Lengths of the antenna and obstacle. (C) Diameter of the robot.

the environment and angles are measured clockwise from north. We use
polar coordinates to represent the environment and the current position of
the robot and the obstacles. This allows us to store the angular information
of the system (without having to recalculate this from Cartesian coordinates
at every point) and so determine the robot’s new position when moving
at an angle that is not parallel to either Cartesian axis. The use of polar
coordinates also allows us to represent the turning angles of the agent to an
accuracy of 1 degree, a level of accuracy that we deemed acceptable.

The robot is initially placed in the center of the environment, facing a
given direction. Since the robot is the only moving obstacle in the environ-
ment, the state of the system reflects the position of the robot, the direction
in which it is moving, and (by implication) at what point (if any) an obsta-
cle touches either of the sensors. We do not include the robot’s motors or
external wheels in the model.

The precise location of the robot as it moves around an environment
is calculated using C-code embedded within our Promela specification. At
each time step, the new direction of the robot is calculated from the signals
received from the sensors. We simply calculate the position of any obstacle
touching the sensors to infer this information. As well as deciding the new
direction of the robot, the angular response to a sensor impact will be
incremented by a fixed amount (the learning rate) if a collision occurs at the
proximal sensor after a collision has occurred at a distal sensor. If a head-on
collision occurs, the robot moves to the left or right of the obstacle. When
the collision occurs at the farthest point on the shell from the center of the
robot (at a point equidistant from the antennae), the direction of movement
is chosen nondeterministically.

As in the simulated environment, we ignore the presence of any bound-
ary wall. When a robot reaches the perimeter of the environment, it is simply
relocated to the opposite edge of the perimeter. This is achieved via a WRAP

function that reflects the position of the robot about a ray, r2, that runs
through the pole (center of the environment) and is perpendicular to the
ray r1 that runs through the position p of the robot at the angle that the robot
is facing. The new position of the robot is p′, where p and p′ are at the same
distance from the two points of intersection of r1 with the perimeter of the

Formal Modeling of Robot Behavior with Learning 2995

diametrically diametrically

diametricallydiametrically

Figure 8: Examples of the WRAP function.

environment. Note that the robot continues to face in the same direction.
Figure 8 illustrates the effect of the WRAP function when the new position of
the robot is diametrically opposite to the old position and when it is not.
Our particular implementation of the movement of the robot at the bound-
ary reflects the implementation in the closed-loop simulation that in both
cases was chosen to simplify our description and the introduction of our
approach. Other implementations are possible, as discussed in section 7.

We include sample Promela code in appendix B.

5.2 Verification Results for the Explicit Model. Our initial experiments
with Spin involved attempting to reproduce the results of the simulations
of Figure 4. In particular, we were interested in the results of the simula-
tion where the agent initially faces 58 degrees from north (see Figure 4).
As observed in section 3.1, in this case, the learning weight (ωd) contin-
ues to rise, apparently indefinitely. This continual rise is counterintuitive.
We examined this case using model checking. Our specification was for a
robot initially facing due north, and the environment adapted appropri-
ately. Using Spin, we verified that the system should always stabilize. This

2996 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

is in fact property 2, which is given (along with details of verification) below.
Analyzing this inconsistency in more detail, we suggest the simulation of
Figure 4A should simply be run for longer. The results of this extended sim-
ulation are shown in Figure 4G. Running the extended simulation shows
that the proximal value does eventually stabilize, indicating that learning
has ceased and successful avoidance behavior has been achieved. Note that
this illustrates an advantage of model checking over simulation. Whereas in
simulation the user decides when to stop waiting for stabilization to occur,
the model checker automatically checks all possible outcomes. The model
checking process does not terminate until all possible paths have been ex-
plored, however unlikely they may be. This is illustrated in Figure 5: a
simulation run maps to a prefix of a path in the state-space.

We now give details of how we verified both of the properties identified
in section 2:

1. The sensor input xp of the proximal sensor will eventually stay zero,
indicating that the agent is using only its distal sensors.

2. The weight ωd will eventually become constant, indicating that the
agent has finished learning.

Our models are defined separately for each learning rate λ and environ-
ment (i.e., location of obstacles). Using this model, we cannot verify prop-
erties for any environment; we must construct a different model (using a
different Promela specification) for every environment. We fix our learning
rate to 1 and verify our properties for an example set of environments.

Environments E1 to E6 are shown in Figure 9. These environments have
obstacles placed at random, at a minimum distance of δ0 from each other (see
section 5.1). Note that the positioning of the obstacles is further restricted
by the WRAP function (see Table 4) in two ways. First, when an obstacle
is randomly placed, its minimum distance from other obstacles must take
into account the wrapping of the environment. Second, obstacles cannot be
placed so close to the perimeter that the WRAP function could cause the robot
to wrap directly into it.

The experiments were conducted on a 2.5 GHz dual core Pentium E5200n
processor with 3.2 Gb of available memory, running UBUNTU (9.04) and
SPIN 6.0.1.

To prove property 1, we used the LTL formula 〈〉[]p (in all paths p is
eventually always true) where p is defined to be the proposition, ((sig �=
6)&&(sig �= −6)). Note that sig and PrevSig are the variables we use in our
Promela specification to denote the current signal from the sensors and the
previous signal from the sensors respectively. The latter has default value 0
and is reset to this value when a proximal signal is received.

Attempts to verify this property using Spin proved the property to be
false. Examination of a counterexample trace showed that it was indeed
always possible to have an impact on a proximal sensor, even when learning

Formal Modeling of Robot Behavior with Learning 2997

Figure 9: Environments E1 to E6.

had ceased. This happens when the robot approaches an obstacle head-
on, and the obstacle has an impact without the distal sensor touching the
obstacle. This situation was missed during simulation. Of course, on another
day, a different simulation may have exposed this possibility. The benefit
of model checking here is that it never misses an error path, although, of
course, it is the definition of the property being checked that determines
what an error path is.

