
Parallel Search, Backjumping, and Brittle Skeletons

Ciaran McCreesh and Patrick Prosser



The Subgraph Isomorphism Problem

1

2

3 4

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 1 / 18



The Subgraph Isomorphism Problem

1

2

3 4

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 1 / 18



Filtering

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 2 / 18



Filtering

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

→

→

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 2 / 18



Filtering

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

→

→

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 2 / 18



Filtering

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 2 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

2

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

22

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

22

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

22

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



Backtracking Search

1

22

3 4

1234567

1234567

1234567 1234567

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 3 / 18



A Backtracking Algorithm

1 search (Domains D) → Fail or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 foreach v ′ ∈ Dv ordered by a heuristic do
6 D ′ ← clone(D)
7 case assign(D ′, v , v ′) of
8 Fail then keep going
9 Success then

10 case search(D ′ − Dv ) of
11 Fail then keep going
12 Success then return Success

13 return Fail

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 4 / 18



Search as a Tree

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 5 / 18



Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 6 / 18



Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 6 / 18



Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 6 / 18



Work-Stealing is Not Just About Balance

?

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 7 / 18



Work-Stealing is Not Just About Balance

?

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 7 / 18



Preventing a Slowdown, Part 1

At least one thread must preserve the “sequential” search order.

If a solution is found, we must cancel all other workers
immediately.

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 8 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

1234567 1234567

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

1234567 1234567

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

1234567 1234567

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

1234567 1234567

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping

1

2

3 4

5

1 2

3 4

5 6

7

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 9 / 18



Backjumping as a Tree

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



Backjumping as a Tree

↑

↑ ↑

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 10 / 18



A Backjumping Algorithm

1 search (Domains D) → Fail F or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 F ← {v}
6 foreach v ′ ∈ Dv ordered by a heuristic do
7 D′ ← clone(D)
8 case assign(D′, v , v ′) of
9 Fail F ′ then F ← F ∪ F ′

10 Success then
11 case search(D′ − Dv ) of
12 Fail F ′ then
13 if @w ∈ F ′ such that Dw 6= D′w then return Fail F ′

14 F ← F ∪ F ′

15 Success then return Success

16 return Fail F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 11 / 18



A Backjumping Algorithm

1 search (Domains D) → Fail F or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 F ← {v}
6 foreach v ′ ∈ Dv ordered by a heuristic do
7 D′ ← clone(D)
8 case assign(D′, v , v ′) of
9 Fail F ′ then F ← F ∪ F ′

10 Success then
11 case search(D′ − Dv ) of
12 Fail F ′ then
13 if @w ∈ F ′ such that Dw 6= D′w then return Fail F ′

14 F ← F ∪ F ′

15 Success then return Success

16 return Fail F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 11 / 18



A Backjumping Algorithm

1 search (Domains D) → Fail F or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 F ← {v}
6 foreach v ′ ∈ Dv ordered by a heuristic do
7 D′ ← clone(D)
8 case assign(D′, v , v ′) of
9 Fail F ′ then F ← F ∪ F ′

10 Success then
11 case search(D′ − Dv ) of
12 Fail F ′ then
13 if @w ∈ F ′ such that Dw 6= D′w then return Fail F ′

14 F ← F ∪ F ′

15 Success then return Success

16 return Fail F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 11 / 18



A Backjumping Algorithm

1 search (Domains D) → Fail F or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 F ← {v}
6 foreach v ′ ∈ Dv ordered by a heuristic do
7 D′ ← clone(D)
8 case assign(D′, v , v ′) of
9 Fail F ′ then F ← F ∪ F ′

10 Success then
11 case search(D′ − Dv ) of
12 Fail F ′ then
13 if @w ∈ F ′ such that Dw 6= D′w then return Fail F ′

14 F ← F ∪ F ′

15 Success then return Success

16 return Fail F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 11 / 18



A Backjumping Algorithm

1 search (Domains D) → Fail F or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 F ← {v}
6 foreach v ′ ∈ Dv ordered by a heuristic do
7 D′ ← clone(D)
8 case assign(D′, v , v ′) of
9 Fail F ′ then F ← F ∪ F ′

10 Success then
11 case search(D′ − Dv ) of
12 Fail F ′ then
13 if @w ∈ F ′ such that Dw 6= D′w then return Fail F ′

14 F ← F ∪ F ′

15 Success then return Success

16 return Fail F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 11 / 18



A Backjumping Algorithm

1 search (Domains D) → Fail F or Success
2 begin
3 if D = ∅ then return Success
4 Dv ← a domain in D with minimum size
5 F ← {v}
6 foreach v ′ ∈ Dv ordered by a heuristic do
7 D′ ← clone(D)
8 case assign(D′, v , v ′) of
9 Fail F ′ then F ← F ∪ F ′

10 Success then
11 case search(D′ − Dv ) of
12 Fail F ′ then
13 if @w ∈ F ′ such that Dw 6= D′w then return Fail F ′

14 F ← F ∪ F ′

15 Success then return Success

16 return Fail F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 11 / 18



Backjumping as a Lazy Fold

Lazily map each subproblem to Jump F or Fail F or Success.

