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Previous Array Pascals

Pascal was one of the first imperative programming languages to be
provided with array extensions.

The first Array Pascal compiler was Actus [Per79, PZA86].

Turner’s Vector Pascal [Tur87], another array extension of the
language, was strongly influenced by APL [Ive66].

Later implementations include

Saarbrucken University [KPR92, FOP+92]
University of Glasgow [Coc02, CM06]

Pascal-XSC [HNR92], an extension for scientific data
processing, provided extensions for vectors and matrices and
interval arithmetic but was not a general array language.
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Targets

Actus targeted distributed memory machines.

The Turner and Saarbrucken compilers aimed at attached
vector accelerators.

The Glasgow implementation has targeted modern SIMD chips
[Coo05, Jac04, Gdu12, CK11] and multi-core chips.
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Implicit Parallelism

The Glasgow Vector Pascal compiler uses implicit parallelism:

type t = array[1..100, 0..63] of real;

procedure foo(var a, b, c : t);

begin

a := b * c;

end;

to operate on all corresponding elements of the three arrays.
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Meaning of Parallelism

This is semantically equivalent to:

procedure foo(var a, b, c : t);

var iota: [0..1] of integer;

begin

for iota[0] := 1 to 100 do

for iota[1] := 0 to 63 do

a[iota[0], iota[1]] :=

b[iota[0], iota[1]] *

c[iota[0], iota[1]];

end;
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Iota

The index vector iota is implicitly declared with sufficient elements
to index the array on the left of the assignment scope, covering the
right of the assignment statement.

Note that Perott’s # notation is not supported. Instead index sets
are usually elided provided that the corresponding positions in the
arrays are intended.

Iota can be used explicitly to perform things like circular shifts:

a := b * c[iota[0], (iota[1]+1) mod 64];
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Multi-core

Compiling for a 6 core Xeon using AVX transforms the code into:

procedure foo(var a, b, c : t);

procedure stub(start: integer);

var iota: [0..1] of integer;

begin

for iota[0] := start + 1 step 6 to 100 do

for iota[1] := 0 step 8 to 63 do

a[iota[0], iota[1] .. iota[1]+7] :=

b[iota[0], iota[1] .. iota[1]+7] *

c[iota[0], iota[1] .. iota[1]+7];

end;

var j : integer;

begin

for j := 0 to 5 do post_job(@stub, %ebp, j);

for j := 0 to 5 do wait_on_done(j);

end;
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Reduce

Any binary operator ◦ can be used as a reduction by typing \◦:

type r = array[0..63] of real;

function zot(p: real; q: r): real;

begin

zot := p + \* q

end;

zot returns the scalar p added to the product of the elements of q.
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Map

var a, b, c : array[1..100] of r;

begin

a := zot(b, c)

end;

It is mapped over b,c as follows:

for iota[0] := 1 to 100 do

for iota[1] := 0 to 63 do

a[iota[0],iota[1]] := zot(

b[iota[0], iota[1]],

c[iota[0]]);
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Other Features

Permutations

Transpositions

Bitset operations
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Implementation

The compiler is in Java and is released via SourceForge under
the GPL.

It uses the gcc toolchain for linking.

It targets a range of contemporary and recent instruction sets:
Pentium, Opteron [Jac04], SSE, SSE2, AVX, Playstation 2
(MIPS), Playstation 3 (Cell) [Gdu12], nVidia, and the Intel
Knights Ferry [Int14, COX14].

On Intel AVX and SSE performance is comparable to C with
vector intrinsics and threaded building blocks [CGK14].

For GPUs performance is not as good as CUDA.

Code tends to be more compact than C or CUDA for the same
task
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Compliance

ISO standard tests:

Compiler Number of fails Success rate

Free Pascal 2.6.2 34 80%
Turbo Pascal 7 26 84.7%
Vector Pascal (Xeon Phi) 4 97.6%
Vector Pascal (Pentium) 0 100%
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Demo

program bar;

type t = array[1..800, 1..1024] of real;

procedure foo(var a, b, c : t);

begin

a := b * c + c;

end;

var p, q, r : t; i : integer;

begin

for i := 1 to 100 do foo(p, q, r)

end.
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Demo

It performs 2 * 800 * 1024 * 100 = 163 million arithmetic
operations. We can compile it for Pentium code and produce a
LATEX listing file:

$ vpc bar -L

Glasgow Pascal Compiler (with vector exensions)

11 bar.pas->TeX

5 generated compiled

as --32 --no-warn -g -o p.o p.asm

gcc -g -m32 -o bar p.o /home/ciaranm/vectorpascal/mmpc/rtl.c
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Demo

Running it on an AMD A4:

$ time ./bar

real 0m1.888s

user 0m1.870s

sys 0m0.008s
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Demo

We can now compile it using AVX instructions:

$ vpc bar -cpuAVX32

This vectorises the code so it runs much faster:

$ time ./bar

real 0m0.356s
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Demo

It can be further accelerated by multicore compilation. Note it is
not worth using more than 2 cores on this model of CPU as between
the 4 cores there are only 2 vector floating point units.

$ vpc bar -cpuAVX32 -cores2

$ time ./bar

real 0m0.300s
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Code Listings

listing of file bar.pas

+---A ’P’ at the start of a line indicates the line has been SIMD parallelised

|+--An ’M’ at the start of a line indicates the line has been multi-core parallelised

||

vv

1 program bar;

2 type t = array[1..800, 1..1024] of real;

3 procedure foo(var a, b, c : t);

4 begin

5 PM a := b * c + c;

6 end;

7

8 var p, q, r : t; i : integer;

9 begin

10 for i := 1 to 100 do foo(p, q, r)

11 end.
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Code Listings

program bar ;
type

t = array [1..800, 1..1024] of real ;
procedure foo ( var a , b , c : t );
begin

a← b × c + c ;
end ;

var
Let p, q, r ∈ t;
Let i ∈ integer;

begin
for i← 1 to 100 do foo (p, q, r);

end .
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Another Benchmark (which is Somewhat Unfair)

Next let’s compare the performance of Vector Pascal with C when
blurring a 1024×1024 pixel colour image. The same separable
convolution algorithm is used in both cases:

$ vpc blurtime cconv.c

$ ./blurtime

PASCAL 0.03 per run

C 0.442 per run

This is because of MMX saturating arithmetic on pixels.
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A Fun Example

program roman;

const

rom: array[0..4] of string[1] = (’C’,’L’,’X’,’V’,’I’);

numb: array[0..4] of integer = (2,1,1,0,3);

var

s: string;

begin

s := numb . rom;

writeln(s);

end.

$ ./roman

CCLXIII
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Future Work

Parallel reductions on arbitrary binary functions.

Front-end for the Haggis programming language, used for
teaching in Scottish schools.

Prototype Vector C front-end, using Matlab or Cilk style array
syntax.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 21 / 25



http://dcs.gla.ac.uk/~wpc

wpc@dcs.gla.ac.uk
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