In sailing match races, skippers race in pairs. Each skipper races against each other skipper once, in a round-robin tournament. The order of matches in rounds is important: for example, a skipper who sails last in one round must not sail first in the following round. When there are fewer boats than skippers, boats must be shared and we would like to minimise the number of boat changes. We used constraint programming to develop fairer schedules for these competitions.

Sailing Match Races

In a match race, skippers races against each other in pairs. There are several hundred events per year, each involving up to ten of the 1,500 internationally registered skippers.

Constraint Programming

Constraint programming lets us describe a model, in terms of variables, a set of constraints between the variables, and an objective. We do not need to provide an algorithm: we simply gave our model to the Choco Solver to solve.

For match racing, this let us focus on understanding the problem rather than designing an algorithm, and allowed us to develop a model incrementally, by adding in constraints in stages. Being able to use expressive constraints and natural variable types made our model easier to develop, easier to understand, and easier to verify.

Round-Robin Schedules

Sailing match race schedules are provided as downloadable templates, using numbers instead of skipper names. In each round, pairs of skippers race in a sequence of matches.

<table>
<thead>
<tr>
<th>Round</th>
<th>Matches</th>
<th>Round</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,2) (3,4)</td>
<td>5</td>
<td>(4,6) (2,7)</td>
</tr>
<tr>
<td>2</td>
<td>(1,3) (5,7)</td>
<td>6</td>
<td>(4,7) (1,5)</td>
</tr>
<tr>
<td>3</td>
<td>(3,7) (1,6)</td>
<td>7</td>
<td>(4,5) (2,3)</td>
</tr>
<tr>
<td>4</td>
<td>(6,7) (1,4)</td>
<td></td>
<td>(3,6)</td>
</tr>
</tbody>
</table>

The International Sailing Federation specifies what makes a legal match race schedule. There are 13 criteria, and all existing schedules were produced by hand. This is a daunting task: most are illegal, many are missing, and some that are legal are not as fair for competitors as they could be.

Channelling Between Perspectives

When scheduling match races, some rules are temporal, some are described from a skipper’s perspective, and some relate to rounds.

Constraint programming allows us to have more than one model of the problem, and we can express each constraint on whichever model is most natural. We then link the models using channelling constraints.

We used four models simultaneously for match racing. This was both simpler than a single model, and gave better performance.

Modelling Patterns in Sequences

If a skipper is last out in one round, they must not go out first in the next round, to give them time to recover. Similar rules govern byes and boat changes. We model this using a sequence of states for each skipper, specifying whether that skipper is in first position, last, in the middle, in a bye, or has completed all their matches, for each round. The diagram shows which transitions are valid, with three examples—the automaton is used directly, as a regular constraint on the sequence.

This kind of constraint is also used for scheduling suitable patterns of day and night shifts for staff rotas, and specifying permitted sequences of jobs on a production line.