
My Solver Produces the Right Answer,
And It Can Prove It
Ciaran McCreesh
with Jan El�ers, Stephan Gocht, and Jakob Nordström



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Solvers

Increasingly being used for decision making, not just decision
support.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 1 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The Problem

Solvers have bugs.
Some models are mishandled.

O�en reasonably easy to spot, but hard to deal with.

Some instances will make the solver give the wrong answer.
O�en rare: between one in a hundred and one in ten thousand,
and only on relatively large instances.

Even if the answer is right, it might have been reached by
unsound reasoning.

Much more common, but essentially impossible to detect.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 2 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

For Example. . .

$ ./glasgow_clique_solver 25-727-9826.clq
size = 10
vertices = 1 2 4 9 15 20 21 22 24 25

$ ./MoMC2016 25-727-9826.clq
M 21 20 11 4 22 19 24 1 13
s Instance 25-727-9826.clq Max_CLQ 9

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 3 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Unit Testing?

Tells you that some parts of your solver produce the answer you
expect on some inputs.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 4 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Whole Program Testing?

Need many instances that are reasonably easy to solve.

Optimal solutions must be known.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 5 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Proofs of Correctness?

Tell you nothing about the algorithm implementation.

Proofs are just as susceptible to missing cases or combinations
of e�ects as programs are, and with fewer opportunities
(compiler, testing, real instances) for this to be caught.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 6 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Formal Verification?

A few a�empts on relatively simple solvers.

Nothing on the scary algorithms.

Particularly hard to do with performance-critical algorithms and
solvers.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 7 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

None of This Works. . .

MoMC was widely tested, and its algorithm proven correct.
For the bug to result in a wrong solution being given:

The graph density must be between 0.6 and 0.8.
The optimal solution must be unique. . .
. . . and it must include the last vertex in the input graph. . .
. . . and it must not be detected during presolve. . .
. . . and the bound function has to behave in a certain way.

On the other hand, in any given run, the solver usually throws
away large numbers of subproblems without justification.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 8 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Two Di�erent Solvers

Removes the need to know what the optimal solution is, for
whole program test instances.
Given enough instances, eventually they will disagree.

But only if you generate instances that could trigger the bug. . .

Needs two good solvers that use very di�erent techniques.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 9 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Two Independent Implementations

Run two independent implementations of the same algorithm,
compare their step by step function calls (or at least compare
number of recursive calls made).

Requires, e.g. stable sorting, reproducible random number
generation.

A good way of converging on the same bugs. . .

Also doesn’t help you if the algorithm is incorrect.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 10 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Solution Checkers

For yes-instances of decision problems, it is usually relatively
easy to check whether a solution is valid.

Similarly, for optimisation problems, we can check that a
solution is valid.
Have someone else independently write a solution checker.

Should be much less e�ort than a full solver.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 11 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The Idea Behind Proof Logging

Have the solver output a solution, together with an auditable
“proof”.

When we’re dealing with NP-hard problems, this proof can be
exponentially long, but hopefully only proportional to how long
the solver took.

Someone else writes a “proof checker”, which is much simpler
than the solver.

A bit like a solution checker, but for unsatisfiable instances.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 12 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

How It Works in SAT

A common proof format known as DRAT.

Essentially, a sequence of redundant clauses.

In the annual SAT competition, solvers are expected to be able to
produce proofs.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 13 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Are Computer Proofs Socially Acceptable?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 14 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Are Computer Proofs Socially Acceptable?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 14 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Why DRAT Proofs Won’t Work Elsewhere

DRAT proofs are very closely tied to SAT solving.
SAT solvers can’t count:

Exponential proofs for simple “pigeonhole” problems.
Can’t reason about vertex degrees in graphs.
Can’t do all-di�erent reasoning.

Solvers that perform stronger reasoning than SAT solvers will
need a stronger proof format.

But can we trust a proof checker that knows dozens of rich
constraints?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 15 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

However. . .

Recent discovery: pseudo-boolean (cu�ing planes) proofs can
express everything we currently do in subgraph algorithms, such
as. . .

All di�erent and Hall sets,
Colour bounds,
Neighbourhood degree sequence reasoning,
Counting short paths.

But pseudo-boolean solvers know nothing about graphs,
matching algorithms, etc.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 16 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Trustworthy Solvers

High-level solvers should use verifiable compilation techniques
to produce low-level models.
Low-level CP solvers should be “auditable”. For any answer, we
should be able to request a proof:

In a standard format,
Which does not take much longer than the original solution to
produce,
That is easily verifiable by a much simpler tool,
And that does not prevent solvers from supporting new global
constraints.

These proofs should be translatable back into high-level terms.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 17 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Safe Model Compilation

It’s possible for compilers, and they have front-end languages
and target architectures that are much richer than CP models
and solvers.

We can already translate backwards, for outpu�ing solutions.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 18 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

A Proof Language for CP

DRAT won’t work.

Cu�ing planes might be enough.

We might need a suite of proof languages that can be combined.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 19 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Does Anyone Care?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 20 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Does Anyone Care?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 20 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Does Anyone Care?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 20 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

What if it Actually Works?

