
Modelling and Optimisation with Graphs

Özgür Akgün Fraser Dunlop Jessica Enright
Chris Je�erson Ciaran McCreesh Patrick Prosser
James Trimble

Constraint Programming

A declarative way of specifying (hard) problems.
Variables, each with a domain of possible values.

Finite, usually integers or booleans.
Arrays and sets of integers also supported, either directly or
indirectly.
Some solvers do floating point.

Constraints.
No requirements of linearity, convexity, etc.
Rich global constraints, e.g. all di�erent, regular, circuit.

An objective.
Assign each variable a value from its domain, respecting all
constraints.
Decide, enumerate, minimise a variable, or maximise a variable.
Can also produce Pareto fronts.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 1 / 15

Solvers

Dedicated constraint programming solvers:
Gecode, Minion, Choco, OR-Tools, . . .
Combine inference and intelligent backtracking search.

Specialised solvers for more restricted se�ings:
SAT (boolean variables and constraints).
MIP (integer and real variables, linear inequalities).
Lots more. . .

Or local search, which loses any guarantees of completeness.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 2 / 15

High Level Modelling with Essence and Conjure

http://conjure.readthedocs.io/en/latest/

Developed at St Andrews and York.

Supports rich and nested structural types, such as sets of
functions from sets of sets to partitions of matrices.

Extensive automated reformulation.

Targets CP, MIP, SAT, local search solvers.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 3 / 15

http://conjure.readthedocs.io/en/latest/

Magic Squares

Page 47 of the second part of Vol. II of Athanasius Kircher’s “Oedipus
Aegyptiacus”, published 1653. Scan by Feldkurat Katz. Public domain.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 4 / 15

Magic Squares

given n : int(1..)

letting Index be domain int(1..n),
Value be domain int(1..n**2)

find square : matrix indexed by [Index,Index] of Value,
s : int(1..sum i : int(n**2+1-n..n**2) . i)

such that
allDiff(flatten(square)),
forAll r : Index . (sum c : Index . square[r,c]) = s,
forAll c : Index . (sum r : Index . square[r,c]) = s,
(sum d : Index . square[d,d]) = s,
(sum d : Index . square[d,n+1-d]) = s

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 4 / 15

Magic Squares

$ echo "letting n be 4" > magic.param
$./conjure solve magic.essence magic.param
$ tail magic-magic.solution
1 2 15 16

12 14 3 5
13 7 10 4
8 11 6 9

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 4 / 15

What About Graphs?

How are they represented? Adjacency lists? Adjacency matrix?

Some of the graphs we’d like to deal with are quite big.

Expressing certain constraints (e.g. connectivity) by hand is
di�icult and heavily representation-dependent.

It’s very easy to end up with an O(|V |3) or O(|V |4) in the
encoding size. . .

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 5 / 15

Modelling and Optimisation with Graphs

Three year project led by Glasgow, together with St Andrews
and Edinburgh.
Working:

High level modelling for graphs, in Essence.
Be�er dedicated graph solvers.

Ongoing:
Be�er compilation and reformulation.
Hybrid solving strategies.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 6 / 15

Graphs by Example: Maximum Common Subgraphs

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 7 / 15

Graphs by Example: Maximum Common Subgraphs

Finding the di�erence between two graphs comes down to
finding as large a graph as possible that they both have in
common. This is known as the maximum common induced
subgraph problem.

This concept generalises to n graphs.

Application in metabolomics: we’re given approximate
molecular weights for the constituents of some compound, and
we want to identify what the molecules are from a database.
Sets of molecules with high similarities are much more likely to
occur than unrelated molecules.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 7 / 15

Graphs by Example: Maximum Common Subgraphs

given n : int
given t : int
given G : matrix indexed by [int(1..t)] of

graph of int(1..n)

find z : graph of int(1..n)
find F : matrix indexed by [int(1..t)] of

function int(1..n) --> int(1..n)

such that forAll i : int(1..t) .
subisomorphismInduced(z, G[i], F[i])

maximising |vertices(z)|

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 7 / 15

Graphs by Example: Maximum Common Subgraphs

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 7 / 15

Graphs by Example: Diseased Cows

We have a graph of contacts (trade, or adjacent farms) between
ca�le in Scotland.

