
Parallel Search, Ordering, Reproducibility, and
Scalability
Blair Archibald Ruth Ho�mann Ciaran McCreesh
Patrick Prosser Phil Trinder



Motivation

Everyone has at least a few cores.

Multicore with a few tens of cores is cheap.

Thousands of cores of distributed memory through cloud or
HPC is a�ordable.

GPUs are a whole other problem. . .

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 1 / 16



Demotivation

Parallelising good combinatorial search algorithms is hard.

There is no expectation of a linear speedup, and there is a real
risk of introducing occasional (or frequent. . . ) exponential
slowdowns.

We might also lose reproducibility: running the same search on
the same machine twice could take vastly di�erent amounts of
time.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 2 / 16



Remotivation

Under certain circumstances, we can guarantee we will not
introduce anomalies.

We can also abstract out a lot of the work.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 3 / 16



Parallel Tree Search

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 4 / 16



Parallel Tree Search

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 4 / 16



Work Balance is Tricky

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 5 / 16



Embarrassingly Parallel Search

If we create n subproblems, chances are we’ll get poor balance.

We can’t tell beforehand where the really hard subproblems will
be.

What if we create lots of subproblems, and distribute them
dynamically?

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 6 / 16



Embarrassingly Parallel Search

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 6 / 16



Work Stealing

Start a backtracking search, as normal.
Have additional threads “steal” work from each other when they
are idle, according to some selection policy.

Random victim selection is common.
Also have to decide which part of the victim’s work we steal.

Gecode has parallel search using randomised work-stealing, but
it is not on by default.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 7 / 16



Gecode’s Long List of Caveats

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Gecode’s Long List of Caveats

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Gecode’s Long List of Caveats

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Gecode’s Long List of Caveats

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Gecode’s Long List of Caveats

$ mzn -gecode colOpt.mzn g80.dzn -a -s
%% runtime: 6:32.621 (392621.621 ms)
%% runtime: 6:31.311 (391311.168 ms)
%% runtime: 6:31.314 (391314.705 ms)
%% runtime: 6:30.360 (390360.443 ms)
%% runtime: 6:31.217 (391217.210 ms)
%% runtime: 6:33.723 (393723.672 ms)
%% runtime: 6:31.279 (391279.313 ms)
%% runtime: 6:30.765 (390765.244 ms)
%% runtime: 6:31.057 (391057.970 ms)
%% runtime: 6:30.460 (390460.464 ms)

$ mzn -gecode colOpt.mzn g80.dzn -a -s -p32
%% runtime: 1:31.237 (91237.601 ms)
%% runtime: 22.783 (22783.639 ms)
%% runtime: 1:33.024 (93024.102 ms)
%% runtime: 23.844 (23844.334 ms)
%% runtime: 1:32.932 (92932.198 ms)
%% runtime: 24.415 (24415.674 ms)
%% runtime: 26.329 (26329.784 ms)
%% runtime: 1:31.005 (91005.068 ms)
%% runtime: 1:17.512 (77512.379 ms)
%% runtime: 1:33.766 (93766.558 ms)

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Gecode’s Long List of Caveats

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=12
===== UNSATISFIABLE =====
%% runtime: 4:10.639 (250639.167 ms)
%% solvetime: 4:10.625 (250625.001 ms)
%% solutions: 0
%% variables: 80
%% propagators: 1533
%% propagations: 909705614
%% nodes: 8390437
%% failures: 4275231
%% restarts: 0
%% peak depth: 32

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=12 -p32
%% runtime: 20.642 (20642.164 ms)
%% runtime: 21.168 (21168.189 ms)
%% runtime: 21.896 (21896.198 ms)
%% runtime: 20.773 (20773.895 ms)
%% runtime: 21.291 (21291.617 ms)
%% runtime: 21.229 (21229.889 ms)
%% runtime: 21.994 (21994.265 ms)
%% runtime: 21.929 (21929.667 ms)
%% runtime: 20.992 (20992.017 ms)
%% runtime: 21.269 (21269.629 ms)

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Gecode’s Long List of Caveats

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=13
v = array1d (1..80 ,[4, 7, 2, 8, 1, 11, 12, 6, 13, 10, 8, 4, 3, 13, 4, 4, 3, 4, 13, 5, 1, 12, 5, 7, 9, 11, 12, 3, 6, 13, 6, 2, 10, 4, 11, 6, 8, 7, 5, 10, 3, 2, 7, 10, 5, 4, 13, 11, 13, 6, 5, 9, 10, 8, 2, 12, 7, 9, 12, 9, 6, 5, 2, 7, 11, 8, 1, 9, 3, 13, 12, 1, 4, 9, 8, 1, 3, 11, 10, 2]);
----------
%% runtime: 1:58.791 (118791.370 ms)
%% solvetime: 1:58.777 (118777.305 ms)
%% solutions: 1
%% variables: 80
%% propagators: 1534
%% propagations: 518688552
%% nodes: 5165932
%% failures: 2604376
%% restarts: 0
%% peak depth: 41

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=13 -p32
%% runtime: 28.291 (28291.176 ms)
%% runtime: 38.170 (38170.591 ms)
%% runtime: 24.390 (24390.286 ms)
%% runtime: 10.547 (10547.847 ms)
%% runtime: 39.040 (39040.280 ms)
%% runtime: 28.988 (28988.032 ms)
%% runtime: 1:08.091 (68091.332 ms)
%% runtime: 1:13.061 (73061.990 ms)
%% runtime: 11.618 (11618.722 ms)
%% runtime: 1:05.073 (65073.290 ms)

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 8 / 16



Value-Ordering Heuristics Ma�er

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 9 / 16



Value-Ordering Heuristics Ma�er

?

