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What We Have Now
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Solvers

m Increasingly being used for decision making, not just decision
support.
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The Problem

Solvers have bugs.
Some models are mishandled.

m Often reasonably easy to spot, but hard to deal with.
m Some instances will make the solver give the wrong answer.

m Often rare: between one in a hundred and one in ten thousand,
and only on relatively large instances.

m Even if the answer is right, it might have been reached by
unsound reasoning.

® Much more common, but essentially impossible to detect.
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For Example...

$ ./glasgow_clique_solver 25-727-9826.clq
size = 10
vertices = 1 2 4 9 15 20 21 22 24 25

$ ./MoMC2016 25-727-9826.clq

M 21 20 11 42219 24 1 13
s Instance 25-727-9826.clq Max_CLQ 9
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Unit Testing?

m Tells you that some parts of your solver produce the answer you
expect on some inputs.
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Whole Program Testing?

m Need many instances that are reasonably easy to solve.

m Optimal solutions must be known.
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Proofs of Correctness?

m Tell you nothing about the algorithm implementation.

m Proofs are just as susceptible to missing cases or combinations
of effects as programs are, and with fewer opportunities
(compiler, testing, real instances) for this to be caught.
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Formal Verification?

m A few attempts on relatively simple solvers.

m Nothing on the scary algorithms.

m Particularly hard to do with performance-critical algorithms and
solvers.
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None of This Works...

m MoMC was widely tested, and its algorithm proven correct.
m For the bug to result in a wrong solution being given:

m The graph density must be between 0.6 and 0.8.

m The optimal solution must be unique...

m ...and it must include the last vertex in the input graph...

m ...and it must not be detected during presolve...

m ...and the bound function has to behave in a certain way.

m On the other hand, in any given run, the solver usually throws
away large numbers of subproblems without justification.
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Two Different Solvers

m Removes the need to know what the optimal solution is, for
whole program test instances.

m Given enough instances, eventually they will disagree.
m But only if you generate instances that could trigger the bug. ..

m Needs two good solvers that use very different techniques.
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Two Independent Implementations

Run two independent implementations of the same algorithm,
compare their step by step function calls (or at least compare
number of recursive calls made).

Requires, e.g. stable sorting, reproducible random number

generation.

A good way of converging on the same bugs...

m Also doesn’t help you if the algorithm is incorrect.
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Solution Checkers

m For yes-instances of decision problems, it is usually relatively
easy to check whether a solution is valid.
m Similarly, for optimisation problems, we can check that a
solution is valid.
m Have someone else independently write a solution checker.
m Should be much less effort than a full solver.

Ciaran McCreesh




Checking Outputs, not Programs

O@0000

The Idea Behind Proof Logging

m Have the solver output a solution, together with an auditable
“proof”.

m When we’re dealing with NP-hard problems, this proof can be
exponentially long, but hopefully only proportional to how long
the solver took.

m Someone else writes a “proof checker”, which is much simpler
than the solver.

m A bit like a solution checker, but for unsatisfiable instances.
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How It Works in SAT

m A common proof format known as DRAT.
m Essentially, a sequence of redundant clauses.

m In the annual SAT competition, solvers are expected to be able to
produce proofs.
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Are Computer Proofs Socially Acceptable?

COUNTEREXAMPLE TO EULER’S CON]JECTURE
ON SUMS OF LIKE POWERS :

BY L. J. LANDER AND T. R. PARKIN
Communicated by J. D. Swift, June 27, 1966
A direct search on the CDC 6600 yielded ‘ o
’ 27° 4 84% 4 110° + 1335 = 1445

as the smallest instance in which four fifth powers sum to a fifth
power. This is a counterexample to a conjecture by Euler [1] that at
least # nth powers are required to sum to an nth power, 2> 2.

REFERENCE '

1. L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York,
1952, p. 648.
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Are Computer Proofs Socially Acceptable?

Maths proof smashes size record

Supercomputer produces a 200-terabyte proof — but is it really mathematics?