Since learning occurs only when an impact on the proximal sensor fol-
lows an impact on the distal sensor, we can rephrase the property to elim-
inate this rare behavior. The new property (property 1A) is 〈〉[](!p →!q)

(eventually p is always true unless q is false), where p is defined as above
and q is defined to be ((prevSig > −6)&&(prevSig < 6)). This property is
shown to be true for our set of example environments (see Table 2 for ver-
ification results). Note that the Stored States column gives an indication of
the size of the underlying state graph. As the graph is explored (during any
verification), states are generated on the fly from the transitions indicated in
the Promela specification. When a new state is encountered, it is stored (in
the state-space). When a previously visited state is encountered, the search
backtracks. Maximum search depth is the length of the longest path that is
explored during search, and time denotes the time (in seconds) taken for
verification.

To prove property 2, in each case we performed initial experiments to
find the maximum value of ωd (call this value Max). These experiments

2998 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Table 2: Verification Results for the Explicit Model.

Environment Property Max ωd Stored States Maximum Search Depth Time (sec)

E1 1A 1 273,664 547,323 2.19
2A 273,734 547,323 2.26

E2 1A 1 150,562 300,979 1.03
2A 150,492 300,979 1.04

E3 1A 0 670 1339 0.00
2A 670 1339 0.00

E4 1A 0 77,034 154,067 0.16
2A 77,034 154,067 0.28

E5 1A 1 218,326 436,647 1.36
2A 218,372 436,647 1.73

E6 1A 1 61,256 122,507 0.28
2A 61,434 122,507 0.52

involved choosing an initial (high) value of Max and checking a fur-
ther LTL property []ωd < Max. When the property is proved true, Max is
decremented and the process repeated, until the property is shown to be
false, in which case Max is fixed to the last value for which the property
was shown to be true. We checked a slightly modified version of prop-
erty 2, namely, property 2A, to verify that MAX is eventually reached,
but never exceeded. This is verified using the following LTL property:
(〈〉(omegaD == MAX))&&([]omegaD <= MAX). This property was shown
to be true for our set of example environments (see Table 2).

6 The Abstract Specification

The Promela specification described in section 5 models the physical world
explicitly; it represents an explicit environment and an explicit robot. In this
section we describe an Abstract specification in which the environment is
abstracted to a much smaller area, known as the cone of influence surround-
ing the robot. Rather than move the robot around an Explicit environment,
at any state we consider only the position of any obstacle within this cone
of influence and its position relative to the robot. Depending on any impact
made to the sensors of the robot at a given state, the next state is calculated.
In this case rather than the robot move, the robot stays fixed in its original
position (at the origin) and any obstacle moves relative to the robot. The ad-
vantage of this specification over the Explicit specification is that the model
represents a robot moving in any environment with distance between ob-
stacles at least δ0 (as defined in section 5.1). The relationship between our
models and between simulation and our models is illustrated in Figure 5.

As well as the usual benefits of model checking, the Abstract model al-
lows further benefits over simulation in that it allows us to analyze a set of

Formal Modeling of Robot Behavior with Learning 2999

Figure 10: Abstraction of environments to a single representation. From a given
position of the robot, several environments look identical. Shown are states in
six differerent environments that correspond to the same state in the Abstract
model.

environments in a single verification. Of course, we need to define assump-
tions on our environment (in the same way that we would need to define
restrictions on a simulation environment). The environments represented
by a single abstract model must all be equivalent in some way. In our case
this equivalence is determined by the minimal distance between obstacles;
it could, of course, be defined differently. In section 7 we describe how the
Abstract model could be extended to more complex scenarios (e.g., a range
of distances between obstacles).

To see how the Abstract model represents multiple environments, con-
sider Figure 10. For a given position of the robot, several environments look
identical from the robot’s perspective (i.e., within its cone of influence). Our
abstraction merges these symmetrically equivalent cases. In our case, only
one obstacle can appear within the cone of influence, and equivalent cases
are determined by the distance and angle of any obstacle from the antennae.
If there were more obstacles, symmetry would still exist between different
scenarios (see section 7). Note that our abstraction also merges situations
in which the robot is in different positions, but its view within its cone of
influence is the same. This is not illustrated in Figure 10.

From a state in which there is an obstacle in the cone of influence, the
next state is calculated in the same way as it is for the Explicit specification.
However, if there is no obstacle within the cone of influence (i.e., the robot
is in free space), nondeterministic choice determines the position (if any) of
an obstacle appearing at the front of the cone of influence in the next state.

We refer to the model (i.e., a Kripke structure) associated with the Ab-
stract specification as the Abstract model. In section 6.1 we give an outline

3000 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Path A

Path B
Path A’

Path B’Path C

sss

s
s

s

s
s s

s

s

s

s

s

s

s

Figure 11: Simulation relation between models.

proof to show that for any suitable environment E, any LTL property
satisfied by the Abstract model is satisfied by an Explicit model with
environment E.

We give outline code for the Abstract specification in appendix C.

6.1 Justification for the Abstract Model. We need to show that for a
given learning rate λ, by verifying an LTL property for the Abstract model
with learning rate λ we can infer that φ holds for all Explicit models with
learning rate λ. In this section we use the term model to denote the underlying
Kripke structure (see definition 1) associated with a Promela specification.

Our justification is based on the concept of simulation between two
Kripke structures M and M′. A simulation relation R between the sets of
states of M and M′ is a set of pairs of states, (s, s′) where s and s′ are states of
M and M′, respectively, and any transition in M is matched to a transition
in M′. Formally, for any transition (s, s1) in M, if (s, s′) ∈ R, then there is a
transition (s′, s′

1) in M′ where (s1, s′
1) ∈ R.

We say that M′ simulates M if there is a simulation R between the sets
of states and the initial states of M and M′ are in the relation. For example,
in Figure 11, a simulation relation is given by

R = {(s0, s′
0), (s1, s′

1), (s2, s′
2), (s3, s′

3), (s4, s′
2), (s5, s′

3), (s6, s′
7), (s7, s′

7)}.

For every path in M, there is a corresponding path in M′; in this case,
we say that a path π in M is matched to a corresponding path π ′ in M′.
Note that in Figure 11, paths A and B in M are both matched to path A′ in
M′ and path C in M is matched to path B′ in M′. Crucially, several paths
in M can be matched to a single path in M′, and not all paths in M′ need

Formal Modeling of Robot Behavior with Learning 3001

to be matched to paths in M. Any LTL property that holds for (all paths in)
M′ holds for (all paths in) M.

