An Introduction to (Talks About) **Constraint Programming**

Ciaran McCreesh

Modelling and Solving Hard Problems

- Last week: in theory, some problems are (probably) exponentially hard no matter what we do.
- This week:
 - We need to solve them anyway...
 - And we need to solve several problems simultaneously...
 - And we have awkward side constraints.

Modelling

Express a problem as a collection of variables, each of which has a domain of possible values, together with a set of constraints.

Solving

- SAT solvers: only 0/1 variables and CNF constraints.
- PB solvers: only 0/1 variables, linear inequalities.
- MIP solvers: only integer and 0/1 variables, linear inequalities.
- CP solvers: mixed variable types and rich constraints.
 - All different, cardinality, occurrence
 - Regular expressions on sequences
 - Array indexing
 - Lexicographic and order

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

18	23	23	245	456	456	279	378	23589
----	----	----	-----	-----	-----	-----	-----	-------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

18	23	23	245	456	456	279	378	23589
----	----	----	-----	-----	-----	-----	-----	-------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	245	456	456	279	378	23589
---	----	----	-----	-----	-----	-----	-----	-------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	245	456	456	279	378	23589
---	----	----	-----	-----	-----	-----	-----	-------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	245	456	456	279	378	23589
---	----	----	-----	-----	-----	-----	-----	-------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	2 45	456	456	2 79	3 78	23589
---	----	----	-------------	-----	-----	-------------	-------------	-------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	45	456	456	79	78	589
---	----	----	----	-----	-----	----	----	-----

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	45	456	456	79	78	589
---	----	----	----	-----	-----	----	----	-----

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	45	456	456	79	78	5 89
---	----	----	----	-----	-----	----	----	-------------

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1	23	23	45	456	456	79	78	89
---	----	----	----	-----	-----	----	----	----

- Each constraint has an associated algorithm, which can eliminate infeasible values from domains.
- For example, suppose we have a constraint saying that these variables must all take different values:

1 2	23 23	45	456	456	79	78	89
-----	-------	----	-----	-----	----	----	----

Now each value remaining in each domain is supported by at least one assignment of values to each other variable. We say this constraint has achieved generalised arc consistency.

Propagation

- After one constraint deletes a value, this may allow other constraints to delete further values.
- We *could* keep running each constraint's algorithm in turn until we reach a fixed point. But doing this **quickly** is important.
- Is this fixed point unique?

Search

- Propagation doesn't solve the problem. So now what?
- Pick a variable, try giving it one of its values from its domain, and propagate again. If we find a solution, we're done. If we get a domain wipeout, we guessed incorrectly, so backtrack and try something else. Otherwise, recurse and try again.
- In practice, the search order is very important, and we use heuristics:
 - Which variable do we pick? "Smallest domain first" and "most constrained" are usually good starting points.
 - What about values?

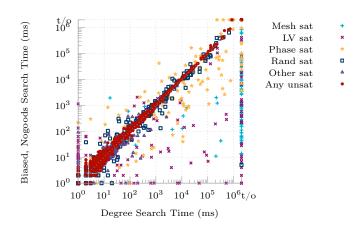
Reformulation

- We always ask: is there another model? Getting a good model matters a lot for CP.
- For that matter, CP also likes "tidied up" input.
- We can even have multiple models simultaneously, and **channel** between them.
- Even good models often exhibit symmetries. We can often specify additional constraints to eliminate these.

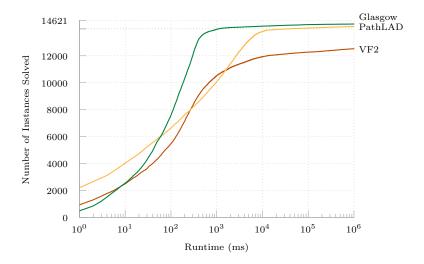
Evaluating Models and Solvers

- We have to do computational experiments.
- These are easy to do badly.
 - What instances do we use?
 - What do we compare to? Are all the solvers correct? Can we even get other people's source code?
 - Do we compare average runtimes, or something else? What if some instances time out on some solvers?
 - Are we just measuring programmer skill or programming language overheads?
 - Does our hardware behave itself?

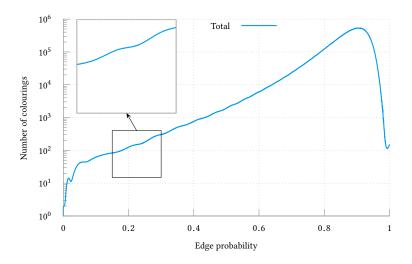
Scatter Plots



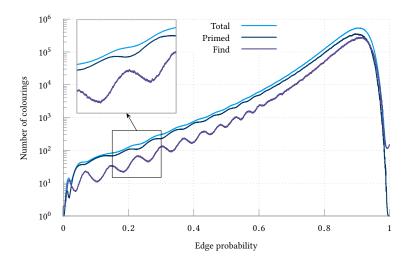
Cumulative Plots



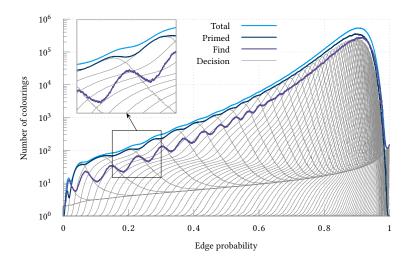
When Are Hard Problems Hard?



When Are Hard Problems Hard?



When Are Hard Problems Hard?



The Next Generation of Solvers?

- Conventional CP solvers can only reason about one constraint at a time. Future solvers may be able to do better:
 - **Learning**, by creating new constraints by analysing conflicts.
 - Decision diagrams have a different notion of consistency involving paths through a search tree, which can sometimes be stronger.
 - **Views** can avoid the introduction of auxiliary variables.
 - **Hybrid** solvers can solve subproblems using different solving technologies.
- High level types, such as partitions and graphs, allow for automatic reformulation.
- Better search? And what about parallelism?
- Can we do better with bad models? And can we automatically clean up bad inputs?

http://www.dcs.gla.ac.uk/~ciaran ciaran.mccreesh@glasgow.ac.uk

