#ta| Universit
of Glasgox?vf

(v

.

%

Parallel Search, Backjumping, and Brittle Skeletons

Ciaran McCreesh and Patrick Prosser
: 1 ‘

The Subgraph Isomorphism Problem

()
ORORG
Q@& ®

Parallel Search, Backjumping, and Brittle Skeletons

The Subgraph Isomorphism Problem

Parallel Search, Backjumping, and Brittle Skeletons

Filtering

3@ 5)

1234567 1234567

®
©
D@ @ ®

Parallel Search, Backjumping, and Brittle Skeletons

Filtering

®
@ @ O
®

1234567 1234567

Parallel Search, Backjumping, and Brittle Skeletons

Filtering

1234567 1234567

Parallel Search, Backjumping, and Brittle Skeletons

Filtering

3@ 5)

1234567 1234567

®
©
D@ @ ®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

1

(2) 12346
3@

1234567 1234567

&
OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

1

(2) 2456
3@

234567 234567

&
OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

1

(2) 2456 (3)
3@ (5)

234567 234567

/l

QR @®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

1

(2) 234 (3)
3@ (5)

234567 234567

/l

QR @®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

1

(2) 234
3@

234567 234567

&
OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

2) 2
3@

234567 234567

@
Q@O

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

2) 2
3@

34567 34567

@
Q@O

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

OO

34567 34567

Q@D

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

OO

Q@D

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

)
OO
Q@ ®®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

OO

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

OO

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

)
OO
Q@ ®®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

)
OO
Q@ ®®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

)
OO
Q@ ®®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

)
OO
Q@ ®®

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

OO

Q@O

Backtracking Search

1

(2) 234
3@

234567 234567

&
OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

1

(2) 3
3@

234567 234567

&
OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

@@

234567 234567

OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

@@

OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

©
OuomOS0

Parallel Search, Backjumping, and Brittle Skeletons

Backtracking Search

Parallel Search, Backjumping, and Brittle Skeletons

A Backtracking Algorithm

13

search (Domains D) — Fail or Success
begin

if D = () then return Success
D, + a domain in D with minimum size
foreach v/ € D, ordered by a heuristic do
D’ + clone(D)
case assign(D’, v, v’) of
Fail then keep going
Success then
case search(D’ — D,) of
Fail then keep going
L Success then return Success

return Fail

Parallel Search, Backjumping, and Brittle Skeletons

Search as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Parallel Search

allel Search, Backjumping, and Brittle Skeletons

Parallel Search

allel Search, Backjumping, and Brittle Skeletons

Parallel Search

32321111

Parallel Search, Backjumping, and Brittle Skeletons

Work-Stealing is Not Just About Balance

2142212112

Parallel Search, Backjumping, and Brittle Skeletons

Work-Stealing is Not Just About Balance

Parallel Search, Backjumping, and Brittle Skeletons

Preventing a Slowdown, Part 1

m At least one thread must preserve the “sequential” search order.

m If a solution is found, we must cancel all other workers
immediately.

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping

)

/

®

®
@
a
OO
@

Backjumping

@)

@
a

OO
@

Backjumping

/]

IV

Ox®

@
a
OupC
9

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping

/]

-
N/

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping

(2)
ol

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping

(2)
=t

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping

/]

-
N/

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping

@)

@
a

OO
@

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Tree

Parallel Search, Backjumping, and Brittle Skeletons

A Backjumping Algorithm

1 search (Domains D) — Fail F or Success

2 begin

3 if D = () then return Success

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7
8
9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F/ then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F/ then
13 if Aw € F’ such that D,, # D/, then return Fail F’
14 L F+— FUF
15 Success then return Success
16 return Fail F

Parallel Search, Backjumping, and Brittle Skeletons

A Backjumping Algorithm

search (Domains D) — Fail F or(SUCEESs)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F/ then