Let M and M′ denote an Explicit model and the Abstract model, for
a given learning rate λ. It is possible to prove that there is a simulation
relation between the Explicit model (i.e., for an example environment) and
the Abstract model. Similarly, every path in the Abstract model is mapped
to a path in some Explicit model. It follows that if an LTL property φ holds
for the Abstract model, for a given learning rate λ, it will hold for every
path in every Explicit model with learning rate λ. Thus, φ holds for every
Explicit model with learning rate λ.

It is beyond the scope of this letter to give a full proof that there is
a simulation relation for every explicit model. However, we describe the
general technique indicating how paths are matched. We have used this
approach in previous work (Miller, Calder, & Donaldson, 2007).

The Explicit and Abstract Promela specifications are written in a way that
can easily be translated into a form known as Guarded Command Form. The
robot process in each case is defined using a single repeating loop in which
every statement consists of an atomic step containing a guard followed by
an update (or command). Thus, every statement in the Promela specification
corresponds to a transition in the associated model. This allows us to easily
match states and transitions in an Explicit model to corresponding states
and transitions in the Abstract model (and vice versa).

For example, in each model, in the initial state the robot is at the origin
and facing due north, so the initial states can clearly be matched. For any
environment, at any state, the response of the robot is determined by the
position of the nearest obstacle with respect to its cone of influence. If, in
the Explicit model, the robot is in a state at which no obstacle is in this cone,
then this state is matched to one in the Abstract model in which the robot
is in free space. If an obstacle touches a sensor in the Explicit model, then
this state can be matched to one in the Abstract model in which an obstacle
touches the same area of the antenna.

Any transition in the Explicit model involves a change in the position of
the nearest obstacle relative to the robot. This transition can be matched to a
transition in the Abstract model in which the position of an obstacle moves
likewise, relative to the robot.

6.2 Verification Results for the Abstract Model. In this case, only one
verification is required for each property. The learning rate is again assumed
to be 1. Results are given in Table 3.

7 Model Enhancements

The environments and robot behavior that were represented in both our
simulation setup and Promela specifications (with their associated models)

3002 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Table 3: Verification Results for the Abstract Model.

Property Max ωd Stored States (×105) Maximum Search Depth Time (sec)

1A 6 121,413 28,881 0.32
2A 118,129 28,881 0.26

were deliberately chosen to be simple. Whether creating a computer-based
closed-loop simulation or a Promela specification, it is necessary to make
assumptions about the system that we are modeling. In either case, we
cannot have limitless possibilities about the number of obstacles or their
shape. In addition, we have to decide a priori whether to consider a fixed
boundary and, if so, the nature of the boundary. The purpose of this letter
is to demonstrate the effectiveness of model checking (as a complementary
approach to simulation), not to consider all possible environments or robot
behavior. In this section we discuss how we could adapt our models to
consider more complex scenarios. Note that in all cases, modifications are
made to the Promela specification (and Spin will produce the underlying
models in each case).

In each of the cases below, we assume that only the specified modifi-
cation is to be implemented. Clearly we could combine the modifications
in any way we like, but we consider only one at a time here to make our
explanation simpler. For each modification, we first consider how the Ex-
plicit Promela specification would be adapted. The Explicit specification
would be modified in much the same way as the simulation code would
be modified. The corresponding Abstract specification in all cases would
require more detailed consideration.

When considering a new model, we always start by using an Explicit
model that is close to implementation level and abstract from there (re-
moving unnecessary variables, for example). Creating, what we refer to
as an Abstract model requires experience of the Explicit model so as to
gauge what the equivalence classes are. For example, in the Abstract model
considered in this letter, the equivalence classes correspond to the possible
positions of a single obstacle in the cone of influence.

In each of the modifications in the following list, we indicate the corre-
sponding equivalence class. Note that proof of soundness would involve
proving that every state in a corresponding Explicit model would map to
an equivalence class representative (and so to a state in the Abstract model).
We do not include all possible extensions here, just indicate a few that could
be implemented easily.

� Inclusion of environment boundaries. Boundaries can easily be in-
cluded in our Explicit model. In this case, the boundary would be
incorporated as a set of unreachable coordinates. The robot would

Formal Modeling of Robot Behavior with Learning 3003

respond to a signal from its sensors resulting from a collision with
a boundary in the same way as it would a collision with an obsta-
cle. Depending on the shape of the boundary (and assuming a single
obstacle), the equivalence classes in the Abstract model would corre-
spond to the possible positions of a single obstacle and a segment of
boundary in the cone of influence.

� Arbitrary or dynamic boundaries. Any Explicit model would assume
that a boundary was fixed. However, there is plenty of scope for
allowing arbitrary boundary shapes or dynamic boundaries in our
Abstract model, provided, of course, that we assume (as we would do
for simulation) that the possible types of boundary belong to a finite
set. The equivalence classes in this case would be as for the previous
example, but the number of possible different types of segment of
visible boundary in the cone of influence would increase.

� Increased complexity. This would mean allowing there to be more
than one obstacle within the cone of influence at any time. The Explicit
specification could be modified to accommodate this very easily (the
array containing the positions of the obstacles would simply have to
be altered). Assuming that there are at most N obstacles within the
cone of influence at any time, the equivalence classes (and hence the
states in the Abstract model) correspond to the possible positions of
up to N obstacles within the cone of influence.

� Additional robots. Our explicit Promela model involves a process
definition of a robot and a single instantiation of that process. Adding
robots would simply involve instantiating multiple robot processes
(with learning, or not). Our Abstract model concerns the view of a
single robot. Any additional robots would be viewed as dynamic
obstacles. The behavior of other robots (whether learning or not),
would be relevant only within the cone of influence (e.g., all possible
movements of the other robot after a collision need to be considered).

� Alternative learning algorithm. Both of our Promela specifications
can be adapted easily to accommodate an alternative learning algo-
rithm. This would involve altering our C-code functions determining
the progress of the robot from any state after a collision. We could use
our models to compare the consequences of different algorithms.

� Dynamic obstacles or different obstacles. By defining obstacles as
processes, they could be defined as dynamic, following either a pre-
scribed path or a nondeterministic path. Similarly, obstacles could be
defined to have a variety of shapes and sizes, provided they can be
defined and constrained before modeling. In the Abstract model, it
would make no difference to make obstacles dynamic; the assump-
tion of a maximum number of obstacles within the cone of influence
would be sufficient. Different shapes and sizes of obstacles in the
Abstract model would require a minimal revision of the code (again
requiring the different possibilities to be defined a priori).

