Parallel Search, Ordering, Reproducibility, and

Scalability 'EE University

7 of Glasgow

Blair Archibald Ruth Hoffmann Ciaran McCreesh
Patrick Prosser Phil Trinder

Motivation

Everyone has at least a few cores.

Multicore with a few tens of cores is cheap.

Thousands of cores of distributed memory through cloud or
HPC is affordable.

GPUs are a whole other problem...

Blair Archibald, Rut

lel

Demotivation

m Parallelising good combinatorial search algorithms is hard.

m There is no expectation of a linear speedup, and there is a real
risk of introducing occasional (or frequent...) exponential
slowdowns.

m We might also lose reproducibility: running the same search on
the same machine twice could take vastly different amounts of
time.

Blair Archibald, Rut

lel

Remotivation

m Under certain circumstances, we can guarantee we will not
introduce anomalies.

m We can also abstract out a lot of the work.

Parallel Tree Search

Parallel Tree Search

cmmmmsme’tanaam.

mmf Smmmmma=

Prosser, Phil Trinde|

e mmm==
-

Vs sssssssEssE

Work Balance is Tricky

--——--

cmmmmsme’tar s m . \mmsmssmmmm-

Prosser, Phil Trinde|

Embarrassingly Parallel Search

m If we create n subproblems, chances are we’ll get poor balance.

m We can’t tell beforehand where the really hard subproblems will
be.

m What if we create lots of subproblems, and distribute them
dynamically?

Blair Archibald, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Embarrassingly Parallel Search

Abstract

We introduce an Embarrassingly Parallel Search (EPS) method for solving constraint
problems in parallel, and we show that this method matches or even outperforms state-of-
the-art algorithms on a number of problems using various computing infrastructures. EPS
is a simple method in which a master decomposes the problem into many disjoint subprob-
lems which are then solved independently by workers. Our approach has three advantages:
it is an efficient method; it involves almost no communication or synchronization between
workers; and its implementation is made easy because the master and the workers rely on
an underlying constraint solver, but does not require to modify it. This paper describes
the method, and its applications to various constraint problems (satisfaction, enumeration,
optimization). We show that our method can be adapted to different underlying solvers

(Gecode, Choco2, OR-tools) on different computing infrastructures (multi-core,
ters, cloud c ing

PS offers good average performance, and
¢ parallel implementations of Gecode as well as some
solvers portfolios. Moreover, we perform an in-depth analysis of the various factors that
make this approach efficient as well as the anomalies that can occur. Last, we show that
the decomposition is a key component for efficiency and load balancing.

Blair Archibald, Rut

Work Stealing

m Start a backtracking search, as normal.

m Have additional threads “steal” work from each other when they
are idle, according to some selection policy.

m Random victim selection is common.
m Also have to decide which part of the victim’s work we steal.

m Gecode has parallel search using randomised work-stealing, but
it is not on by default.

Blair Archibald, Rut

lel

Gecode’s Long List of Caveats

Parallel search has but one motivation: try to make search more efficient by employing
several threads (or workers) to explore different parts of the search tree in parallel.

Gecode uses a standard work-stealing architecture for parallel search: initially, all work
(the entire search tree to be explored) is given to a single worker for exploration, making the
worker busy. All other workers are initially idle, and try to steal work from a busy worker.
Stealing work means that part of the search tree is given from a busy worker to an idle
worker such that the idle worker can become busy itself. If a busy worker becomes idle, it
tries to steal new work from a busy worker.

Gecode’s Long List of Caveats

When using parallel search one needs to take the following facts into account (note that
some facts are not particular to parallel search, check Tip 9.1: they are just more likely to
occur):

The order in which solutions are found might be different compared to the order in
which sequential search finds solutions. Likewise, the order in which solutions are
found might differ from one parallel search to the next. This is just a direct conse-
quence of the indeterministic nature of parallel search.

Naturally, the amount of search needed to find a first solution might differ both from
sequential search and among different parallel searches. Note that this might actually
lead to super-linear speedup (for n workers, the time to find a first solution is less than
1/n the time of sequential search) or also to real slowdown.

For best solution search, the number of solutions until a best solution is found as well
as the solutions found are indeterministic. First, any better solution is legal (it does not
matter which one) and different runs will sometimes be lucky (or not so lucky) to find a
good solution rather quickly. Second, as a better solution prunes the remaining search
space the size of the search space depends crucially on how quickly good solutions are
found.

Gecode’s Long List of Caveats

= As a corollary to the above items, the deviation in runtime and number of nodes ex-
plored for parallel search can be quite high for different runs of the same problem.

= Parallel search needs more memory. As a rule of thumb, the amount of memory needed
scales linearly with the number of workers used.

= For parallel search to deliver some speedup, the search tree must be sufficiently large.
Otherwise, not all threads might be able to find work and idle threads might slow
down busy threads by the overhead of unsuccessful work-stealing.