BY EVELYN LAMB

hree computer scientists have announced

the largest-ever mathematical proof: a

file that comes in at a whopping 200 ter-
abytes, equivalent to all the digitized text held
by the US Library of Congress. The researchers
have created" a 68-gigabyte compressed version
of their solution — which would allow anyone
with about 30,000 hours of spare processor time
to download, reconstruct and verify it — but
ahuman could never hope to read through it.
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Computer-assisted proofs too large to be
directly verifiable by humans have become
common, as have computers that solve prob-
lems in combinatorics — the study of finite
discrete structures — by checking through
umpteen individual cases. Still, “200 terabytes
is unbelievable”, says Ronald Graham, a math-
ematician at the University of California, San
Diego. The previous record-holder is thought
to be a 13-gigabyte proof’, published in 2014.

The puzzle that required the 200-terabyte
proof, called the Boolean Pythagorean triples
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problem, has troubled mathematicians for dec-
ades. In the 1980s, Graham offered a prize of
US$100 for anyone who could solve it. (He pre-
sented the cheque to one of the three computer
scientists, Marijn Heule of the University of
Texas at Austin, last month.) The problem asks
whether it is possible to colour each positive
integer either red or blue, so that no trio of inte-
gers a, b and ¢ that satisfy Pythagoras’ famous
equation a’ + b= are all the same colour. For
example, for the Pythagorean triple 3, 4and 5,
if 3 and 5 were blue, 4 would have to bered. >
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Why DRAT Proofs Won’t Work Elsewhere

m DRAT proofs are very closely tied to SAT solving.
m SAT solvers can’t count:
m Exponential proofs for simple “pigeonhole” problems.
m Can’t reason about vertex degrees in graphs.
m Can’t do all-different reasoning.
m Solvers that perform stronger reasoning than SAT solvers will
need a stronger proof format.
m But can we trust a proof checker that knows dozens of rich
constraints?
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However...

m Recent discovery: pseudo-boolean (cutting planes) proofs can
express everything we currently do in subgraph algorithms, such
as...

All different and Hall sets,

Colour bounds,

Neighbourhood degree sequence reasoning,

m Counting short paths.

m But pseudo-boolean solvers know nothing about graphs,
matching algorithms, etc.
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Trustworthy Solvers

m High-level solvers should use verifiable compilation techniques
to produce low-level models.

m Low-level CP solvers should be “auditable”. For any answer, we
should be able to request a proof:

m In a standard format,
m Which does not take much longer than the original solution to

produce,

m That is easily verifiable by a much simpler tool,

m And that does not prevent solvers from supporting new global
constraints.

m These proofs should be translatable back into high-level terms.
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Safe Model Compilation

m It’s possible for compilers, and they have front-end languages
and target architectures that are much richer than CP models

and solvers.

m We can already translate backwards, for outputting solutions.
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A Proof Language for CP

m DRAT won’t work.
m Cutting planes might be enough.

m We might need a suite of proof languages that can be combined.
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Does Anyone Care?

EPSRC 9 search
« FUNDING RESEARCH INNOVATION SKILLS NEWS, EVENTS AND PUBLICATIONS ABOUT US
IFundmg > Home/ Funding/ Calls/ Seciriy forailn an Al cnabled socety - calfor proposals Email Updates

calls To sign up for updates or

> H N to access your subscriber
Security for all in an Al enabled e e

society - call for proposals

Submit

4 Issue date: 03 July 2019 -

£ Opening date: 30 July 2019 Investment

© Closing date: 10 October 2019 at 16:00 Timeline

© Status Oen The Investment Timeline &
high-level view of upcomir

¥ Tag: Invitation for proposals.

o Explainable Al: As part of the problem with many approaches \
currently utilised for Al, black box methods make it difficult to
interrogate a system if something goes wrong. Could an Al system
be able to explain its security properties and provide assurances
about its security as it evolves? Could this be adaptable to different

he Right Answer, and It Can Prove It
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Does Anyone Care?