3004 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

� Measuring explicit time. It is not possible to represent explicit time
(e.g., to measure the amount of time between events) using Spin alone,
although the temporal ordering of events is clearly representable.
When there is only one robot, there is a correlation between the num-
ber of global transitions between events and the time between the
events. It would therefore be able to give a (discrete) representa-
tion of time using Spin in this case. However, concurrent events are
executed sequentially by Spin, so when there is more than one com-
ponent (i.e., robot), there is no such correlation. In order to prove
quantitative properties such as time between events or the proba-
bility of an event, a more specialized model checker, such as the
timed model checker Uppaal (Larsen, Patterson, & Yi, 1997) or the
probabilistic model checker Prism (Hinton, Kwiatkowska, Norman,
& Parker, 2006), would be required.

8 Comparison of Classical Closed-Loop Simulation
and Model Checking

New strategies had to be developed to translate the behavior-based ap-
proach into a form suitable for model checking. For simulation, we used an
existing framework to easily calculate the position of obstacles on the sen-
sors, the new direction of the robot, and so on. In comparison, the Promela
model was rather cumbersome, in that we had to construct a number of C
functions, in addition to just using pure Promela. However, we were able
to adapt the code for (the simulated) robot behavior. In order to simplify
the Promela model, we kept C functions used for calculation hidden from
the user (in included files). These functions can be reused in future models.

The advantage of the model-checking approach was that we could sim-
ply specify LTL properties to define behavior that was expected for all paths
for our model. We did not have to run an exhaustive set of simulations to
verify behavior; the model checker would find any error path if it existed.
In addition, our Abstract model allowed us to check certain properties for
all possible environments: if there were any distributions of obstacles for
which one of our properties did not hold, the model checker would find it.
Having the capacity to examine error trails allowed us to not only debug
our models but to identify the pathological case in which one of the initial
properties did not hold (i.e., the situation in which the robot hit an obstacle
head-on, without first making contact with a distal sensor). This allowed
us to strengthen the property to ignore this unusual case.

In addition, model checking allows us to identify deficiencies before, dur-
ing, and after learning. That the robot cannot see obstacles that are hitting
it head-on is clearly a deficiency of its sensor distribution. While simple to
spot in our example, more complex sensor motor setups will make it much
more difficult to identify deficiencies that might occur only rarely. However
unlikely, if these cases could cause damage to the robot or a deterioration

Formal Modeling of Robot Behavior with Learning 3005

of its performance (say), then they need to be tackled appropriately. Model
checking can help here (alongside classical simulation) to identify these
problems in the design phase of a robot and will lead ultimately to a more
reliable system.

The main drawback of the model checking approach is that it requires
expert knowledge to construct a Promela specification with just the right
level of abstraction and develop LTL properties to capture identified error
behavior. While the level of mathematical expertise required for our Explicit
model is high, an even greater degree of theoretical knowledge is essential
for the Abstract model.

9 Related Work

When model checking is used in the context of autonomous agents it has
been traditionally used to verify successful communications between agents
in multiagent systems (Dekhtyar, Dikovsky, & Valiev, 2003; Konur, Dixon,
& Fisher, 2012). A number of methods for formally specifying multiagent
systems, with a view to prototyping or verification have been proposed
(Hilaire et al., 2000, 2004; Da Silva & De Lucena, 2004; Wooldridge et al.,
2004; D’Inverno et al., 2004). This is a natural use of model checking that was
designed primarily for communication protocol analysis. Formal aspects of
multi-agent systems are the subject of an annual workshop (Formal Aspects
of Multi-Agent Systems; see Dunin-Kplicz & Verbrugge, 2004, and 2009).
Approaches tend to focus on protocol verification, the formalization of
goals, and plans and knowledge-based agents.

Model checking has also been used to test the success of single agents,
for example, whether a dynamical system can generate a trajectory navi-
gating from a starting position to a specific target (Fainekos, Girard, Kress-
Gazit, & Pappas, 2009) or if agents always perform a given task without
errors (Webster, Fisher, Cameron, & Jump, 2011; Molnar & Veres, 2009; In-
grand & Py, 2002; Lerda, Kapinski, Maka, Clarke, & Krogh, 2008). However,
none of these approaches involve agents with learning. Indeed, learning
is considered only in the context of model checking when it is used as
a way to enhance model checking algorithms (Leucker, 2007; Mao et al.,
2011).

Fisher (2005) uses a temporal logic framework to specify the behavior of
individual agents as well as systems of agents. Refinement is used to reason
about behavior, as well as verification by logical deduction. The framework
is extended to include the concepts of knowledge and belief, but learning is
not considered. Model checking has been used in Bordini, Fisher, Visser, and
Wooldridge (2006) in which agents are specified in the logic-based agent-
oriented programming language AgentSpeak, and the specification of the
system is automatically converted into Promela or Java for verification with
Spin or the Java Pathfinder tool (Visser, Havelund, Brat, & Park, 2000). This

3006 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

approach does not consider agent learning or model collision avoidance or
use Abstraction, as we do.

To our knowledge, we are the first to introduce biologically inspired
agent learning into the model checking paradigm. This has been achieved
by directly using Promela and SPIN. The implemented ICO learning deter-
mines the robot’s reflex (in the specification), and model checking allows us
to check if the generated model is successful under all possible conditions.
This substantially extends the application domain of model checking to sys-
tems that can inform the development of future models or optimize agent
learning algorithms. We have presented a preliminary abstract describing
the model checking aspects of our work in Kirwan and Miller (2011).

10 Conclusions and Future Work

Model checking is a powerful tool that allows us to check temporal prop-
erties of a (model of a) system. In this letter, we have shown how the Spin
model checker can be used to verify properties of a system that has pre-
viously been analyzed using simulation. The system, consisting of a robot
navigating around an environment using learning to avoid obstacles, serves
as an instructive example for the technique of model checking and its use
within this context. We have described our Promela model and how we ver-
ified some example LTL properties for it. The original properties that were
assumed to hold for the system were found to be insufficient. We therefore
strengthened our properties so that any error reported would accurately
reflect the kind of behavior we were interested in. Our abstracted model
is a powerful one: it allows us to prove properties for any environment
for which no two obstacles can interfere with the sensors at any time. This
model removes the need to run multiple verifications to check a property
(i.e., one per environment).