= From all the facts listed, it should be clear that for depth-first left-most search for just
a single solution it is notoriously difficult to obtain consistent speedup. If the heuristic
is very good (there are almost no failures), sequential left-most depth-first search is
optimal in exploring the single path to the first solution. Hence, all additional work
will be wasted and the work-stealing overhead might slow down the otherwise optimal
search.

McCreesh, Patrick Prosser, Phil Trinder

Gecode’s Long List of Caveats

Tip 9.3 (Be optimistic about parallel search). After reading the above list of facts you might
have come to the conclusion that parallel search is not worth it as it does not exploit the
parallelism of your computer very well. Well, why not turn the argument upside down: your
machine will almost for sure have more than a single processing unit and maybe quite some.
With sequential search, all units but one will be idle anyway.

The point of parallel search is to make search go faster. It is not to perfectly utilize your
parallel hardware. Parallel search makes good use (and very often excellent use for large
problems with large search trees) of the additional processing power your computer has

anyway.

Gecode’s Long List of Caveats

$ mzn-gecode colOpt.mzn g8@.dzn -a -s

%% runtime: $32.621 (392621.621 ms)
%% runtime: ©31.311 (391311.168 ms)
%% runtime: :31.314 (391314.705 ms)
%% runtime: :30.360 (390360.443 ms)
%% runtime: .217 (391217.210 ms)
%% runtime: $33.723 (393723.672 ms)
%% runtime: $31.279 (391279.313 ms)
%% runtime: :30.765 (390765.244 ms)
%% runtime: :31.057 (391057.970 ms)
%% runtime: :30.460 (390460.464 ms)

[o = N - NG R - S R
w

$ mzn-gecode colOpt.mzn g80.dzn -a -s -p32

%% runtime: 1:31.237 (91237.601 ms)
%% runtime: 22.783 (22783.639 ms)
%% runtime: 1:33.024 (93024.102 ms)
%% runtime: 23.844 (23844.334 ms)
%% runtime: 1:32.932 (92932.198 ms)
%% runtime: 24.415 (24415.674 ms)
%% runtime: 26.329 (26329.784 ms)
%% runtime: 1:31.005 (91005.068 ms)
%% runtime: 1:17.512 (77512.379 ms)
%% runtime: 1:33.766 (93766.558 ms)

Blair Arch n McCreesh, Pat

ility, and Scalability

Gecode’s Long List of Caveats

$ mzn-gecode colDec.mzn g8@.dzn -s -Dk=12

= =UNSATISFIABLE= =

%% runtime: 4:10.639 (250639.167 ms)
%% solvetime: 4:10.625 (250625.001 ms)
%% solutions:]

%% variables: 80

%% propagators: 1533

%% propagations: 909705614

%% nodes: 8390437

%% failures: 4275231

%% restarts: [4

%% peak depth: 32

$ mzn-gecode colDec.mzn g8@.dzn -s -Dk=12 -p32
%% runtime: 20.642 (20642.164 ms)

%% runtime: 21.168 (21168.189 ms)

%% runtime: 21.896 (21896.198 ms)

%% runtime: 20.773 (20773.895 ms)

%% runtime: 21.291 (21291.617 ms)

%% runtime: 21.229 (21229.889 ms)

%% runtime: 21.994 (21994.265 ms)

%% runtime: 21.929 (21929.667 ms)

%% runtime: 20.992 (20992.017 ms)

%% runtime: 21.269 (21269.629 ms)

Blair Arch n McCreesh, Pat

ility, and Scalability

Gecode’s Long List of Caveats

$ mzn-gecode colDec.mzn g80.dzn -s -Dk=13
v = arrayld(1..80 ,[4, 7, 2, 8, 1, 11, 12, 6, 13, 10, 8, 4, 3, 13, 4, 4, 3, 4, 13, 5, 1, 12,

%% runtime: 1:58.791 (118791.370 ms)
%% solvetime: 1:58.777 (118777.305 ms)
%% solutions: 1

%% variables: 80

%% propagators: 1534

%% propagations: 518688552

%% nodes: 5165932

%% failures: 2604376

%% restarts: [

%% peak depth: 41

$ mzn-gecode colDec.mzn g80.dzn -s -Dk=13 -p32

%% runtime: 28.291 (28291.176 ms)
%% runtime: 38.170 (38170.591 ms)
%% runtime: 24.390 (24390.286 ms)
%% runtime: 10.547 (10547.847 ms)
%% runtime: 39.040 (39040.280 ms)
%% runtime: 28.988 (28988.032 ms)
%% runtime: 1:08.091 (68091.332 ms)
%% runtime: 1:13.061 (73061.990 ms)
%% runtime: 11.618 (11618.722 ms)
%% runtime: 1:05.073 (65073.290 ms)

ility, and Scalability

Value-Ordering Heuristics Matter

Prosser, Phil Trinde|

Value-Ordering Heuristics Matter

Prosser, Phil Trinde|

Value-Ordering Heuristics Matter

PR L LS
A mmEEmE -y

A
1
1
1
1
[]
[]
1
|]
1
4

Vs sssss..-
C e s .-

Value-Ordering Heuristics Matter

m Value-ordering heuristics are right most of the time.
m They are most likely to be wrong early on in the search.

m Mistakes made early in the search tree are the most costly.

