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Clique Problems

Algorithms

m Branch and bound algorithms, using greedy graph colouring as
a bound and ordering heuristic.

m A parallel branch and bound algorithm, with an explanation of
why it works.

m An explanation of why the colour ordering process works.
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Clique Problems

Maximum Clique Variants

m Balanced induced biclique. A branch and bound algorithm (can
be parallelised), and the first study.

m Maximum labelled clique. Two-pass parallel branch and bound
algorithm, which closed all open problem instances from the
literature.
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Clique Problems

Search as a Tree
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Clique Problems

Parallel Search
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Clique Problems

Work-Stealing is Not Just About Balance
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Clique Problems

Work-Stealing is Not Just About Balance
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Clique Problems

Preventing a Slowdown, Part 1

m A subset of the sequential order must be preserved.

m Bounds must be communicated.
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Subgraph Problems

The Subgraph Isomorphism Problem
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Subgraph Problems

The Subgraph Isomorphism Problem
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Subgraph Problems

Algorithms

A new backjumping search algorithm which substantially
outperforms the competition.

New, cheaper filtering for all-different constraints.

Supplemental graphs, to generate implied constraints.

|

|

m A different way of doing backjumping, not using conflict sets.
m Improved conflict analysis for failed all-different constraints.
]

Parallel backjumping as a lazy fold with right zero elements.
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Subgraph Problems

A Backjumping Algorithm

1 search (Domains D) — Fail F or Success

2 begin

3 if D = () then return Success

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7
8
9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F/ then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F/ then
13 if Aw € F’ such that D,, # D/, then return Fail F’
14 L F+— FUF
15 Success then return Success
16 return Fail F
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Subgraph Problems

A Backjumping Algorithm

search (Domains D) — Fail F or(SUCEESs)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F/ then

13 if Aw € F’ such that D,, # D/, then return Fail F’
14 F+— FUF

15 * Success then return Success

16 return Fail F
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Subgraph Problems

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7

8

9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F' then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F’ then
13 if Aw € F’ such that D,, # D/, then return(Fail F’
14 L F+— FUF
15  Success then return Success
16 return(Fail F
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Subgraph Problems

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7

8

9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F’ then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F’ then
13 if Aw € F’ such that D,, # D/, then returné
14 F+— FUF
15  Success then return Success
16 | returniFail £
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Subgraph Problems

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F’ then

13 if then returné
14 F+— FUF

15 * Success then return Success

16 return(Fail F
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Subgraph Problems

A Backjumping Algorithm

1 search (Domains D) —(Fail F or(SUcEess)

2 begin

3

4 D, < a domain in D with minimum size
5

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

0 Fail@then (EIREIED

10 Success then

11 case search(D’ — D,) of

12 Fail@)then

13 if

14 (F<FUF)

15  Success then return Success

16 return Fail@

then returné
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Subgraph Problems

Backjumping as a Lazy Fold

m Lazily map each subproblem to Jump F or Fail F or Success.
m Lazily fold, starting with Fail {v}, as follows:
__ (> Success = Success
_ & Jump F =Jump F
Fail F &) Fail G = Fail (FU G)

Convert Jump F back to Fail F for the result.
If a Jump F occurs to the left of a Success, we have a bug.
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Subgraph Problems

Folding Zero

m When multiplying, if any item is 0, the result is 0.

~x 0 =0
0 x =0

m Here, if any item is Success, the result is Success, and we do
not need to evaluate the rest of the map.

__ (& Success = Success

m If any item is Jump F, the result is either Jump F, or some
Jump G or Success that is further to the left. We do not need
to evaluate any item to the right.

_ &> Jump F =Jump F

Solving Hard Graph Problems in Parallel



Subgraph Problems

Lazy Fold Backjumping as a Tree
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Subgraph Problems

Preventing a Slowdown, Part 2

m Any subproblem which we have shown will not be used, must
be cancelled (recursively) immediately.

m When the result of a fold is known, the continuation must be
executed immediately.
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Subgraph Problems

Subgraph Isomorphism Variants

m Induced and non-induced.
m Directed edges.

m Labelled vertices and edges.
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Subgraph Problems

The Maximum Common Subgraph Problem

m Can be solved via the maximum clique problem.

m The greedy colouring technique sometimes misbehaves badly,
though. ..
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Colouring Problems

Colouring Problems
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Colouring Problems

The Graph Colouring Problem

m There are branch-and-bound algorithms for graph colouring,
which should be easy to parallelise.

m Clause-learning works very well for some problem instances.
Can backjumping be an alternative?

m Backjumping plus optimisation is a bit hairy. ..
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Colouring Problems

Graph Colouring Variants

m Lots of theoretical results, but less in the way of real-world
problem instances.
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