The learning algorithm implemented in both the simulation environment
and the Promela specification is a simplified version of temporal sequence
learning. It would be straightforward to adapt both of these to implement
alternative learning algorithms and provide a platform for comparison pur-
poses. Our Promela specifications could easily be converted to Prism (the
specification language of the probabilistic model checker Prism) (Hinton
et al., 2006), for example, using the Prism2Promela tool (Power & Miller,
2008). Prism would be an ideal tool for analyzing probabilistic learning
algorithms.

Our work has demonstrated the feasibility and value of using model
checking in the context of a robot navigating around a set of obstacles in an
environment. The setup cost, in terms of the transfer of knowledge between
engineers and computer scientists, creation of the formal specification, and
development of the temporal properties, has been high. However, all of the
C functions, template specifications, and temporal properties can be reused

Formal Modeling of Robot Behavior with Learning 3007

(or adapted) for more complex systems involving more robots or alternative
learning algorithms.

Future work involves the development of a software system to automati-
cally create a Promela specification for a system of robots in an environment,
given the number of robots, the location (or number) of obstacles, and the
learning algorithms used.

Appendix A: The Use of Embedded C-Code in Our
Promela Specification

In our model, it is important that the movement of the robot in its envi-
ronment is represented as accurately as possible. Due to the limitations
of the Promela language, this precision is not possible with Promela alone.
However, it is possible to embed C code within a Promela specification. The
primary reason for this is to provide support for programs already written
in C with minimal translation into Promela (Holzmann, 2004), not for use
in handwritten Promela specifications. However, in our case, the increased
accuracy afforded by the use of mathematical functions available using C
outweighed the increased complexity resulting from its use.

Another advantage of using embedded C code is that variables that are
declared solely in the C code do not need to be considered as part of the state-
space (although it is possible to include them as state variables if necessary)
when generating the model. This is a significant advantage in terms of state-
space tractability. For example, variables used for intermediate calculations
that are not relevant (i.e., do not influence transitions) can be ignored.

We embed our C code using functions that can be called in the main
Promela specification. Our C macro functions are declared in a separate file
included from within the Promela specification. Each function can be stored
as an individual file to be tested and debugged separately from the main
model. Several of these functions are used in both of our models.

The use of embedded C code does have some drawbacks. Simulations are
more cumbersome, and the generation of meaningful counterexamples is a
more complicated process. Also, any C code variables that affect the value
of Promela variables must be tracked during a verification. The Promela
c track primitive allows us to do this. Each c track declaration refers to
the memory location and size of a C variable to be tracked, as seen in
Figure 12. The use of this primitive allows the associated variables to be
tracked during verification, allowing the normal verification of properties.
It is important to note that even if an embedded variable does not directly
affect a Promela variable, it may affect it indirectly so will still need to be
tracked.

To illustrate, we include one of our embedded C code functions, the
(MOVE FORWARD) function, which determines the new position of the robot
from a given state:

3008 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Figure 12: Promela code for the Explicit model.

#define MOVE_FORWARD() {
/*Declare Locals*/

if (now.relDist > 30) {
long double oZ, nZ, fZ, lOrg, hOrg, lNew, hNew, lFin, hFin = 0;

int oFR, oFU, nFR, nFU = 0;

oZ = fmodl(enviA, (long double)90);

if ((enviA == 90) || (enviA ==270))

{lOrg = enviD; hOrg = 0; }

Formal Modeling of Robot Behavior with Learning 3009

} else {
hOrg = (sin(oZ*DEG))*enviD;

lOrg = (cos(oZ*DEG))*enviD;

}
}

nZ = fmod(roboA, 90.00);

if ((roboA == 90) || (roboA ==270))

{lNew = moveDist; hNew = 0; }
else if ((roboA == 0) || (roboA == 180))

{lNew = 0; hNew = moveDist; }
else {
if ((roboA<90) || ((roboA>180)&&(roboA<270))) {
lNew = (sin(nZ*DEG))*moveDist;

hNew = (cos(nZ*DEG))*moveDist;

} else {
hNew = (sin(nZ*DEG))*moveDist;

lNew = (cos(nZ*DEG))*moveDist;

}
}

else if ((enviA == 0) || (enviA == 180))

{lOrg = 0; hOrg = enviD; }
else {
if ((enviA <=90) || ((enviA >=180)&&(enviA<=270))) {
lOrg = (sin(oZ*DEG))*enviD;

hOrg = (cos(oZ*DEG))*enviD;

3010 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

} else { hFin = hOrg + hNew; }
if ((hFin!=0)&&(lFin!=0))

{ fZ = (atan(hFin/lFin)*(180/PI)); }
else { fZ = 0;}
enviD = sqrt((lFin*lFin)+(hFin*hFin));

if ((enviA >=0) && (enviA <90)) { oFR = 1; oFU = 1;}
else if ((enviA >= 90) && (enviA <180)) { oFR = 1; oFU = 0;}
else if ((enviA >= 180) && (enviA <270)) { oFR = 0; oFU = 0;}
else if ((enviA >= 270) && (enviA <360)) { oFR = 0; oFU = 1;}
else { oFR = 0; oFU = 0;}
nFR = oFR;

nFU = oFU;

if ((oFR==1) && (oFU==1)) {
if ((roboA>=180) && (roboA<360) && (lNew > lOrg))

{ nFR = 0;}
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))

{ nFU = 0;}
}
else if ((oFR==1) && (oFU==0)) {
if ((roboA>=180) && (roboA<360) && (lNew > lOrg))

{ nFR = 0;}
if ((((roboA>=270)&&(roboA<360)) ||

if ((enviA<180)&&(roboA>180) || (enviA>180)&&(roboA<180))

{ lFin = fabs(lOrg - lNew);}
else { lFin = lOrg + lNew;}

if ((((enviA<90)||(enviA>270))&&((roboA>90)&&(roboA<270))) ||

(((enviA>90)&&(enviA<270))&&((roboA<90)||(roboA>270)))) {
hFin = fabs(hOrg - hNew);

Formal Modeling of Robot Behavior with Learning 3011

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))

{ nFR = 1;}
if ((((roboA>=270)&&(roboA<360)) ||

((roboA>=0)&&(roboA<90)))&&

(hNew>hOrg))

