
Tool Description: Array Programming in Pascal

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Previous Array Pascals

Pascal was one of the first imperative programming languages to be
provided with array extensions.

The first Array Pascal compiler was Actus [Per79, PZA86].

Turner’s Vector Pascal [Tur87], another array extension of the
language, was strongly influenced by APL [Ive66].

Later implementations include

Saarbrucken University [KPR92, FOP+92]
University of Glasgow [Coc02, CM06]

Pascal-XSC [HNR92], an extension for scientific data
processing, provided extensions for vectors and matrices and
interval arithmetic but was not a general array language.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 1 / 25

Targets

Actus targeted distributed memory machines.

The Turner and Saarbrucken compilers aimed at attached
vector accelerators.

The Glasgow implementation has targeted modern SIMD chips
[Coo05, Jac04, Gdu12, CK11] and multi-core chips.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 2 / 25

Implicit Parallelism

The Glasgow Vector Pascal compiler uses implicit parallelism:

type t = array[1..100, 0..63] of real;

procedure foo(var a, b, c : t);

begin

a := b * c;

end;

to operate on all corresponding elements of the three arrays.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 3 / 25

Meaning of Parallelism

This is semantically equivalent to:

procedure foo(var a, b, c : t);

var iota: [0..1] of integer;

begin

for iota[0] := 1 to 100 do

for iota[1] := 0 to 63 do

a[iota[0], iota[1]] :=

b[iota[0], iota[1]] *

c[iota[0], iota[1]];

end;

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 4 / 25

Iota

The index vector iota is implicitly declared with sufficient elements
to index the array on the left of the assignment scope, covering the
right of the assignment statement.

Note that Perott’s # notation is not supported. Instead index sets
are usually elided provided that the corresponding positions in the
arrays are intended.

Iota can be used explicitly to perform things like circular shifts:

a := b * c[iota[0], (iota[1]+1) mod 64];

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 5 / 25

Multi-core

Compiling for a 6 core Xeon using AVX transforms the code into:

procedure foo(var a, b, c : t);

procedure stub(start: integer);

var iota: [0..1] of integer;

begin

for iota[0] := start + 1 step 6 to 100 do

for iota[1] := 0 step 8 to 63 do

a[iota[0], iota[1] .. iota[1]+7] :=

b[iota[0], iota[1] .. iota[1]+7] *

c[iota[0], iota[1] .. iota[1]+7];

end;

var j : integer;

begin

for j := 0 to 5 do post_job(@stub, %ebp, j);

for j := 0 to 5 do wait_on_done(j);

end;

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 6 / 25

Reduce

Any binary operator ◦ can be used as a reduction by typing \◦:

type r = array[0..63] of real;

function zot(p: real; q: r): real;

begin

zot := p + * q

end;

zot returns the scalar p added to the product of the elements of q.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 7 / 25

Map

var a, b, c : array[1..100] of r;

begin

a := zot(b, c)

end;

It is mapped over b,c as follows:

for iota[0] := 1 to 100 do

for iota[1] := 0 to 63 do

a[iota[0],iota[1]] := zot(

b[iota[0], iota[1]],

c[iota[0]]);

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 8 / 25

Other Features

Permutations

Transpositions

Bitset operations

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 9 / 25

Implementation

The compiler is in Java and is released via SourceForge under
the GPL.

It uses the gcc toolchain for linking.

It targets a range of contemporary and recent instruction sets:
Pentium, Opteron [Jac04], SSE, SSE2, AVX, Playstation 2
(MIPS), Playstation 3 (Cell) [Gdu12], nVidia, and the Intel
Knights Ferry [Int14, COX14].

On Intel AVX and SSE performance is comparable to C with
vector intrinsics and threaded building blocks [CGK14].

For GPUs performance is not as good as CUDA.

Code tends to be more compact than C or CUDA for the same
task

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 10 / 25

Compliance

ISO standard tests:

Compiler Number of fails Success rate

Free Pascal 2.6.2 34 80%
Turbo Pascal 7 26 84.7%
Vector Pascal (Xeon Phi) 4 97.6%
Vector Pascal (Pentium) 0 100%

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 11 / 25

Demo

program bar;

type t = array[1..800, 1..1024] of real;

procedure foo(var a, b, c : t);

begin

a := b * c + c;

end;

var p, q, r : t; i : integer;

begin

for i := 1 to 100 do foo(p, q, r)

end.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 12 / 25

Demo

It performs 2 * 800 * 1024 * 100 = 163 million arithmetic
operations. We can compile it for Pentium code and produce a
LATEX listing file:

$ vpc bar -L

Glasgow Pascal Compiler (with vector exensions)

11 bar.pas->TeX

5 generated compiled

as --32 --no-warn -g -o p.o p.asm

gcc -g -m32 -o bar p.o /home/ciaranm/vectorpascal/mmpc/rtl.c

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 13 / 25

Demo

Running it on an AMD A4:

$ time ./bar

real 0m1.888s

user 0m1.870s

sys 0m0.008s

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 14 / 25

Demo

We can now compile it using AVX instructions:

$ vpc bar -cpuAVX32

This vectorises the code so it runs much faster:

$ time ./bar

real 0m0.356s

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 15 / 25

Demo

It can be further accelerated by multicore compilation. Note it is
not worth using more than 2 cores on this model of CPU as between
the 4 cores there are only 2 vector floating point units.

