An Exact Branch and Bound Algorithm

Symmetry Breaking

for the

Maximum Balanced Induced Biclique Problem

Ciaran McCreesh Patrick Prosser

February 11, 2014

Maximum Balanced Induced Bicliques	Existing Results	Our Algorithm	

Maximum Balanced Induced Bicliques

Ciaran McCreesh

Bicliques

Ciaran McCreesh

Induced Bicliques

Ciaran McCreesh

Balanced Bicliques

Ciaran McCreesh

The Maximum Balanced Induced Biclique Problem

Ciaran McCreesh

Ciaran McCreesh

Maximum Balanced Induced Bicliques	Existing Results	Our Algorithm	

Existing Results

Ciaran McCreesh

Complexity

• NP-hard, even in a bipartite graph (Garey and Johnson).

Ciaran McCreesh

Other Biclique Variants

- Maximum vertex non-induced biclique:
 - Trivially useless.
- Maximum vertex biclique in a bipartite graph:
 - Easy (König's theorem and bipartite matching).
 - Corollary: maximum clique for a union of two cliques is easy.
- Maximum vertex induced biclique in an arbitrary graph:
 - NP-hard
 - Applications in data mining.
- Maximum edge induced biclique in a bipartite graph:
 - NP-hard
 - Applications in data mining.

Applications

?

Ciaran McCreesh

- Interesting algorithmic properties:
 - Non-hereditary, but still reasonably well-behaved.
 - We have a good bound.
 - One simple symmetry.

Ciaran McCreesh

Maximum Balanced Induced Bicliques	Existing Results	Our Algorithm	

Our Algorithm

Ciaran McCreesh

Inspiration

- Maximum clique algorithms by Tomita et al.
- Bitset encodings by San Segundo et al.
 - A speedup of between two and twenty for maximum clique.

Branch...

- Recursively grow two compatible independent sets, A and B.
- Have two candidate sets, P_a and P_b .
- Recursively expand:
 - Pick a vertex v from P_a , add it to A.
 - So we must remove adjacent vertices from P_a, and non-adjacent vertices from P_b.
 - Now recurse, swapping the roles of A and B.
 - Then consider removing v from A and P_a.

Ciaran McCreesh

...and Bound

- Keep track of the best solution found so far, (A_{max}, B_{max}).
 We call this the *incumbent*.
- Careful! The balance condition means feasibility is not quite hereditary. At leaf nodes, either |*A*| = |*B*| or |*A*| = |*B*| + 1.
- If $|A| + |P_a| \le |A_{max}|$, or $|B| + |P_b| \le |B_{max}|$, then we cannot unseat the incumbent, so we backtrack.
- A much better bound can be found using clique covers.

A Bound using Clique Covers

- If we can colour a graph using k colours, it cannot contain a clique with more than k vertices (each vertex in a clique must be given a different colour).
- Dually, if we can cover a graph using k cliques, its independence number is at most k.

A Bound using Clique Covers

Ciaran McCreesh

Ciaran McCreesh

Ciaran McCreesh

A Bound using Clique Covers

Ciaran McCreesh

A Bound using Clique Covers

- We use a greedy clique cover.
- Vertices are permuted at the top of search, for a static variable ordering.
- We only need to perform one clique cover per recursive call, not one per vertex selection.

Dealing with Bipartite Graphs

- This bound knows about independent sets on each side, but not about compatibility.
- This bound is useless if the graph is bipartite, or becomes bipartite during search.
- We can detect this: a greedy clique cover uses k cliques iff the input is an independent set.
- Open problem: find a bound for this case which is both useful and quick to compute.