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 9 / 16



Value-Ordering Heuristics Ma�er

?

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 9 / 16



Value-Ordering Heuristics Ma�er

Value-ordering heuristics are right most of the time.

They are most likely to be wrong early on in the search.

Mistakes made early in the search tree are the most costly.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 9 / 16



Performance Guarantees and “Anomalies”

There is literature from the 1980s and early 1990s on “anomalies”
in a particular kind of branch and bound algorithm.
In particular, we know su�icient conditions to guarantee:

Parallel cannot be worse than sequential.
Increasing the number of processors cannot increase runtimes.
Running the same instance on the same hardware twice will take
the same amount of time.

However, value-ordering heuristics were not widely understood
in those days.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 10 / 16



Descending Respli�ing

Split the search tree at depth one, and place the subtrees in
order in a queue.

Have each worker pull from this queue.

When the queue is empty and a worker needs work, suspend all
workers, and requeue remaining work (branches to the right) at
depth two of the search tree.

Then again at depth three, and so on.

This gives us all the performance guarantees, and could be
particularly good if value-ordering heuristics are weakest at the
top of search or if mistakes are most costly at the top of search.

It is, however, moderately unpleasant to implement. . .

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 11 / 16



In a Maximum Clique Algorithm

0

10

20

30

40

50

60

70

80

2 16 32 48 6420

Sp
ee
du

p

Number of threads

brock400_1
370.8 s, 41.0%, (20, 2, 10, 11, 4, 2, 1×21)

1
2

3

r

0

10

20

30

40

50

60

70

80

2 16 32 48 6420

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 12 / 16



In a Maximum Clique Algorithm

0

20

40

60

80

100

120

2 16 32 48 6420

Sp
ee
du

p

Number of threads

brock400_3
213.1 s, 86.2%, (14, 10, 1, 4, 2, 1×26)

1

2

3

r

0

20

40

60

80

100

120

2 16 32 48 6420

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 12 / 16



In a Maximum Clique Algorithm

0

20

40

60

80

100

120

2 16 32 48 6420

Sp
ee
du

p

Number of threads

brock400_3
213.1 s, 86.2%, (14, 10, 1, 4, 2, 1×26)

1

2

3

rc

0

20

40

60

80

100

120

2 16 32 48 6420

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 12 / 16



In a Maximum Clique Algorithm

0

100

200

300

400

500

600

700

800

2 16 32 48 6420

Sp
ee
du

p

Number of threads

gen400_p0.9_75
318 082 s, 99.9%, (17, 8, 3, 4, 1×71)

1

2

3

r

c
0

100

200

300

400

500

600

700

800

2 16 32 48 6420

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 12 / 16



In a Maximum Clique Algorithm

0

10

20

30

40

50

60

2 16 32 48 6420

Sp
ee
du

p

Number of threads

MANN_a45
438 s, 0.2%, (1×5, 6, 1×4, 6, 1×334)

1

2

3
r

c

0

10

20

30

40

50

60

2 16 32 48 6420

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 12 / 16



The Theoretical Guarantees Hold in Practice!

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

1 vs 2

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

2 vs 4

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

4 vs 8

2×

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

8 vs 16

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

16 vs 32

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

32 vs 32

1×

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 13 / 16



Abstracting to Skeletons

This work-stealing turns a twenty line recursive search
algorithm into three hundred lines, or nearly a thousand lines to
also support distributed memory parallelism.
Algorithmic skeletons provide an alternative:

Write your code once, to fit the skeleton.
Compile many times, for sequential, shared memory, cloud, or
HPC parallelism.
Performance close to hand-tuned (even sequentially).
Can swap in di�erent search schedulers.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 14 / 16



Modern Algorithmic Features that Cause Problems

Non-monotonic propagators and misleading bound functions
break the guarantees.

No guarantees with adaptive variable-ordering heuristics like
wdeg, although in practice anomalies seem much rarer.

Learning ruins everything.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 15 / 16



A �ick Preview of a Possible Alternative

Introduce just a tiny bit of randomness into value-ordering.

Use aggressive restarts and decision nogood recording.

All gather nogoods on restarts.
Advantages:

Extremely non-intrusive to implement.
Scales to many hundreds of cores.

Problems:
Need to implement 2WL for nogood recording.
It changes (improves?) the sequential search algorithm.
No performance guarantees, although if we could come up with
some notion of “statistical” guarantees they would probably hold.

Blair Archibald, Ruth Ho�mann, Ciaran McCreesh, Patrick Prosser, Phil Trinder

Parallel Search, Ordering, Reproducibility, and Scalability 16 / 16



http://www.dcs.gla.ac.uk/~ciaran

ciaran.mccreesh@glasgow.ac.uk

http://www.dcs.gla.ac.uk/~ciaran
mailto:ciaran.mccreesh@glasgow.ac.uk