$ vpc bar -cpuAVX32 -cores2

$ time ./bar

real 0m0.300s

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 16 / 25

Code Listings

listing of file bar.pas

+---A ’P’ at the start of a line indicates the line has been SIMD parallelised

|+--An ’M’ at the start of a line indicates the line has been multi-core parallelised

||

vv

1 program bar;

2 type t = array[1..800, 1..1024] of real;

3 procedure foo(var a, b, c : t);

4 begin

5 PM a := b * c + c;

6 end;

7

8 var p, q, r : t; i : integer;

9 begin

10 for i := 1 to 100 do foo(p, q, r)

11 end.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 17 / 25

Code Listings

program bar ;
type

t = array [1..800, 1..1024] of real ;
procedure foo (var a , b , c : t);
begin

a← b × c + c ;
end ;

var
Let p, q, r ∈ t;
Let i ∈ integer;

begin
for i← 1 to 100 do foo (p, q, r);

end .

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 18 / 25

Another Benchmark (which is Somewhat Unfair)

Next let’s compare the performance of Vector Pascal with C when
blurring a 1024×1024 pixel colour image. The same separable
convolution algorithm is used in both cases:

$ vpc blurtime cconv.c

$./blurtime

PASCAL 0.03 per run

C 0.442 per run

This is because of MMX saturating arithmetic on pixels.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 19 / 25

A Fun Example

program roman;

const

rom: array[0..4] of string[1] = (’C’,’L’,’X’,’V’,’I’);

numb: array[0..4] of integer = (2,1,1,0,3);

var

s: string;

begin

s := numb . rom;

writeln(s);

end.

$./roman

CCLXIII

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 20 / 25

Future Work

Parallel reductions on arbitrary binary functions.

Front-end for the Haggis programming language, used for
teaching in Scottish schools.

Prototype Vector C front-end, using Matlab or Cilk style array
syntax.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 21 / 25

http://dcs.gla.ac.uk/~wpc

wpc@dcs.gla.ac.uk

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 22 / 25

http://dcs.gla.ac.uk/~wpc
mailto:wpc@dcs.gla.ac.uk

References I

P Cockshott, Y Gdura, and Paul Keir, Array languages and the n-body problem,
Concurrency and Computation: Practice and Experience 26 (2014), no. 4,
935–951.

W.P. Cockshott and A. Koliousis, The SCC and the SICSA multi-core challenge,
4th MARC Symposium, December 2011.

Paul Cockshott and Greg Michaelson, Orthogonal parallel processing in vector
pascal, Computer Languages, Systems & Structures 32 (2006), no. 1, 2–41.

Paul Cockshott, Vector pascal reference manual, SIGPLAN Not. 37 (2002),
no. 6, 59–81.

Peter Cooper, Porting the Vector Pascal Compiler to the Playstation 2, Master’s
thesis, University of Glasgow Dept of Computing Science,
http://www.dcs.gla.ac.uk/~wpc/reports/compilers/compilerindex/PS2.pdf,
2005.

William Paul Cockshott, Susanne Oehler, and Tian Xu, Developing a compiler
for the xeonphi (tr-2014-341), University of Glasgow, 2014.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 23 / 25

References II

A. Formella, A. Obe, WJ Paul, T. Rauber, and D. Schmidt, The SPARK 2.0
system-a special purpose vector processor with a VectorPASCAL compiler,
System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii International
Conference on, vol. 1, IEEE, 1992, pp. 547–558.

Youssef Omran Gdura, A new parallelisation technique for heterogeneous cpus,
Ph.D. thesis, University of Glasgow, 2012.

R Hammer, M Neaga, and D Ratz, Pascal xsc, New Concepts for Scientific
Computation and Numerical Data Processing (1992), 15–44.

Intel Corporation, Intel xeon phi product family: Product brief, April 2014.

K. Iverson, A programming language, Wiley, New York, 1966.

Iain Jackson, Opteron Support for Vector Pascal, Final year thesis, Dept
Computing Science, University of Glasgow, 2004.

Christoph W Kessler, Wolfgang J Paul, and Thomas Rauber, Scheduling vector
straight line code on vector processors, Code Generation Concepts, Tools,
Techniques, Springer, 1992, p. 73..91.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 24 / 25

References III

R. H. Perrott, A Language for Array and Vector Processors, ACM Trans.
Program. Lang. Syst. 1 (1979), no. 2, 177–195.

R. H. Perrott and A. Zarea-Aliabadi, Supercomputer languages, ACM Comput.
Surv. 18 (1986), no. 1, 5–22.

T Turner, Vector pascal a computer programming language for the array
processor, Ph.D. thesis, PhD thesis, Iowa State University, USA, 1987.

W. Paul Cockshott, Susanne Oehler, Youssef Gdura, Ciaran McCreesh

Tool Description: Array Programming in Pascal 25 / 25