Symmetries

 $(A,B)\cong (B,A)$

Ciaran McCreesh

Symmetries

Ciaran McCreesh

Symmetries

Ciaran McCreesh

Ciaran McCreesh

Ciaran McCreesh

	1	1	1	0	0	0	0	0	0
	0	0	0	0	0	1	1	1	0
\cong									
	0	0	0	0	0	1	1	1	0
	1	1	1	0	0	0	0	0	0

Ciaran McCreesh

Ciaran McCreesh

Excluding Symmetries using Lex

- Idea: only find solutions (A, B) where $A \ge_{lex} B$.
 - Don't swap the roles of A and B when recursing for the purposes of this test.
- We remove half of the solutions (not half of the search space).
- If we can prove that B ≥_{lex} A must hold based upon the decisions made so far, backtrack.
- The most significant set bit in *A* must be more significant than the most significant bit set in *B*.
- If the first k bits of A are zero, then the first k bits of B must be zero.

Excluding Symmetries: What Could Possibly Go Wrong?

- We may have to explore deep into the search tree before the rule kicks in: so long as the most significant bit is undecided, we can't filter anything.
- Worse, we may exclude a solution which we would otherwise find quickly.

Excluding Symmetries, Second Attempt

- We have fixed an arbitrary order for the bits. This order may not be the same as the decision order.
- Idea: allow the algorithm to select the arbitrary order for the lex comparison.
- So we select the most significant bit first.
- When we reject a vertex v from A, if B is empty, then reject v from P_b .

Excluding Symmetries, with Two Lines of Code

```
expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
    begin
1
2
            (bounds, order) \leftarrow cliqueSort(G, P_a)
3
           for i \leftarrow |P_a| downto 1 do
                   if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
 4
 5
                           v \leftarrow order[i]
                          A \leftarrow A \cup \{v\}
 6
                                                                                                                   // Consider v \in A
7
                          P_a \leftarrow P_a \setminus \{v\}
                          P'_{2} \leftarrow P_{2} \cap \overline{N_{C}(v)}
8
                                                                                              // Remove vertices adjacent to v
 9
                          P'_b \leftarrow P_b \cap N_G(v)
                                                                                        // Remove vertices not adjacent to v
                          if |A| = |B| and |A| > |A_{max}| then
10
                            (A_{max}, B_{max}) \leftarrow (A, B)
11
                                                                                              // We've found a better solution
12
                          if P'_b \neq \emptyset then
                                 expand(G, B, A, P'_{b}, P'_{a}, B_{max}, A_{max})
                                                                                                                // Swap and recurse
13
                          A \leftarrow A \setminus \{v\}
                                                                                                             // Now consider v \notin A
14
                           if B = \emptyset then
15
                            P_b \leftarrow P_b \setminus \{v\}
16
                                                                                                   // Avoid symmetric solutions
```

Ciaran McCreesh

Excluding Symmetries, with Two Lines of Code

```
expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
    begin
 1
2
            (bounds, order) \leftarrow cliqueSort(G, P_2)
3
           for i \leftarrow |P_a| downto 1 do
                   if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
 4
 5
                           v \leftarrow order[i]
                          A \leftarrow A \cup \{v\}
 6
                                                                                                                   // Consider v \in A
7
                          P_a \leftarrow P_a \setminus \{v\}
                          P'_{2} \leftarrow P_{2} \cap \overline{N_{C}(v)}
8
                                                                                              // Remove vertices adjacent to v
 9
                          P'_b \leftarrow P_b \cap N_G(v)
                                                                                        // Remove vertices not adjacent to v
                          if |A| = |B| and |A| > |A_{max}| then
10
                             (A_{max}, B_{max}) \leftarrow (A, B)
11
                                                                                              // We've found a better solution
12
                          if P'_b \neq \emptyset then
                                 expand(G, B, A, P'_{b}, P'_{a}, B_{max}, A_{max})
                                                                                                                // Swap and recurse
13
                          A \leftarrow A \setminus \{v\}
                                                                                                             // Now consider v \notin A
14
                           if B = \emptyset then
15
                            P_b \leftarrow P_b \setminus \{v\}
16
                                                                                                   // Avoid symmetric solutions
```