Might auditable algorithms and solvers become a necessity, for
liability reasons?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 21 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Making the Glasgow Subgraph Solver Produce Proofs

Theoretically possible.

Practically possible, but quite a bit of engineering work.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 22 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

A Very Small CP Solver

/ciaranm/certified-constraint-solver

Wri�en to iron out the engineering details before tacking a more
complex solver.
Supports not equals (AC), all di�erent (GAC), and table
constraints (checking).

Su�icient for Sudoku, clique, graph colouring, subgraph
isomorphism, . . .

The solver is definitely buggy.

But when it outputs an answer, we can verify it is correct!

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 23 / 40

/ciaranm/certified-constraint-solver


What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

For Example. . .

$ cat small.model
intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }
alldifferent { A B C }
alldifferent { C D E }
notequal B E

$ certified_constraint_solver \
--prove small.model

status = false
nodes = 5

$ ls small.*
small.log small.model small.opb

$ refpy small.{opb,log}
Verification succeeded.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 24 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Checking the Proof

/StephanGocht/refpy

A proof checker for cu�ing planes proofs.

Knows nothing about Hall sets, matching algorithms, strongly
connected components, . . .

Wri�en entirely independently. No collusion.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 25 / 40

/StephanGocht/refpy


End of The Interesting Part



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Our Example, Again

intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }
alldifferent { A B C }
alldifferent { C D E }
notequal B E

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 26 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Pseudo-Boolean Solving

Variables xi ∈ {0, 1}.

Literals `i are xi or xi , where xi + xi = 1.

Constraints
∑

i ai`i ≥ A, where ai,A ∈ Z.

Find a satisfying assignment maximising
∑

i ai`i , where ai ∈ Z.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 27 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling CP Variables to PB

A CP variable X ∈ {a, b, c} becomes xa, xb, xc .

Each variable takes exactly one value:∑
v∈D(X )

xv ≥ 1∑
v∈D(X )

−1xv ≥ −1

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 28 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling CP Variables to PB

CP Model
intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }

Generated OPB Fragment
* variable A: (1, x1) (2, x2)
1 x1 1 x2 >= 1 ;
-1 x1 -1 x2 >= -1 ;
* variable B: (1, x3) (3, x4)
1 x3 1 x4 >= 1 ;
-1 x3 -1 x4 >= -1 ;
* variable C: (1, x5) (2, x6) (3, x7)
1 x5 1 x6 1 x7 >= 1 ;
-1 x5 -1 x6 -1 x7 >= -1 ;
* variable D: (1, x8) (2, x9)
1 x8 1 x9 >= 1 ;
-1 x8 -1 x9 >= -1 ;
* variable E: (1, x10) (3, x11)
1 x10 1 x11 >= 1 ;
-1 x10 -1 x11 >= -1 ;

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 28 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling Not Equals to PB

CP variables X ∈ {a, b, c} and Y ∈ {b, c, d}, constraint X , Y .

For each value they have in common, we can’t pick both:

xb + yb ≤ 1 i.e. −1xb + −1yb ≥ −1

xc + yc ≤ 1 i.e. −1xc + −1yc ≥ −1

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 29 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling Not Equals to PB

CP Model
intvar B { 1 3 }
intvar E { 1 3 }
notequal B E

Generated OPB Fragment
* variable B: (1, x3) (3, x4)
* variable E: (1, x10) (3, x11)
* not equals
-1 x3 -1 x10 >= -1 ;
-1 x4 -1 x11 >= -1 ;

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 29 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling All-Di�erent

CP variables X ∈ {a, b, c}, Y ∈ {b, c}, Z ∈ {b, c, d}, constraint
alldi�erent({X ,Y ,Z }).

We could do pairwise not-equals, as in SAT, or. . .

For each value, it can be used at most once:

−1xa ≥ −1

−1xb + −1yb + −1zb ≥ −1

−1yc + −1zc ≥ −1

−1zd ≥ −1

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 30 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling All-Di�erent

CP Model
intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
alldifferent 3 A B C

Generated OPB Fragment
* variable A: (1, x1) (2, x2)
* variable B: (1, x3) (3, x4)
* variable C: (1, x5) (2, x6) (3, x7)
* all different
-1 x1 -1 x3 -1 x5 >= -1 ;
-1 x2 -1 x6 >= -1 ;
-1 x4 -1 x7 >= -1 ;

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 30 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Compiling Table

Involves introducing auxiliary variables in the PB model.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 31 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Cu�ing Planes Proofs

Model axioms From the input file

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication
for any c ∈ Z

∑
i ai`i ≥ A∑

i cai`i ≥ cA

Division
for any c ∈ N+

∑
i ai`i ≥ A∑

i
⌈ ai

c

⌉
`i ≥

⌈A
c

⌉
Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 32 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Machine-Readable Proofs: Ge�ing Started

Proof Log
refutation using f l p c 0

f 18 0

l 11 0

Verifier Output
0 (rule 0): >= 0

1 (rule 1): +1x1 +1x2 >= 1
2 (rule 1): +1~x1 +1~x2 >= 1
3 (rule 1): +1x3 +1x4 >= 1
4 (rule 1): +1~x3 +1~x4 >= 1
* and so on
18 (rule 1): +1~x4 +1~x7 >= 1