Blair Archibald, Rut

lel

Performance Guarantees and “Anomalies”

m There is literature from the 1980s and early 1990s on “anomalies”
in a particular kind of branch and bound algorithm.
m In particular, we know sufficient conditions to guarantee:
m Parallel cannot be worse than sequential.
m Increasing the number of processors cannot increase runtimes.
m Running the same instance on the same hardware twice will take
the same amount of time.
m However, value-ordering heuristics were not widely understood
in those days.

Blair Archibald, Rut McCreesh, Patrick Prosser, Phil Trinder

Ile rd ity, and

Descending Resplitting

m Split the search tree at depth one, and place the subtrees in
order in a queue.

m Have each worker pull from this queue.

m When the queue is empty and a worker needs work, suspend all
workers, and requeue remaining work (branches to the right) at
depth two of the search tree.

m Then again at depth three, and so on.

m This gives us all the performance guarantees, and could be
particularly good if value-ordering heuristics are weakest at the
top of search or if mistakes are most costly at the top of search.

m It is, however, moderately unpleasant to implement...

Blair Archibald, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ord

In a Maximum Clique Algorithm

Speedup

80

70

60

50

40

30

20

10

brock400_1
370.8s, 41.0%, (20, 2, 10, 11, 4, 2, 1x21)

16 20 32 48 64

Number of threads

McCreesh, Patr

ty

In a Maximum Clique Algorithm

brock400_3
213.1s, 86.2%, (14, 10, 1, 4, 2, 1X26)

120 —

100 —

80

60

Speedup

40

20

2 16 20 32 48 64

Number of threads

McCreesh, Patr

ty

In a Maximum Clique Algorithm

brock400_3
213.1s, 86.2%, (14, 10, 1, 4, 2, 1X26)

120 —
100
80
£
g 60
Q,
w
40
20
0 |
2 16 20 32 48 64
Number of threads

McCreesh, Patr

ty

In a Maximum Clique Algorithm

gen400_p0.9_75
3180825, 99.9%, (17, 8, 3, 4, 1X71)

700 r
600 [~

500 —

Speedup
IS
=3
=}
I

100 —

In a Maximum Clique Algorithm

MANN_a45
438s, 0.2%, (1X5, 6, 1x4, 6, 1X334)

r L1 | | |

2 16 20 32 48 64

Number of threads

McCreesh, Patr

ty

The Theoretical Guarantees Hold in Practice!

fail
10°
104
103
10?
10!
10°

fail

1vs2 2vs4 4vs8
fail
10°
10*
103
102
10!
10°

10°10110210310%10% fail 10°10'10210310%10° fail
8vs 16 16 vs 32 32 vs 32

fail i ax fail X

McCreesh, Patrick Prosser, Phil Trinder

18%

Abstracting to Skeletons

m This work-stealing turns a twenty line recursive search
algorithm into three hundred lines, or nearly a thousand lines to
also support distributed memory parallelism.

m Algorithmic skeletons provide an alternative:

m Write your code once, to fit the skeleton.

m Compile many times, for sequential, shared memory, cloud, or
HPC parallelism.

m Performance close to hand-tuned (even sequentially).
m Can swap in different search schedulers.

Blair Archibald, Ri , Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Orde r d Scalability

Modern Algorithmic Features that Cause Problems

m Non-monotonic propagators and misleading bound functions
break the guarantees.

m No guarantees with adaptive variable-ordering heuristics like
wdeg, although in practice anomalies seem much rarer.

m Learning ruins everything.

Blair Archibald, Ru McCreesh, Patrick Prosser, Phil Trinder

Parall arch, r d Scalability

A Quick Preview of a Possible Alternative

Introduce just a tiny bit of randomness into value-ordering.

Use aggressive restarts and decision nogood recording.

All gather nogoods on restarts.

Advantages:

m Extremely non-intrusive to implement.
m Scales to many hundreds of cores.

Problems:
m Need to implement 2WL for nogood recording.
m It changes (improves?) the sequential search algorithm.
m No performance guarantees, although if we could come up with
some notion of “statistical” guarantees they would probably hold.

Blair Archibald, Ri , Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Orde r d Scalability

http://www.dcs.gla.ac.uk/~ciaran

University
of Glasgow

%

ciaran.mccreesh@glasgow.ac.uk

Vixventtas vima)

http://www.dcs.gla.ac.uk/~ciaran
mailto:ciaran.mccreesh@glasgow.ac.uk