Ciaran McCreesh

expand :: (Graph G, Set A, Set B, Set P_a, Set P_b, Set A_{max}, Set B_{max})
1 begin
2 (bounds, order)
$$\leftarrow$$
 cliqueSort(G, P_a)
3 for $i \leftarrow |P_a|$ downto 1 do
4 if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
5 $P_a \leftarrow P_a \setminus \{v\}$ // Consider $v \in A$
7 $P_a \leftarrow P_a \setminus \{v\}$ // Consider $v \in A$
9 $P_a \leftarrow P_a \cap N_G(v)$ // Remove vertices adjacent to v
10 if $|A| = |B|$ and $|A| > |A_{max}|$ then
11 $(A_{max}, B_{max}) \leftarrow (A, B)$ // We've found a better solution
13 if $P_b' \neq \emptyset$ then
14 if $B = \emptyset$ then
16 $P_b \leftarrow P_b \setminus \{v\}$ // Now consider $v \notin A$

Ciaran McCreesh

```
expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
    begin
 1
 2
            (bounds, order) \leftarrow cliqueSort(G, P_a)
 3
            for i \leftarrow |P_a| downto 1 do
                   if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
 4
 5
                           v \leftarrow order[i]
                          A \leftarrow A \cup \{v\}
 6
                                                                                                                    // Consider v \in A
 7
                           P_a \leftarrow P_a \setminus \{v\}
                           P'_{2} \leftarrow P_{2} \cap \overline{N_{C}(v)}
 8
                                                                                               // Remove vertices adjacent to v
 9
                           P'_b \leftarrow P_b \cap N_G(v)
                                                                                         // Remove vertices not adjacent to v
                           if |A| = |B| and |A| > |A_{max}| then
10
11
                                  (A_{max}, B_{max}) \leftarrow (A, B)
                                                                                               // We've found a better solution
12
                           if P'_b \neq \emptyset then
                                  expand(G, B, A, P'_{b}, P'_{a}, B_{max}, A_{max})
                                                                                                                  // Swap and recurse
13
                          A \leftarrow A \setminus \{v\}
                                                                                                              // Now consider v \notin A
14
                            if B = \emptyset then
15
                             | P_b \leftarrow P_b \setminus \{v\}
16
                                                                                                     // Avoid symmetric solutions
```

Ciaran McCreesh

```
expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
    begin
 1
 2
            (bounds, order) \leftarrow cliqueSort(G, P_a)
 3
            for i \leftarrow |P_a| downto 1 do
                   if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
 4
 5
                           v \leftarrow order[i]
                          A \leftarrow A \cup \{v\}
 6
                                                                                                                    // Consider v \in A
                          P_a \leftarrow P_a \setminus \{v\}
 7
                          P'_{2} \leftarrow P_{a} \cap \overline{N_{C}(v)}
 8
                                                                                               // Remove vertices adjacent to v
 9
                          P'_b \leftarrow P_b \cap N_G(v)
                                                                                         // Remove vertices not adjacent to v
                           if |A| = |B| and |A| > |A_{max}| then
10
11
                                  (A_{max}, B_{max}) \leftarrow (A, B)
                                                                                               // We've found a better solution
12
                           if P'_{h} \neq \emptyset then
                                  expand(G, B, A, P'_{b}, P'_{a}, B_{max}, A_{max})
                                                                                                                 // Swap and recurse
13
                          A \leftarrow A \setminus \{v\}
                                                                                                              // Now consider v \notin A
14
                            if B = \emptyset then
15
                             P_b \leftarrow P_b \setminus \{v\}
16
                                                                                                    // Avoid symmetric solutions
```

```
expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
    begin
1
2
            (bounds, order) \leftarrow cliqueSort(G, P_2)
3
           for i \leftarrow |P_a| downto 1 do
                   if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
 4
 5
                           v \leftarrow order[i]
                          A \leftarrow A \cup \{v\}
 6
                                                                                                                  // Consider v \in A
7
                          P_a \leftarrow P_a \setminus \{v\}
                          P'_{2} \leftarrow P_{2} \cap \overline{N_{C}(v)}
8
                                                                                             // Remove vertices adjacent to v
 9
                          P'_b \leftarrow P_b \cap N_G(v)
                                                                                        // Remove vertices not adjacent to v
                          if |A| = |B| and |A| > |A_{max}| then
10
                            (A_{max}, B_{max}) \leftarrow (A, B)
11
                                                                                              // We've found a better solution
12
                          if P'_b \neq \emptyset then
                                  expand(G, B, A, P'_{h}, P'_{a}, B_{max}, A_{max})
                                                                                                                // Swap and recurse
13
                         A \leftarrow A \setminus \{v\}
                                                                                                             // Now consider v \notin A
14
                           if B = \emptyset then
15
                             P_b \leftarrow P_b \setminus \{v\}
16
                                                                                                   // Avoid symmetric solutions
```