INDEPENDENT
HIGH-LEVEL EXPERT GROUP ON
ARTIFICIAL INTELLIGENCE

SET UP BY THE EUROPEAN COMMISSION

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

<

Ensure that the development, deployment and use of Al systems meets the seven key requirements for
Trustworthy Al: (1) human agency and oversight, (2) technical robustness and safety, (3) privacy and data
governance, (4) transparency, (5) diversity, non-discri and faimess, (6) and societal
well-being and (7) accountability.

<

Consider technical and non-technical methads to ensure the implementation of those requirements.
Foster research and innovation to help assess Al systems and to further the achievement of the

<

requirements; disseminate results and open questions to the wider public, and systematically train a new
generation of experts in Al ethics.
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Does Anyone Care?

- NEW YORKER
THE HIDDEN COJSTS OF AUTOMATED
THINKING

By Jonathan Zittrain iy 23, 2019

Oerreliance on artificial intelligence may put us in intellectual
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What if it Actually Works?

m Might auditable algorithms and solvers become a necessity, for
liability reasons?
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Making the Glasgow Subgraph Solver Produce Proofs

m Theoretically possible.

m Practically possible, but quite a bit of engineering work.

Ciaran McCreesh

r Produces the Right Answer, and It Can Prove It



A Proof of Concept
(o] le]e]e]

A Very Small CP Solver

O/ciaranm/certified—constraint—solver

m Written to iron out the engineering details before tacking a more
complex solver.

m Supports not equals (AC), all different (GAC), and table
constraints (checking).

m Sufficient for Sudoku, clique, graph colouring, subgraph
isomorphism, ...

m The solver is definitely buggy.

m But when it outputs an answer, we can verify it is correct!

Ciaran McCreesh
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For Example...

$ cat small.model

intvar A {1
intvar B { 1
intvar C { 1
intvar D { 1
intvar E { 1
alldifferent
alldifferent
notequal B E

Ciaran McCreesh
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$ certified_constraint_solver \
--prove small.model

status = false

nodes = 5

$ 1s small.=*
small.log small.model small.opb

$ refpy small.{opb,log}
Verification succeeded.
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Checking the Proof

O/StephanGocht/refpy

m A proof checker for cutting planes proofs.

m Knows nothing about Hall sets, matching algorithms, strongly
connected components, ...

m Written entirely independently. No collusion.

Ciaran McCreesh
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Our Example, Again

intvar
intvar
intvar
intvar
intvar E { 1
alldifferent
alldifferent
notequal B E

O O W >
A
_ o
AW NN W N
O > WY
O @
m O
(SR}

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It



Ugly Technical Details

O®00000000000000

Pseudo-Boolean Solving

m Variables x; € {0, 1}.
m Literals ¢; are x; or X;, where x; + x; = 1.
m Constraints )}; ai¢; > A, where a;, A € Z.

m Find a satisfying assignment maximising 3’; a;{;, where a; € Z.
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Compiling CP Variables to PB

m A CP variable X € {a, b, ¢} becomes xg, xp, Xc.

m Each variable takes exactly one value:

&
\%

[
|
X
\Y
.
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Compiling CP Variables to PB

CP Model Generated OPB Fragment
intvar A { 1 2 } * variable A: (1, x1) (2, x2)
intvar B { 1 3 } 1 x1 1 x2 > 1 ;

intvar C { 1 2 3 } -1 x1 -1 x2 >= -1 ;

intvar D { 1 2 } * variable B: (1, x3) (3, x4)
intvar E { 1 3 } 1T x3 1 x4 > 1

-1 x3 -1 x4 >= -1 ;

* variable C: (1, x5) (2, x6) (3, x7)
1T x5 1 x6 1 x7 > 1 ;
-1 x5 -1 x6 -1 x7 >= -1 ;

* variable D: (1, x8) (2, x9)

1 x8 1 x9 >= 1 ;

-1 x8 -1 x9 >= -1 ;