If a disease outbreak occurs, we want to limit its spread.

Can we vaccinate or screen on a small number of trade and
contact routes?

This comes down to deleting edges from a graph, to avoid
having any large components.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 8 / 15

Graphs by Example: Diseased Cows

given n : int
given k : int
given g : graph of int(1..n)

find deletions : set of (int(1..n), int(1..n))
find h : graph of int(1..n)

such that h subgraph g
such that edges(h) = edges(g) - deletions
such that all[|cc| < k | cc <- connectedComponents(h)]

minimising |deletions|

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 8 / 15

Graphs by Example: Kidney Exchange

If two people both need kidney transplants, and have willing but
incompatible donors, then they can exchange donors.

Also, we can do this with cycles of three people.

Also, we might have altruistic donors.

Potential exchanges show up as 2-cycles, 3-cycles, etc in a graph.

Given a set of pa�ern graphs, try to cover as much of the
exchange graph as possible, not using any vertex more than
once.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 9 / 15

Graphs by Example: Kidney Exchange

given np : int
given max_pat_sz : int
given patterns : matrix indexed by [int(1..np)] of

graph of int(1..max_pat_sz)
given benefit : matrix indexed by [int(1..np)] of int
given tgt_sz : int
given target : graph of int(1..tgt_sz)
find map : set of (int(1..np), function

int(1..max_pat_sz) --> int(1..tgt_sz))
such that forAll (i, f) in map .

subisomorphism(patterns[i], target, f)
such that forAll {(i1,f1), (i2,f2)} subsetEq map .

range(f1) intersect range(f2) = {}
maximising sum([benefit[i] | (i, f) <- map])

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 9 / 15

Unfortunately. . .

O�en orders of magnitude slower than dedicated solvers.

Can only handle small graphs.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 10 / 15

The Glasgow Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

1

2

3 4

1 2

3 4

5 6

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 11 / 15

https://github.com/ciaranm/glasgow-subgraph-solver

The Glasgow Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

The bestest subgraph isomorphism solver in the whole wide
world.

Support for non-induced subgraph isomorphism, induced
subgraph isomorphism, graph homomorphisms, locally injective
graph homomorphisms, clique.

A bit like a constraint programming solver, but with specialised
algorithms, data structures, and search strategies.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 11 / 15

https://github.com/ciaranm/glasgow-subgraph-solver

Unfortunately. . .

It only supports subgraph finding, and basic labelling on vertices
and edges.

I really don’t want to have to start implementing dozens of new
constraints for it.
Although it’s theoretically possible to reduce non-subgraph
constraints to clique, the encoding is huge and loses lots of
helpful information.

(Exceptions apply, and this can be a really good idea
occasionally.)

For graph generation problems, we probably want to use
another di�erent solver.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 12 / 15

Why Not Both?

We could use a graph solver for graphy things, and a constraint
programming solver for rich constraints.
This can go in at least two ways:

Let a graph solver use a constraint programming solver to check
a few side constraints. Useful for “find me a subgraph
isomorphism that uses no more than three red vertices and at
least two blue vertices”.
Use graph solvers to (dynamically?) generate parts of a constraint
or MIP model. This is the state of the art for kidney exchange.

The high level modelling suite of tools should take care of all of
this for us.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 13 / 15

The Easy Part

The subgraph solver can output partial or full candidate
assignments, or reduced domains.
The constraint solver can treat these as additional constraints to
a model.

Output one of “yes”, or “no because . . . ”.
Be�er: have an option for an “I can’t easily tell, but I do know
that . . . ” mode.
Fortunately, this is minimal e�ort in most constraint solvers.

Three line shell script to glue the two together.

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 14 / 15

The Hard Part

Which bits go where?

Özgür Akgün, Fraser Dunlop, Jessica Enright, Chris Je�erson, Ciaran McCreesh, Patrick Prosser, James Trimble

Modelling and Optimisation with Graphs 15 / 15

http://www.dcs.gla.ac.uk/~ciaran

ciaran.mccreesh@glasgow.ac.uk

http://www.dcs.gla.ac.uk/~ciaran
mailto:ciaran.mccreesh@glasgow.ac.uk