Ciaran McCreesh

```
expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
    begin
 1
 2
            (bounds, order) \leftarrow cliqueSort(G, P_2)
 3
            for i \leftarrow |P_a| downto 1 do
                   if bounds[i] + |A| > |A_{max}| and |P_b| + |B| > |B_{max}| then
 4
 5
                           v \leftarrow order[i]
                          A \leftarrow A \cup \{v\}
 6
                                                                                                                   // Consider v \in A
                          P_a \leftarrow P_a \setminus \{v\}
 7
                          P'_{2} \leftarrow P_{2} \cap \overline{N_{C}(v)}
 8
                                                                                              // Remove vertices adjacent to v
 9
                          P'_b \leftarrow P_b \cap N_G(v)
                                                                                         // Remove vertices not adjacent to v
                           if |A| = |B| and |A| > |A_{max}| then
10
                             (A_{max}, B_{max}) \leftarrow (A, B)
11
                                                                                               // We've found a better solution
12
                           if P'_b \neq \emptyset then
                                  expand(G, B, A, P'_{b}, P'_{a}, B_{max}, A_{max})
                                                                                                                 // Swap and recurse
13
                          A \leftarrow A \setminus \{v\}
                                                                                                              // Now consider v \notin A
14
                            if B = \emptyset then
15
                                  P_b \leftarrow P_b \setminus \{v\}
16
                                                                                                    // Avoid symmetric solutions
```

The Rest of the Algorithm

```
1
    improvedBiclique :: (Graph G) \rightarrow (Set of Integer, Set of Integer)
 2 begin
            (A_{max}, B_{max}) \leftarrow (\emptyset, \emptyset)
 3
            permute G so that the vertices are in non-increasing degree order
 4
           expand(G, \emptyset, \emptyset, V(G), V(G), A_{max}, B_{max})
 5
 6
           return (A_{max}, B_{max}) (unpermuted)
    cliqueSort :: (Graph G. Set P) \rightarrow (Array of Integer, Array of Integer)
 7
 8
    begin
            bounds ← an Array of Integer
 9
           order 

an Array of Integer
10
            P' \leftarrow P
11
                                                                                            // vertices yet to be allocated
            k \leftarrow 1
12
                                                                                                     // current clique number
           while P' \neq \emptyset do
13
                  Q \leftarrow P'
14
                                                                       // vertices to consider for the current clique
                  while Q \neq \emptyset do
15
                         v \leftarrow the first element of Q
16
                                                                                             // get next vertex to allocate
                         P' \leftarrow P' \setminus \{v\}
17
                         Q \leftarrow Q \cap N(G, v)
                                                                                            // remove non-adjacent vertices
18
                         append k to bounds
19
                         append v to order
20
                  k \leftarrow k+1
                                                                                                         // start a new clique
21
22
           return (bounds, order)
```