* variable E: (1, x10) (3, x11)
1T x10 1 x11 >= 1
-1 x10 -1 x11 >= -1
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Compiling Not Equals to PB

m CP variables X € {a, b, c} and Y € {b, ¢, d}, constraint X # Y.

m For each value they have in common, we can’t pick both:

—_

Xp+ yp < i.e. =Ixp +—=Typ > =1

Xcty.<1 i.e. =Ixc+ =1y, 2 -1

Ciaran McCreesh
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Compiling Not Equals to PB

CP Model Generated OPB Fragment
intvar B { 1 3 } * variable B: (1, x3) (3, x4)
intvar E { 1 3 } * variable E: (1, x10) (3, x11)
notequal B E * not equals

-1 x3 -1 x10 >= -1
-1 x4 -1 x11 >= -1

)

)

Ciaran McCreesh
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Compiling All-Different

m CPvariables X € {a, b, c}, Y € {b, c}, Z € {b, ¢, d}, constraint
alldifferent({X, Y, Z}).

m We could do pairwise not-equals, as in SAT, or...

m For each value, it can be used at most once:

—-1x, = —1

=Ixp+ —Typ + =125 > —1
=1y + -1z, 2 -1

=lzg 2 -1

Ciaran McCreesh
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Compiling All-Different

CP Model Generated OPB Fragment

intvar A { 1 2 } * variable A: (1, x1) (2, x2)

intvar B { 1 3 } * variable B: (1, x3) (3, x4)

intvar C { 1 2 3 } * variable C: (1, x5) (2, x6) (3, x7)
alldifferent 3 A B C * all different

-1 x1 -1 x3 -1 x5 >= -1
-1 x2 -1 x6 >= -1
-1 x4 -1 x7 >= -1

’
)

)

Ciaran McCreesh
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Compiling Table

m Involves introducing auxiliary variables in the PB model.

Ciaran McCreesh
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Cutting Planes Proofs

Model axioms From the input file
Literal axioms m

cail; > bt >
Addition Yiati=A  ¥;bili>B

Zi(a,- + b,')f,' >A+B

Multiplication Yiali = A

foranyce Z Yicail; > cA

Division Yiaili> A
+ .

forany c € N hoF [%]g’. > [é]

Ciaran McCreesh
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Machine-Readable Proofs: Getting Started

Proof Log Verifier Output

refutation using f 1 p c @ 0 (rule 0): >= 10

f 18 @ 1 (rule 1): +1x1 +1x2 >= 1
2 (rule 1): +1~x1 +1~x2 >= 1
3 (rule 1): +1x3 +1x4 >= 1
4 (rule 1): +1~x3 +1~x4 >= 1
* and so on
18 (rule 1): +1~x4 +1~x7 >= 1
111 0 19 (rule 2): +1x1 >= 0

20 (rule 2): +1~x1 >= 0
21 (rule 2): +1x2 >= 0
22 (rule 2): +1~x2 >= 0
* and so on

39 (rule 2): +1x11 >= @
40 (rule 2): +1~x11 >= 0
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The CP Search Tree

m No propagation initially.

intvar A { 1 2 }

intvar B { 1 3 } m Guess A=1,50 A # 2:
intvar C { 1 2 3 }

intvar D { 1 2 } mB+x1,C#1,C+3(C2
intvar E { 1 3 } m £E#3(C1)

m Ce{2},De{1,2}, E€ {1} (C3%)
2‘;;3???1{BAEB*CC1} «c, mGuessA=25s0A#1:
alldiff { CDE } * C3 m C#2(C2
m D#1(C3)
m Guess B=1,s0 B+ 3:
m ...(C1,C2,C3)...4
m Guess B=3,s0B# 1:
m ...(C1,C2,C3)...4

Ciaran McCreesh
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Overview of our Proof

Derive a; > 1.

Derivea_2+b_1 > 1.

Derivea_2+b_3 > 1.

Combine 2 and 3 to derive a; > 1.