13 if Aw € F’ such that D,, # D/, then return Fail F’
14 F+— FUF

15 * Success then return Success

16 return Fail F

Parallel Search, Backjumping, and Brittle Skeletons

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F’ then

13 if Aw € F’ such that D,, # D/, then return(Fail F’
14 F+— FUF

15 * Success then return Success

16 return(Fail F

Parallel Search, Backjumping, and Brittle Skeletons

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F’ then

13 if Aw € F’ such that D,, # D/, then returné
14 F+— FUF

15 * Success then return Success

16 return(Fail F

Parallel Search, Backjumping, and Brittle Skeletons

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F’ then

13 if then returné
14 F+— FUF

15 * Success then return Success

16 return(Fail F

Parallel Search, Backjumping, and Brittle Skeletons

A Backjumping Algorithm

16

search (Domains D) —(Fail F or(SUCEEss)
begin

D, < a domain in D with minimum size

foreach v/ € D, ordered by a heuristic do
D’ + clone(D)
case assign(D’, v, v’) of
Fail@then (EIREIED
Success then

case search(D’ — D,) of

GEilEDther
L if then returné

return Fail@

Parallel Search, Backjumping, and Brittle Skeletons

Backjumping as a Lazy Fold

m Lazily map each subproblem to Jump F or Fail F or Success.

m Lazily fold, starting with Fail {v}, as follows:

_ (& Success = Success
_ & Jump F =Jump F
Fail FS Fail G = Fail (FUG)

m If a Jump F occurs to the left of a Success, we have a bug.

Parallel Search, Backjumping, and Brittle Skeletons

Folding Zero

m When multiplying, if any item is 0, the result is 0.

~x 0 =0
0 x =0

m Here, if any item is Success, the result is Success, and we do
not need to evaluate the rest of the map.

__ (& Success = Success

m If any item is Jump F, the result is either Jump F, or some
Jump G or Success that is further to the left. We do not need
to evaluate any item to the right.

_ &> Jump F =Jump F

Parallel Search, Backjumping, and Brittle Skeletons

Preventing a Slowdown, Part 2

m Any subproblem which we have shown will not be used, must
be cancelled (recursively) immediately.

m When the result of a fold is known, the continuation must be
executed immediately.

Parallel Search, Backjumping, and Brittle Skeletons

Some Grumpy Remarks about Brittle Skeletons

Parallel Search, Backjumping, and Brittle Skeletons

Some Grumpy Remarks about Brittle Skeletons

Parallel Computation Skeletons with Premature
Termination Property

Oleg Lobachev

1 Mathematik und Informatik,
ps-Universitat Marburg,
D-35032 Marburg
lobachev@mathematik.uni-marburg.de

Abstract. A parallel computation with early termination property is
a special form of a parallel for loop. This paper devises a generic high-
level approach for such computation which s expressed as a scheme
for algorithmic skeletons. We call this scheme map+reduce, in similarity
with the map-reduce paradigm. The implementation is concise and relies
heavily on laziness. Two case studies from computational number theory
support our presentation.

T. Schrijvers and P. Thiemann (Eds.): FLOPS 2012, LNCS 7204, pp. 197
@ Springer-Verlag Berlin Heidelberg 2012

arallel Search, Backjumping, and Brittle Skeletons

Some Grumpy Remarks about Brittle Skeletons

-- simplified
class (AddMonoid a, MultMonoid a) = Ring a where
zZero :: a
unity :: a
add :: a —+ a — a
mult :: a —+ a —+ a
instance Ring Int where ... -- instantiation is triwvial

instance Ring Bool where

1fold :: (Ring a, Eq a) = [al = a
1fold xs = lfoldAcc xs unity
where 1lfoldAcc (x:xs) acc

| x=—zero = zero =-- sic!
| otherise = 1foldAcc xs (mult acc x)
1foldAcc _ acc = acc

rallel Search, Backjumping, and Brittle Skeletons

Some Grumpy Remarks about Brittle Skeletons

‘We discussed related skeleton approaches in Sections [Z] and[3] see also Table[Z]
The skeletons were initially introduced by Cole [1]. To our knowledge, no one has
explicitly addressed premature termination with skeletons. However, the poison
concept of Hoare's CSP [38[39] is related to our premature abort notion.

rallel Search, Backjumpi and Brittle Skeletons

Some Grumpy Remarks about Brittle Skeletons

‘We discussed related skeleton approaches in Sections [Z] and[3] see also Table[Z]
The skeletons were initially introduced by Cole [1]. To our knowledge, no one has
explicitly addressed premature termination with skeletons. However, the poison
concept of Hoare's CSP [38[39] is related to our premature abort notion.