Ciaran McCreesh

1

The Rest of the Algorithm

improvedBiclique :: (Graph G) \rightarrow (Set of Integer, Set of Integer)

```
begin
 2
           (A_{max}, B_{max}) \leftarrow (\emptyset, \emptyset)
 3
            permute G so that the vertices are in non-increasing degree order
 4
           expand(G, \emptyset, \emptyset, V(G), V(G), A_{max}, B_{max})
 5
 6
           return (A_{max}, B_{max}) (unpermuted)
    cliqueSort :: (Graph G. Set P) \rightarrow (Array of Integer, Array of Integer)
 7
 8
    begin
            bounds ← an Array of Integer
 9
            order 

an Array of Integer
10
            P' \leftarrow P
11
                                                                                            // vertices yet to be allocated
            k \leftarrow 1
12
                                                                                                     // current clique number
           while P' \neq \emptyset do
13
                   Q \leftarrow P'
14
                                                                        // vertices to consider for the current clique
                  while Q \neq \emptyset do
15
                          v \leftarrow the first element of Q
16
                                                                                             // get next vertex to allocate
                          P' \leftarrow P' \setminus \{v\}
17
                          Q \leftarrow Q \cap N(G, v)
                                                                                            // remove non-adjacent vertices
18
                          append k to bounds
19
                          append v to order
20
                   k \leftarrow k+1
                                                                                                         // start a new clique
21
22
           return (bounds, order)
```

Ciaran McCreesh

The Rest of the Algorithm

```
1
    improvedBiclique :: (Graph G) \rightarrow (Set of Integer, Set of Integer)
 2 begin
           (A_{max}, B_{max}) \leftarrow (\emptyset, \emptyset)
 3
           permute G so that the vertices are in non-increasing degree order
 4
           expand(G, \emptyset, \emptyset, V(G), V(G), A_{max}, B_{max})
 5
 6
           return (Amax, Bmax) (unpermuted)
    cliqueSort :: (Graph G, Set P) \rightarrow (Array of Integer, Array of Integer)
 7
 8
    begin
           bounds ← an Array of Integer
 9
           order 

an Array of Integer
10
           P' \leftarrow P
11
                                                                                           // vertices yet to be allocated
           k \leftarrow 1
12
                                                                                                     // current clique number
           while P' \neq \emptyset do
13
                  Q \leftarrow P'
14
                                                                       // vertices to consider for the current clique
                  while Q \neq \emptyset do
15
                         v \leftarrow the first element of Q
                                                                                            // get next vertex to allocate
16
                         P' \leftarrow P' \setminus \{v\}
17
                         Q \leftarrow Q \cap N(G, v)
                                                                                           // remove non-adjacent vertices
18
                         append k to bounds
19
                         append v to order
20
                  k \leftarrow k+1
                                                                                                        // start a new clique
21
22
           return (bounds, order)
```

Ciaran McCreesh

Maximum Balanced Induced Bicliques	Existing Results	Our Algorithm	Results	

Results

Ciaran McCreesh

Results

- We can solve all but four DIMACS problems in under a day.
- Usually, but not always, easier than maximum clique.
- Usually, but not always, easier than maximum independent set.
- Large sparse graphs with |V| > 15,000 and |E| > 250,000 take under 20 seconds.
- Excluding symmetries gains us between 0% and 50%.

Results

- We can solve all but four DIMACS problems in under a day.
- Usually, but not always, easier than maximum clique.
- Usually, but not always, easier than maximum independent set.
- Large sparse graphs with |V| > 15,000 and |E| > 250,000 take under 20 seconds.
- Excluding symmetries gains us between 0% and 50%.
 - Unless you look closely...
 - The bound function can get worse for subproblems ("misleading"), and is not invariant under isomorphism ("evil"). Occasionally this gives wild results.

Ciaran McCreesh

Maximum Balanced Induced Bicliques	Existing Results	Our Algorithm	Future Work

Future Work

Ciaran McCreesh

Is an Algorithm Worth It?

- A naïve constraint programming model is easy, but slow.
- What about a better constraint programming model?
- What about MIP?

Ciaran McCreesh

Random Graphs G(250, x)

Ciaran McCreesh

Difficulty of G(250, x)

Ciaran McCreesh

Effects of Symmetry Exclusion in G(250, x)

Ciaran McCreesh

Parallel Branch and Bound

- For maximum clique, parallel branch and bound typically gives us close to linear speedups, and sometimes much better.
- We do the same here. But how do symmetries interact with parallelism?

http://dcs.gla.ac.uk/~ciaran c.mccreesh.1@research.gla.ac.uk