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Subgraph Isomorphism

Find an injective mapping from a pattern graph to a target
graph.

Adjacent vertices must be mapped to adjacent vertices.

For the induced problem variant, non-adjacent vertices must be
mapped to non-adjacent vertices.
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The Maximum Clique Problem
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Maximum Common Subgraph
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Maximum Common Connected Subgraph?
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Who Cares?

Bioinformatics

Chemistry

Drug design

Computer vision

Pattern recognition

Financial fraud detection

Model checking

Fault detection

Law enforcement

Kidney exchange

Social network analysis

Compilers

Diseased cows

Computer algebra

Circuit design

Network design
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Practical Algorithms

Real-world inputs rarely have nice properties (low treewidth,
particular degree spreads that are polynomial, etc).

We can still solve some subgraph isomorphism problems with
thousand vertex patterns and ten thousand vertex
targets in a few seconds.

Worst-case analysis is useless, and constant factors matter.
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Constraint Models

We have some variables, each with a domain, and we want to
give each variable a value from its domain.

Subgraph isomorphism: a variable for each pattern vertex, with
domains being target vertices.
Clique: a boolean variable for each vertex.

There are constraints between variables.

Subgraph isomorphism: all-different (injectivity), and adjacent
pairs of vertices must be mapped to adjacent pairs of vertices.
Clique: for each pair of non-adjacent vertices, at least one of
the two variables must be false.

There is an objective.

Subgraph isomorphism: give each variable a value.
Maximum clique: set as many variables to true as possible.
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Inference

We want to cross out values from domains, until only one
value is left in each.

Subgraph isomorphism: high degree vertices cannot be mapped
to low degree vertices.

If an assignment becomes forced, we can infer additional
deletions. This can have a cascade effect.
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Implied Constraints for Subgraph Isomorphism

Adjacent vertices must be mapped to adjacent vertices.

Vertices that are distance 2 apart must be mapped to vertices
that are within distance 2.

Vertices that are distance k apart must be mapped to vertices
that are within distance k .
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Implied Constraints for Subgraph Isomorphism

Gd is the graph with the same vertex set as G , and an edge
between v and w if the distance between v and w in G is at
most d .

For any d , a subgraph isomorphism i : P � T is also a
subgraph isomorphism id : Pd � T d .
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Implied Constraints for Subgraph Isomorphism

We can do something stronger: rather than looking at
distances, we can look at (simple) paths, and we can count
how many there are.

This is NP-hard in general, but only lengths 2 and 3 and
counts of 2 and 3 are useful in practice.

We construct these graph pairs once, at the top of search.

We can also use these graph pairs for degree-based filtering.
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Search

Sometimes we have to guess: pick a variable x . Then for each
value vi in its domain in turn, see what happens if we force
x = vi .

There are good heuristics telling us which variable to pick first.

There are heuristics telling us which value to pick first, but this
seems to be less reliable in general.
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Branch and Bound
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For optimisation: keep track of the best solution we’ve found
so far. If we can show we can’t beat it, backtrack immediately.
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Backjumping

When backtracking, see if the current assignment actually
removed any values which could have helped prevent the
failure. If not, jump back another step.
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Is This Any Good?
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Generating Hard Subgraph Isomorphism Instances

We can solve some problem instances with a thousand pattern
vertices, and ten thousand target vertices. Can we solve any
instance with these sizes?

We like having lots of instances, to make sure we don’t
overfit algorithm parameters.

How do we create random subgraph isomorphism instances?
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Phase Transitions in Non-Induced Subgraph Isomorphism
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This Looks Familiar. . .

Understanding the Empirical Hardness of NP-Complete Problems.
Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter, Lin Xu.
Communications of the ACM, Vol. 57 No. 5, Pages 98-107
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Varying Both Densities?
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Heuristics from Maximising Expectations

With a few dubious assumptions regarding independence and
integers, the expected number of solutions is

〈Sol〉 = t · (t − 1) · . . . · (t − p + 1) · dtdp ·(
p
2).

If 〈Sol〉 � 1, the instance is likely to be unsatisfiable.

Unfortunately, if 〈Sol〉 � 1, things are a bit trickier. . .
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Heuristics from Maximising Expectations

G(10, x) � G(150, y) G(20, x) � G(150, y) G(30, x) � G(150, y)
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Heuristics from Maximising Expectations

Suppose we wanted to maximise the expected number of
solutions in a subproblem during search.

〈Sol〉 = t · (t − 1) · . . . · (t − p + 1) · dt dp · (p2)

smallest domain low
degree

high
degree

These heuristics are used in practice (sort of), but were
discovered through guessing and experiments!
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Phase Transitions in Induced Subgraph Isomorphism
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Can We Predict This?

With a few more dubious assumptions, the expected number of
solutions is now

〈Sol〉 = t · (t − 1) · . . . · (t − p + 1) · dtdp ·(
p
2) · (1− dt)

(1−dp)·(p2).
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Can We Predict This?

G(10, x) ↪→ G(150, y) G(15, x) ↪→ G(150, y) G(20, x) ↪→ G(150, y)
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Why is the Middle Region Hard?
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Induced Heuristics?

For anything we say about degree, the opposite holds for the
complement constraints.

Degree-based value ordering heuristics don’t seem to help. This
is intuitive, but does this formula give us a heuristic after all?
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Induced Heuristics?
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Thread-Parallel Tree Search
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Thread-Parallel Tree Search
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Parallel Search Order Matters

?
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Parallel Search Order Matters
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Parallel Search Order Matters

Value-ordering heuristics tend to be worst high up the search
tree.

But depth-first searches commit completely to the first choice
made. . .

Discrepancy searches can avoid this problem by doing more
work in total. Parallel search can give similar benefits for
free.
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Safety and Reproducibility

My “wish list”:

1 Parallel search should not be substantially slower than
sequential search.

2 Adding more processors should not make things substantially
worse.

3 Running the same program twice on the same hardware should
give similar runtimes.

This is surprisingly tricky.

On top of all that, we want to prioritise work stealing from
where we’re most likely to be wrong, or possibly from where
we’re most likely not to eliminate a subtree.
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Parallel Search is Worth Doing
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Describing and Implementing Parallel Search

Implementing safe and reproducible parallel search by hand,
even just for multi-core, is painful.

Current high level approaches don’t offer the properties we
need.

Is there a better way?
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Symmetries

Some graphs have known symmetries. Can we exploit this?

In some ways, maximum clique is just a completely symmetric
version of maximum common subgraph.

What about if we have to detect the symmetries ourselves
dynamically?
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Explaining Failures

Backjumping works because when we fail, we work out why,
and use that to backtrack further.

But then we throw that information away. . .

CNF encodings for graph problems tend to be annoyingly big,
and lose structural information.
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Graph Algorithms and Optimisation

There are a lot of real-world optimisation problems involving a
graph problem (subgraph isomorphism, subgraph covering,
finding sequences of related subgraphs, clique finding, graph
colouring, . . . ), plus some other constraints.

Can we make these problems easier to specify in a high-level
constraint modelling language like Essence’ MiniZinc?

There is a continuum of what we could do with these models:

Compile to CP, MIP or SAT (but these models tend to be large,
and lose structural and heuristic information).
A hybrid, multi-solver approach, “graph morphisms modulo
theories” style (but we need better theories).
Compile to subgraph isomorphism (but even simple arithmetic
constraints become disgusting under reduction).
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