Lazily fold, starting with Fail {v}, as follows:

> Success = Success

> Jump F = Jump F

Fail F > Fail G = Fail (F ∪ G )

If a Jump F occurs to the left of a Success, we have a bug.

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 12 / 18



Folding Zero

When multiplying, if any item is 0, the result is 0.

× 0 = 0

0 × = 0

Here, if any item is Success, the result is Success, and we do
not need to evaluate the rest of the map.

> Success = Success

If any item is Jump F , the result is either Jump F , or some
Jump G or Success that is further to the left. We do not need
to evaluate any item to the right.

> Jump F = Jump F

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 13 / 18



Preventing a Slowdown, Part 2

Any subproblem which we have shown will not be used, must
be cancelled (recursively) immediately.

When the result of a fold is known, the continuation must be
executed immediately.

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 14 / 18



Some Grumpy Remarks about Brittle Skeletons

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 15 / 18



Some Grumpy Remarks about Brittle Skeletons

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 15 / 18



Some Grumpy Remarks about Brittle Skeletons

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 15 / 18



Some Grumpy Remarks about Brittle Skeletons

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 15 / 18



Some Grumpy Remarks about Brittle Skeletons

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 15 / 18



What’s the Alternative?

Doing it by hand?

This works, but is painful and error-prone. . .
My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.
Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

Better skeletons?

But they would need to be very domain-specific, which defeats
the point of skeletons. . .

External descriptions of search?

I’ve yet to figure out why this will end up not being very
good. . .

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 16 / 18



What’s the Alternative?

Doing it by hand?

This works, but is painful and error-prone. . .
My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.
Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

Better skeletons?

But they would need to be very domain-specific, which defeats
the point of skeletons. . .

External descriptions of search?

I’ve yet to figure out why this will end up not being very
good. . .

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 16 / 18



What’s the Alternative?

Doing it by hand?

This works, but is painful and error-prone. . .
My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.
Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

Better skeletons?

But they would need to be very domain-specific, which defeats
the point of skeletons. . .

External descriptions of search?

I’ve yet to figure out why this will end up not being very
good. . .

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 16 / 18



What’s the Alternative?

Doing it by hand?

This works, but is painful and error-prone. . .
My current implementation works by keeping a “sequential”
thread and “precomputing” using extra threads. This often
leads to the sequential thread being idle and blocking.
Allowing the blocking thread to suspend and steal elsewhere
could give an absolute slowdown.

Better skeletons?

But they would need to be very domain-specific, which defeats
the point of skeletons. . .

External descriptions of search?

I’ve yet to figure out why this will end up not being very
good. . .

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 16 / 18



A Quick Look at Some Results

2,487 pattern / target pairs from 11 families of benchmark
problems.

32 threads, 16 core HT system.

A more complicated algorithm than the one I’ve described
(all-different filtering, supplemental graphs, . . . ).

Some boring parallel preprocessing too.

C++11 native threads.

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



A Quick Look at Some Results

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u
m
u
la
ti
ve

N
u
m
b
er

o
f
In
st
a
n
ce
s
S
o
lv
ed

Runtime (ms)

SND
LAD

VF2

Sequential

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



A Quick Look at Some Results

2487

0

500

1000

1500

2000

100 101 102 103 104 105 106 107 108

C
u
m
u
la
ti
ve

N
u
m
b
er

o
f
In
st
a
n
ce
s
S
o
lv
ed

Runtime (ms)

SND
LAD

VF2

Parallel
Sequential

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



A Quick Look at Some Results

2487

1800

1900

2000

2100

2200

2300

2400

102 103 104 105 106 107 108

C
u
m
u
la
ti
ve

N
u
m
b
er

o
f
In
st
a
n
ce
s
S
o
lv
ed

Runtime (ms)

Parallel
Sequential

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



A Quick Look at Some Results

2487

1800

1900

2000

2100

2200

2300

2400

102 103 104 105 106 107 108

C
u
m
u
la
ti
ve

N
u
m
b
er

o
f
In
st
a
n
ce
s
S
o
lv
ed

Runtime (ms)

4.1×

7.1×

6.7×
8.8× 37.3×

278.4×

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



A Quick Look at Some Results

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

P
ar
a
ll
el

ru
n
ti
m
e
(m

s)

Sequential runtime (ms)

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



A Quick Look at Some Results

150 LOC for a suitable priority queue.

Search function goes from 40 LOC to 120 LOC.

Horribly intrusive, and making it distributed would be seriously
painful.

7% slower when run with one thread, even when the queue for
stealing is removed.

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 17 / 18



http://dcs.gla.ac.uk/~ciaran

c.mccreesh.1@research.gla.ac.uk

Ciaran McCreesh and Patrick Prosser

Parallel Search, Backjumping, and Brittle Skeletons 18 / 18

http://dcs.gla.ac.uk/~ciaran
mailto:c.mccreesh.1@research.gla.ac.uk

