#ta| Universit
of Glasgox?vf

N :\“;‘\ .

.

%

Solving Hard Graph Problems in Parallel
Ciaran McCreesh

|




Clique Problems

Clique Problems

ard Graph Problems in Parallel



Clique Problems

The Maximum Clique Problem

Solving Hard Graph Problems in Parallel



The Maximum Clique Problem



Clique Problems

Algorithms

m Branch and bound algorithms, using greedy graph colouring as
a bound and ordering heuristic.

m A parallel branch and bound algorithm, with an explanation of
why it works.

m An explanation of why the colour ordering process works.

Solving Hard Graph Problems in Parallel



Clique Problems

Maximum Clique Variants

m Balanced induced biclique. A branch and bound algorithm (can
be parallelised), and the first study.

m Maximum labelled clique. Two-pass parallel branch and bound
algorithm, which closed all open problem instances from the
literature.

Solving Hard Graph Problems in Parallel



Clique Problems

Search as a Tree

d Graph Problems in Parallel



Clique Problems

Parallel Search

ard Graph Problems in Parallel



Clique Problems

Parallel Search

ard Graph Problems in Parallel



Clique Problems

Parallel Search

32321111

Solving Hard Graph Problems in Parallel



Clique Problems

Work-Stealing is Not Just About Balance

325211211

Solving Hard Graph Problems in Parallel



Clique Problems

Work-Stealing is Not Just About Balance

Solving Hard Graph Problems in Parallel



Clique Problems

Preventing a Slowdown, Part 1

m A subset of the sequential order must be preserved.

m Bounds must be communicated.

Solving Hard Graph Problems in Parallel 8



Subgraph Problems

Subgraph Problems

Solving Hard Graph Problems in Parallel



Subgraph Problems

The Subgraph Isomorphism Problem

()
ORORG
Q@& ®

Solving Hard Graph Problems in Parallel



Subgraph Problems

The Subgraph Isomorphism Problem

Solving Hard Graph Problems in Parallel



Subgraph Problems

Algorithms

A new backjumping search algorithm which substantially
outperforms the competition.

New, cheaper filtering for all-different constraints.

Supplemental graphs, to generate implied constraints.

|

|

m A different way of doing backjumping, not using conflict sets.
m Improved conflict analysis for failed all-different constraints.
]

Parallel backjumping as a lazy fold with right zero elements.

Solving Hard Graph Problems in Parallel



Subgraph Problems

A Backjumping Algorithm

1 search (Domains D) — Fail F or Success

2 begin

3 if D = () then return Success

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7
8
9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F/ then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F/ then
13 if Aw € F’ such that D,, # D/, then return Fail F’
14 L F+— FUF
15 Success then return Success
16 return Fail F

d Graph Problems in Parallel



Subgraph Problems

A Backjumping Algorithm

search (Domains D) — Fail F or(SUCEESs)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F/ then

13 if Aw € F’ such that D,, # D/, then return Fail F’
14 F+— FUF

15 * Success then return Success

16 return Fail F

Hard Graph Problems in Parallel



Subgraph Problems

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7

8

9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F' then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F’ then
13 if Aw € F’ such that D,, # D/, then return(Fail F’
14 L F+— FUF
15  Success then return Success
16 return(Fail F

Hard Graph Problems in Parallel



Subgraph Problems

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7

8

9

D’ + clone(D)
case assign(D’, v, v’) of
Fail F’ then F + FU F’

10 Success then
11 case search(D’ — D,) of
12 Fail F’ then
13 if Aw € F’ such that D,, # D/, then returné
14 F+— FUF
15  Success then return Success
16 | returniFail £

Hard Graph Problems in Parallel



Subgraph Problems

A Backjumping Algorithm

search (Domains D) —(Fail F or(SUCEEss)
begin

1

2

3

4 D, < a domain in D with minimum size
5 F+{v}

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

9 Fail F’ then F < FUF’

10 Success then

11 case search(D’ — D,) of

12 Fail F’ then

13 if then returné
14 F+— FUF

15 * Success then return Success

16 return(Fail F

d Graph Problems in Parallel



Subgraph Problems

A Backjumping Algorithm

1 search (Domains D) —(Fail F or(SUcEess)

2 begin

3

4 D, < a domain in D with minimum size
5

6 foreach v/ € D, ordered by a heuristic do
7 D’ + clone(D)

8 case assign(D’, v, v’) of

0 Fail@then (EIREIED

10 Success then

11 case search(D’ — D,) of

12 Fail@)then

13 if

14 (F<FUF)

15  Success then return Success

16 return Fail@

then returné

d Graph Problems in Parallel



Subgraph Problems

Backjumping as a Lazy Fold

m Lazily map each subproblem to Jump F or Fail F or Success.
m Lazily fold, starting with Fail {v}, as follows:
__ (> Success = Success
_ & Jump F =Jump F
Fail F &) Fail G = Fail (FU G)

Convert Jump F back to Fail F for the result.
If a Jump F occurs to the left of a Success, we have a bug.

Solving Hard Graph Problems in Parallel 13 / 22



Subgraph Problems

Folding Zero

m When multiplying, if any item is 0, the result is 0.

~x 0 =0
0 x =0

m Here, if any item is Success, the result is Success, and we do
not need to evaluate the rest of the map.

__ (& Success = Success

m If any item is Jump F, the result is either Jump F, or some
Jump G or Success that is further to the left. We do not need
to evaluate any item to the right.

_ &> Jump F =Jump F

Solving Hard Graph Problems in Parallel



Subgraph Problems

Lazy Fold Backjumping as a Tree

Solving Hard Graph Problems in Parallel



Subgraph Problems

Preventing a Slowdown, Part 2

m Any subproblem which we have shown will not be used, must
be cancelled (recursively) immediately.

m When the result of a fold is known, the continuation must be
executed immediately.

Solving Hard Graph Problems in Parallel



Subgraph Problems

Subgraph Isomorphism Variants

m Induced and non-induced.
m Directed edges.

m Labelled vertices and edges.

Solving Hard Graph Problems in Parallel



Subgraph Problems

The Maximum Common Subgraph Problem

m Can be solved via the maximum clique problem.

m The greedy colouring technique sometimes misbehaves badly,
though. ..

Solving Hard Graph Problems in Parallel 18 / 22



Colouring Problems

Colouring Problems

ard Graph Problems in Parallel



Colouring Problems

The Graph Colouring Problem

m There are branch-and-bound algorithms for graph colouring,
which should be easy to parallelise.

m Clause-learning works very well for some problem instances.
Can backjumping be an alternative?

m Backjumping plus optimisation is a bit hairy. ..

Solving Hard Graph Problems in Parallel



Colouring Problems

Graph Colouring Variants

m Lots of theoretical results, but less in the way of real-world
problem instances.

Solving Hard Graph Problems in Parallel



University

of Glasgow

http://dcs.gla.ac.uk/~ciaran
c.mccreesh.1@research.gla.ac.uk

Solving Hard Graph Problems in Parallel


http://dcs.gla.ac.uk/~ciaran
mailto:c.mccreesh.1@research.gla.ac.uk

	Clique Problems
	Subgraph Problems
	Colouring Problems