Parallel computation skeletons with premature termination property

O Lobachev - Functional and Logic Programming, 2012 - Springer

Abstract A parallel computation with early termination property is a special form of a parallel
for loop. This paper devises a generic highlevel approach for such computation which is
expressed as a scheme for algorithmic skeletons. We call this scheme map+ reduce, in ...
Cited by 1 Related articles Cite Save

Estimating parallel performance

O Lobachev, M Guthe, R Loogen - Journal of Parallel and Distributed ..., 2013 - Elsevier
In this paper we introduce our estimation method for parallel execution times, based on
identifying separate “parts” of the work done by parallel programs. Our run time analysis
works without any source code inspection. The time of parallel program execution is ...
Cited by 4 Related articles All 5versions Cite Save

Parallel Search, Backjumping, and Brittle Skeletons

What's the Alternative?

Parallel Search, Backjumping, and Brittle Skeletons

What's the Alternative?

m Doing it by hand?

m This works, but is painful and error-prone. ..

m My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.

m Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

Parallel Search, Backjumping, and Brittle Skeletons

What's the Alternative?

m Doing it by hand?

m This works, but is painful and error-prone. ..

m My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.

m Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

m Better skeletons?

m But they would need to be very domain-specific, which defeats
the point of skeletons. . .

Parallel Search, Backjumping, and Brittle Skeletons

What's the Alternative?

m Doing it by hand?

m This works, but is painful and error-prone. ..

m My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.

m Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

m Better skeletons?
m But they would need to be very domain-specific, which defeats
the point of skeletons. . .
m External descriptions of search?

m |'ve yet to figure out why this will end up not being very
good. ..

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

m 2,487 pattern / target pairs from 11 families of benchmark
problems.

m 32 threads, 16 core HT system.

m A more complicated algorithm than the one I've described
(all-different filtering, supplemental graphs, ...).

m Some boring parallel preprocessing too.
m C+-+11 native threads.

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

2487 Sequential
T SND
= LAD
A
w 2000 —
[
I3
% VF2
£ 1500 [~
«
o]
o}
o)
£ 1000
3
=2
[
=
&® 500
3
IS
5]

0 Il \\‘\ \\‘\ \\‘\ \\‘\ \\‘\ \\‘\ \\‘\ \\‘

10© 10! 102 103 10* 10° 10 107 108

Runtime (ms)

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

Parallel
2487 Sequential
T SND
= LAD
A
» 2000
[
I3
% VF2
£ 1500
o«
o]
o}
o)
£ 1000
3
2
[
=
& 500
3
E /
S
0 Il Il Il \\‘\ \\‘\ \\‘\ \\‘\ \\‘\ \\‘\ \\‘

10© 10! 102 103 10* 10° 10 107 108

Runtime (ms)

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

2487 Parallel

Sequential
2400 =

2300
2200 |-
2100 |~
2000 —

1900 |~

Cumulative Number of Instances Solved

PR I R S AT AN ST ST S N S R R R N
102 103 10* 10° 10° 107 108

Runtime (ms)

1800

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

2487
278.4%

2400

2300 |~

2200 |-

2100 |~

2000 —

1900 |~

4.1x

PR I R S AT AN ST ST S N S R R R N
102 103 10* 10° 10° 107 108

Runtime (ms)

Cumulative Number of Instances Solved

1800

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

108]
107 ¢ LV (sat) O
LV (unsat) L
—~ 10° BVG / BVGm +
£ ° M4D / M4Dr
10°
2 SF (sat) v
5 ., SF (unsat) v
£ 10 5 A
2 103 football
g 8 images (sat) a
Q102 images (unsat) A
s meshes (sat) a
10t meshes (unsat) u
100 FETINY AT MR SRR RN AR MR SR

100 10! 102 103 10* 10° 10° 107 108

Sequential runtime (ms)

Parallel Search, Backjumping, and Brittle Skeletons

A Quick Look at Some Results

150 LOC for a suitable priority queue.
Search function goes from 40 LOC to 120 LOC.

Horribly intrusive, and making it distributed would be seriously
painful.

7% slower when run with one thread, even when the queue for
stealing is removed.

Parallel Search, Backjumping, and Brittle Skeletons

University

of Glasgow

http://dcs.gla.ac.uk/~ciaran
c.mccreesh.1@research.gla.ac.uk

Parallel Search, Backjumping, and Brittle Skeletons

http://dcs.gla.ac.uk/~ciaran
mailto:c.mccreesh.1@research.gla.ac.uk