{ nFU=1;}
}
else if ((oFR==0) && (oFU==1)) {
if ((roboA>=0) && (roboA<180) && (lNew > lOrg))

{ nFR = 1;}
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))

{ nFU = 0;}
}

/*Many catches for when movement is along/opposing axis line

or when both facing and polar angles are the same.*/

if (roboA==enviA) { enviA = roboA;}
else if ((roboA==180)&&(enviA==0)&&(hNew>hOrg))

{enviA = 180;}
else if ((roboA==180)&&(enviA==0)&&(hNew < hOrg))

{enviA = 0;}
else if ((roboA==180)&&(enviA==0)&&(hNew == hOrg))

{enviA = 0;}
else if ((roboA==0)&&(enviA==180)&&(hNew>hOrg))

{enviA = 0;}

((roboA>=0)&&(roboA<90))) && (hNew>hOrg))

{ nFU=1;}
}
else if ((oFR==0) && (oFU==0)) {

3012 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

else if ((roboA==0)&&(enviA==180)&&(hNew == hOrg))

{enviA = 0;}
else if ((roboA==90)&&(enviA==270)&&(lNew>lOrg))

{enviA = 90;}
else if ((roboA==90)&&(enviA==270)&&(lNew < lOrg))

{enviA = 270;}
else if ((roboA==90)&&(enviA==270)&&(lNew == lOrg))

{enviA = 0;}
else if ((roboA==270)&&(enviA==90)&&(lNew>lOrg))

{enviA = 270;}
else if ((roboA==270)&&(enviA==90)&&(lNew < lOrg))

{enviA = 90;}
else if ((roboA==270)&&(enviA==90)&&(lNew == lOrg))

{enviA = 0;}
else if ((nFR==1)&&(nFU==1)) { enviA = 90 - fZ;}
else if ((nFR==1)&&(nFU==0)) { enviA = 90 + fZ;}
else if ((nFR==0)&&(nFU==0)) { enviA = 270 - fZ;}
else if ((nFR==0)&&(nFU==1)) { enviA = 270 + fZ;}
if (enviA>=360) {now.enviAng = 0;}
else {now.enviAng = ((int)(2*enviA)) - ((int)enviA);}

enviD = ((int)(2*enviD)) - ((int)enviD);

if ((enviD>=200) && (now.doWrap==0))

{ enviD = 200; now.doWrap=1;

{;

}
now.enviDist = (int)enviD;

}

else if ((roboA==0)&&(enviA==180)&&(hNew < hOrg))

{enviA = 180;}

Formal Modeling of Robot Behavior with Learning 3013

Table 4: Inline Functions.

Name Purpose

SCAN APPROACHING OBS Scans the area in front of the robot for obstacles. This area is
restricted to distance and angle at which an obstacle may
interact with the robot. Uses function
GET OB REL TO ROBOT.

GET OB REL TO ROBOT Calculates the center of an obstacle relative to the center of
the robot.

RESPOND Updates the signal from the robot’s antennae, then calls the
RESPOND TO OB BY TURNING function.

RESPOND TO OB BY TURNING Turns the robot in response to the signals from its antennae.
If the signal indicates proximal reaction, the LEARN

function is called. If the obstacle is touching the robot,
the CRASH function is called.

LEARN Causes the robot to learn (i.e., increments ωd .)
CRASH Evaluates the movement of the robot after it has collided

with an obstacle. If collision is head-on, the HEAD ON

function is called. Otherwise, a proximal turning
response occurs.

HEAD ON Evaluates the movement of the robot after it has collided
head-on with an obstacle. Eventually results in a
proximal turning response.

MOVE ROBOT Moves the robot forward in the direction of its current
orientation. Calls the MOVE FORWARD function.

MOVE FORWARD Calculates the new position of the robot after moving
forward. If the robot has reached the perimeter of the
environment, sets a variable (doWrap) to 1.

WRAP Wraps the position of the robot to the other side of the
environment, using the point at which the robot
approaches the perimeter of the environment and the
orientation of the robot as it approaches.

Appendix B: Example Promela Code

B.1 Sample Code. Figure 12 shows a Promela specification in which
the learning rate is 1 and there are two obstacles.

Note that exMoInLines.txt is an included file that contains a number of
C-like macros and inline functions. An inline function in Promela is similar
to a macro and is simply a segment of replacement text for a symbolic name
(which may have parameters). The body of the inline function is pasted into
the body of a proctype definition at each point that it is called. An inline
function cannot return a value but may change the value of any variable
referred to within the inline function. The purpose of each of the functions
contained in exMoInLines.txt is described in Table 4.

Note that we do not include details of all of these inline functions here,
although all of our code is available from the authors. Some of the functions

3014 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

(e.g., MOVE FORWARD and RESPOND TO OB BY TURNING) require mathematical
calculations that are beyond the scope of Promela. Therefore, to perform
these calculations, we use C code embedded within the Promela specifi-
cation. To illustrate how this is achieved, we provide the definition of the
MOVE FORWARD below and the associated embedded C code in appendix A.

We return to the outline Promela specification given in Figure 12. After
the inclusion of the inline function file, a constant OBMAX, indicating the
number of obstacles, is declared. There follows a typedef definition, by
which a type, namely, PolarCoord, consisting of two integers d (denoting
distance from the origin) and a (denoting angular distance, clockwise from
north). Some c track (see appendix A) and global variables are then defined.

The robot and init proctypes are then declared. The robot proctype
declaration contains a main do...od loop. The do...od loop contains two
choices that are repeated indefinitely. At each invocation, variable doWrap is
evaluated. This variable indicates whether the robot is close to the perimeter
of the environment. If the variable has value 1, the robot will be relocated
from its current position to a position at an equal distance from the perimeter
on the other side of the environment. The new position is determined by
the WRAP function (see Table 4) and is described in more detail in the text of
the letter. Otherwise the SCAN APPROACHING OBS function checks to see if an
obstacle has hit any of the sensors and updates the value of variable sig. If
sig has a value of 0, then no antenna sensor has been hit. A negative signal
indicates that the left antenna has been hit, and a positive signal indicates
that the right antenna has been hit. If the value is −6 or 6, a proximal sensor
has been hit. If neither of the antennae has been hit (and there has been
no direct hit), the robot will simply move forward in its current direction.
If an antenna has been hit or there has been a head-on collision, the robot
will respond accordingly before moving forward in the new direction. In all
cases, if the robot has reached the perimeter of the environment, the doWrap

variable is set to 1. The do . . . od loop is then repeated.
The init process contains the initialization of the arrObs array of obsta-

cles, and the initiation of the robot process.
Learning occurs during the RESPOND TO OB BY TURNING function. For

learning to occur, there needs to be a temporal overlap between the prox-
imal and distal antenna signals. We test for this overlap using the prevSig

variable. The test works by checking if whenever there is a proximal signal
(sig= ±6), there was previously a distal signal (0 < |prevSig| < 6). If so,
the learning weight ωd is incremented by the learning rate λ, which is 1 in
this model.