Combine 1 and 4 to derive 0 > 1.
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Justifying Deletions

m Whenever a CP propagator performs a deletion F # v, generate
a proof line of the form

at+bh+to+e +f, > 1.
N— ———
A subsequence of the active guesses
m Remember the proof line number alongside F’s domain.
m When we get a domain wipeout, combine the reasons with the
“takes at least one value” model axiom to get
@+ b+ +ey > 1,
N ——
A subsequence of earlier guesses
and remember this as the deletion reason for the last guess.
m If we detect a contradiction involving multiple variables, derive

the same thing, using constraint-specific rules.
Ciaran McCreesh
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Proving A # 1

Proof Log Verifier Output
* guess A=1 (x1) so Al=2 (x2)
p 20 41 (rule 3): +1~x1 +1~x2 >= 1
* all different, B!=1
p 01+ 14 + 27 + 41 + 2 d @ 42 (rule 4): +1~x1 +1~x3 >= 1
* all different, C!=1
p 01+ 14 + 23 + 41 + 2 d 0 43 (rule 5): +1~x1 +1~x5 >= 1
* all different, C!=3
p o1+ 3+ 14+ 16 + 27 +

41 +2d o 44 (rule 6): +1~x1 +1~x7 >= 1
* not_equals, E!=3
p 3 42 + 18 + 2 d 0 45 (rule 7): +1~x1 +1~x11 >= 1
* alldifferent contradiction
p 543 + 44 + 4 d 0 46 (rule 8): +1x6 +1~x1 >= 1
p73de®e 47 (rule 9): +1x8 +1x9 >= 1
p 9 45 + 3 d 0 48 (rule 10): +1x10 +1~x1 >= 1
p o 11 + 12 + 27 + 46 +

47 + 48 + 4 d 0 49 (rule 11): +1~x1 >= 1
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The Remainder of the Proof

Proof Log Verifier Output

* guessing A=1 (x1)

* L.

p 49 20 + 2 d 0 50 (rule 12): +1~x1 >= 1

* guessing A=2 (x2)

* L.

* guessing A=2 (x2) B=1 (x3)

*

p 59 24 +2d o 60 (rule 22): +1~x3 +1~x2 >= 1
* guessing A=2 (x2) B=3 (x4)

* L.

p 66 26 + 2 d @ 67 (rule 29): +1~x4 +1~x2 >= 1
p 360 + 67 + 3 da@ 68 (rule 30): +1~x2 >= 1

p 68 22 + 2 d 0 69 (rule 31): +1~x2 >= 1

p 150+ 69 +3dae 70 (rule 32): >=1

c 70 0 Verification succeeded.
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The Hall Violator Step

Hall - Violebst
Udqlues
& 2 % &4 S
> R
A =
thl g 5
Violapon
(/ﬁ‘lf&éh < Z
D Z
S
0
£ o
21 P e
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The Hall Violator Step

For each variable in the Hall violator, take the “at least one value
from its domain” model axiom, and for each value already
eliminated from this domain, add the reason.

Divide 1 by a large number to remove duplicate guesses.

Add together each of the “this value can be used at most once”
model axioms for values in the Hall violator.

From 3, for each variable in the constraint, for each value in its
initial domain, if either the value is not in the Hall violator, or the
value is not in its current domain, cancel it using a literal axiom.

Add together 2 and 4. Divide by a large number.
Everything (except guesses) cancels out, but only if you correctly

found a Hall violator.

Ciaran McCreesh
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Are Cutting Planes Proofs Enough for CP?

m Can do:
m Anything SAT can do.
m All the clever subgraph isomorphism things we do currently.
m GAC on all(?) of the polynomial-time flow-based constraints.
m BC for linear inequalities over boolean variables (duh).
m Probably some other constraints that SAT can’t do.
m Can’t do:
m Sparse domains.
m Probably some other constraints.

m Interesting project: categorise the global constraints catalogue.

Ciaran McCreesh
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