The WRAP function is defined in the main text, and illustrated in Figure 8.

B.2 The Move_Forward Function. Full code for the MOVE FORWARD func-
tion is given in appendix A. The MOVE FORWARD function calculates the new
position of the robot after one time step, given the current direction of
movement of the robot (relative to a ray pointing due North from the center

Formal Modeling of Robot Behavior with Learning 3015

Figure 13: (A) Movement of the robot after one time step. (B) New position
relative to origin.

of the robot), roboA, and the robot’s current position a (coordinates enviD

and enviA). The new position of the robot is b. The coordinates of b relative
to a are ROBOMOVE and roboA, where ROBOMOVE is a constant, set to 1 in this
example. Figure 13A illustrates this situation.

The coordinates of b relative to the origin are then calculated. These are
represented by enviD′ and enviA′ in Figure 13B. The coordinates of the robot
are updated to these values.

Appendix C: Abstract Specification in Promela

We give outline code for the abstract specification in Figure 14. As before,
we include a file containing inline functions and C macros.

3016 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Figure 14: Promela Code for the Abstract Model.

References

Bordini, R., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent
programs by model checking. Autonomous Agents and Multi-Agent Systems, 12(2),
239–256.

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge, MA:
Bradford.

Büchi, J. (1960). On a decision method in restricted second order arithmetic. In
Proceedings of the International Congress on Logic, Method, and Philosophy of Science
(pp. 1–12). Stanford, CA: Stanford University Press.

Cattel, T. (1994). Modeling and verification of a multiprocessor realtime OS kernel. In
Proceedings of the 7th WG6.1 international conference on formal description techniques
(FORTE ‘94) (pp. 55–70). London: Chapman and Hall.

Chesi, G. (2009). Performance limitation analysis in visual servo systems: Bounding
the location error introduced by image points matching. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2009 (pp. 695–700). Piscataway,
NJ: IEEE.

Cimatti, A., Giunchiglia, F., Mingardi, G., Romano, D., Torielli, F., & Traverso, P.
(1997). Model checking safety critical software with SPIN: An application to a
railway interlocking system. In Proceedings of the 3rd SPIN workshop (pp. 5–17).
Twente University, Enschede, Netherlands.

Clarke, E., & Emerson, E. (1981). Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Proc. of the 1st Workshop in Logic of Programs (pp. 52–71).
New York: Springer.

Formal Modeling of Robot Behavior with Learning 3017

Clarke, E., Emerson, E., & Sistla, A. (1986). Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2), 244–263.

Clarke, E., Grumberg, O., & Peled, D. (1999). Model checking. Cambridge, MA: MIT
Press.

Da Silva, V., & De Lucena, C. (2004). From a conceptual framework for agents and
objects to a multi-agent system modeling language. Autonomous Agents and Multi-
Agent Systems, 9(1–2), 145–189.

Dekhtyar, M., Dikovsky, A., & Valiev, M. (2003). On feasible cases of checking multi-
agent systems behavior. Theoretical Computer Science, 303(1), 63–81.

D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., & Wooldridge, M. (2004). The
dMARS architecture: A specification of the distributed multi-agent reasoning
system. Autonomous Agents and Multi-Agent Systems, 9(1–2), 5–53.

Dunin-Kȩplicz, B., & Verbrugge, R. (Eds). (2004). Fundamenta informaticae (special
issue on formal aspects of multi-agent systems). Fundamenta Informaticae, 63(2–3).

Dunin-Kȩplicz, B., & Verbrugge, R. (Eds.). (2009). Autonomous agents and multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 19(1).

Dwyer, M., Avrunin, G., & Corbett, J. (1998). Property specification patterns for finite-
state verification. In Proceedings of the Second International Workshop on Formal
Methods in Software Practice (pp. 7–15). New York: ACM Press.

Fainekos, G. E., Girard, A., Kress-Gazit, H., & Pappas, G. J. (2009). Temporal logic
motion planning for dynamic robots. Automatica, 45(2), 343–352.

Fisher, M. (2005). Temporal development methods for agent-based systems. Au-
tonomous Agents and Multi-Agent Systems, 10(1), 41–66.

Grana, C. Q. (2007). Selecting the optimal resolution and conversion frequency for
A/D and D/A. In Proceedings of the Instrumentation and Measurement Technology
Conference (pp. 1–6). Piscataway, NJ: IEEE.

Hilaire, V., Koukam, A., Gruer, P., & Müller, J.-P. (2000). Formal specification and
prototyping of multi-agent systems. In Proceedings of the 1st International Workshop
on Engineering Societies in the Agent World (pp. 114–127). New York: Springer.

Hilaire, V., Simonin, O., Koukam, A., & Ferber, J. (2004). A formal approach to
design and reuse of agent and multiagent models. In Proceedings of the 5th In-
ternational Workshop on Agent-Oriented Software Engineering (pp. 142–157). New
York: Springer.

Hinton, A., Kwiatkowska, M., Norman, G., & Parker, D. (2006). Prism: A tool for
automatic verification of probabilistic systems. 3920/2006 (pp. 441–444). New
York: Springer.

Holzmann, G. (2004). The Spin model checker: Primer and reference manual. Upper
Saddle River, NJ: Addison-Wesley Pearson Education.

Ingrand, F., & Py, F. (2002). An execution control system for autonomous robots. In
Proceedings of the IEEE International Conference on Robotics and Automation (Vol. 2,
pp. 1333–1338). Piscataway, NJ: IEEE.

Kirwan, R., & Miller, A. (2011). Abstraction for model checking robot behaviour. In
Proceedings of the 18th Workshop on Automated Reasoning (pp. 1–2). Glasgow, UK.

Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour
via probabilistic model checking. Robotics and Autonomous Systems, 60(2), 199–
213.

3018 R. Kirwan, A. Miller, B. Porr, and P. Di Prodi

Kripke, S. (1963). Semantical considerations on modal logics. Acta Philosophica Fen-
nica, 16, 83–94.

Kulvicius, T., Kolodziejski, C., Tamosiunaite, T., Porr, B., & Wörgötter, F. (2010).
Behavioral analysis of differential Hebbian learning in closed-loop systems. Bio-
logical Cybernetics, 103(4), 255–271.

Kumar, S., & Li, K. (2002). Using model checking to debug device firmware. In
Proceedings of the 5th Symposium on Operating System Design and Implementation.
San Mateo, CA: IEEE Computer Society.

Larsen, K. G., Patterson, P., & Yi, W. (1997). Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1–2), 134–152.

Lerda, F., Kapinski, J., Maka, H., Clarke, E. M., & Krogh, B. H. (2008). Model checking
in-the-loop: Finding counterexamples by systematic simulation. In Proceedings of
the American Control Conference, 2008 (pp. 2734–2740).

Leucker, M. (2007). Learning meets verification. In Proceedings of the 5th International
Conference on Formal Methods for Components and Objects (pp. 127–151). New York:
Springer.

Lichtenstein, O., & Pnueli, A. (1985). Checking that finite state concurrent programs
satisfy their linear specification. In Conference Record of the 12th Annual ACM
Symposium on Principles of Programming Languages (pp. 97–107). New York: ACM
Press.

Mao, H., Chen, Y., Jaeger, M., Nielsen, T., Larsen, K., & Nielsen, B. (2011). Learning
probabilistic automata for model checking. In Proceedings of the 8th International
Conference on Quantitative and Qualitative Evaluation of Systems (pp. 111–120). San
Mateo, CA: IEEE Computer Society.

Matlab (2010). Version 7.10.0 (r2010a). Natick, MA: MathWorks.
Miller, A., Calder, M., & Donaldson, A. F. (2007). A template-based approach for the

generation of abstractable and reducible models of featured networks. Computer
Networks, 51(2), 439–455.

Miller, K. D. (1996). Synaptic economics: Competition and cooperation in correlation-
based synaptic plasticity. Neuron, 17, 371–374.

Molnar, L., & Veres, S. M. (2009). System verification of autonomous underwater
vehicles by model checking. In Proceedings of Oceans 2009—Europe (pp. 1–10).
Piscataway, NJ: IEEE.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J. Math.
Biol., 15(3), 267–273.

Pnueli, A. (1981). The temporal semantics of concurrent programs. Theor. Comp. Sci.,
13, 45–60.

Porr, B., & Wörgötter, F. (2006). Strongly improved stability and faster convergence
of temporal sequence learning by utilising input correlations only. Neural Com-
putation, 18(6), 1380–1412.

Power, C., & Miller, A. (2008). Prism2promela. In Proceedings of the 5th International
IEEE Conference on Qualitative Evaluation of Systems (pp. 79–80). Piscataway, NJ:
IEEE.

Sharma, O., Lewis, J., Miller, A., Dearle, A., Balasubramaniam, D., Morrison, R., et al.
(2009). Towards verifying correctness of wireless sensor network applications
using insense and spin. In Proceedings of the 16th International SPIN Workshop (pp.
223–240). New York: Springer.

Formal Modeling of Robot Behavior with Learning 3019

Sutton, R., & Barto, A. (1987). A temporal-difference model of classical conditioning.
In Proceedings of the Ninth Annual Conference of the Cognitive Science Society (pp.
355–378). Hillsdale, NJ: Erlbaum.

Tronosco, J., Sanches, J. R. A., & Lopez, F. P. (2007). Discretization of ISO-learning
and ICO-learning to be included into reactive neural networks for a robotics
simulator. In Nature Inspired Problem-Solving Methods in Knowledge Engineering
(pp. 367–378). New York: Springer.

Vardi, M., & Wolper, P. (1986). An automata-theoretic approach to automatic program
verification (preliminary report). In Proceedings of the 1st Annual IEEE Symposium
on Logic in Computer Science (pp. 332–344). San Mateo, CA: IEEE Computer Society
Press.

Vardi, M., & Wolper, P. (1994). Reasoning about infinite computations. Information
and Computation, 115, 1–37.

Verschure, P., & Pfeifer, R. (1992). Categorization, representations, and the dynamics
of system-environment interaction: A case study in autonomous systems. In
Proceedings of the Second International Conference on Simulation of Adaptive Behaviour
(pp. 210–217). Cambridge, MA: MIT Press.

Verschure, P., & Voegtlin, T. (1998). A bottom-up approach towards the acquisition,
retention, and expression of sequential representations: Distributed adaptive con-
trol III. Neural Networks, 11, 1531–1549.

Visser, W., Havelund, K., Brat, G., & Park, S. (2000). Model checking programs.
In Proceedings of the 15th IEEE Conference on Automated Software Engineering (pp.
3–12). San Mateo, CA: IEEE Computer Society Press.

Walter, W. (1953). The living brain. London: G. Duckworth.
Webster, M., Fisher, M., Cameron, N., & Jump, M. (2011). Formal methods and the

certification of autonomous unmanned aircraft systems. In Proc. 30th International
Conference on Computer Safety, Reliability and Security (pp. 228–242). New York:
Springer.

Weissman, M., Bedenk, S., Buckl, C., & Knoll, A. (2011). Model checking industrial
robot systems. In Proceedings of the 18th International SPIN Workshop (pp. 161–176).
New York: Springer.

Wolper, P., Vardi, M., & Sistla, A. (1983). Reasoning about infinite computation paths.
In Proceedings of the 4th IEEE Symposium on Foundations of Computer Science (pp.
185–194). San Mateo, CA: IEEE Computer Society.

Wooldridge, M., Jennings, N., & Kinny, D. (2004). The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3),
285–312.

Yuen, C., & Tjioe, W. (2001). Modeling and verifying a price model for congestion
control in computer networks using Promela/Spin. In Proceedings of the 8th Inter-
national SPIN Workshop (pp. 272–287). New York: Springer.

Received September 4, 2012; accepted April 6, 2013.