19 (rule 2): +1x1 >= 0
20 (rule 2): +1~x1 >= 0
21 (rule 2): +1x2 >= 0
22 (rule 2): +1~x2 >= 0
* and so on
39 (rule 2): +1x11 >= 0
40 (rule 2): +1~x11 >= 0

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 33 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The CP Search Tree

intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }

notequal B E * C1
alldiff { A B C } * C2
alldiff { C D E } * C3

No propagation initially.
Guess A = 1, so A , 2:

B , 1, C , 1, C , 3 (C2)
E , 3 (C1)
C ∈ {2}, D ∈ {1, 2}, E ∈ {1} (C3 )

Guess A = 2, so A , 1:
C , 2 (C2)
D , 1 (C3)
Guess B = 1, so B , 3:

. . . (C1, C2, C3) . . . 
Guess B = 3, so B , 1:

. . . (C1, C2, C3) . . . 

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 34 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Overview of our Proof

1 Derive a1 ≥ 1.

2 Derive a2 + b1 ≥ 1.

3 Derive a2 + b3 ≥ 1.

4 Combine 2 and 3 to derive a2 ≥ 1.

5 Combine 1 and 4 to derive 0 ≥ 1.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 35 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Justifying Deletions

Whenever a CP propagator performs a deletion F , v , generate
a proof line of the form

a1 + b2 + c2 + e1︸              ︷︷              ︸
A subsequence of the active guesses

+fv ≥ 1.

Remember the proof line number alongside F ’s domain.
When we get a domain wipeout, combine the reasons with the
“takes at least one value” model axiom to get

a1 + b2 + c2︸        ︷︷        ︸
A subsequence of earlier guesses

+e2 ≥ 1,

and remember this as the deletion reason for the last guess.
If we detect a contradiction involving multiple variables, derive
the same thing, using constraint-specific rules.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 36 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Proving A , 1

Proof Log
* guess A=1 (x1) so A!=2 (x2)
p 2 0
* all different , B!=1
p 0 1 + 14 + 27 + 41 + 2 d 0
* all different , C!=1
p 0 1 + 14 + 23 + 41 + 2 d 0
* all different , C!=3
p 0 1 + 3 + 14 + 16 + 27 +

41 + 2 d 0
* not_equals , E!=3
p 3 42 + 18 + 2 d 0
* alldifferent contradiction
p 5 43 + 44 + 4 d 0
p 7 3 d 0
p 9 45 + 3 d 0
p 0 11 + 12 + 27 + 46 +

47 + 48 + 4 d 0

Verifier Output

41 (rule 3): +1~x1 +1~x2 >= 1

42 (rule 4): +1~x1 +1~x3 >= 1

43 (rule 5): +1~x1 +1~x5 >= 1

44 (rule 6): +1~x1 +1~x7 >= 1

45 (rule 7): +1~x1 +1~x11 >= 1

46 (rule 8): +1x6 +1~x1 >= 1
47 (rule 9): +1x8 +1x9 >= 1
48 (rule 10): +1x10 +1~x1 >= 1

49 (rule 11): +1~x1 >= 1

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 37 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The Remainder of the Proof

Proof Log
* guessing A=1 (x1)
* ...
p 49 20 + 2 d 0
* guessing A=2 (x2)
* ...
* guessing A=2 (x2) B=1 (x3)
* ...
p 59 24 + 2 d 0
* guessing A=2 (x2) B=3 (x4)
* ...
p 66 26 + 2 d 0
p 3 60 + 67 + 3 d 0
p 68 22 + 2 d 0
p 1 50 + 69 + 3 d 0
c 70 0

Verifier Output

50 (rule 12): +1~x1 >= 1

60 (rule 22): +1~x3 +1~x2 >= 1

67 (rule 29): +1~x4 +1~x2 >= 1
68 (rule 30): +1~x2 >= 1
69 (rule 31): +1~x2 >= 1
70 (rule 32): >= 1
Verification succeeded.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 38 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The Hall Violator Step

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 39 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The Hall Violator Step

1 For each variable in the Hall violator, take the “at least one value
from its domain” model axiom, and for each value already
eliminated from this domain, add the reason.

2 Divide 1 by a large number to remove duplicate guesses.

3 Add together each of the “this value can be used at most once”
model axioms for values in the Hall violator.

4 From 3, for each variable in the constraint, for each value in its
initial domain, if either the value is not in the Hall violator, or the
value is not in its current domain, cancel it using a literal axiom.

5 Add together 2 and 4. Divide by a large number.

6 Everything (except guesses) cancels out, but only if you correctly
found a Hall violator.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 39 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Are Cu�ing Planes Proofs Enough for CP?

Can do:
Anything SAT can do.
All the clever subgraph isomorphism things we do currently.
GAC on all(?) of the polynomial-time flow-based constraints.
BC for linear inequalities over boolean variables (duh).
Probably some other constraints that SAT can’t do.

Can’t do:
Sparse domains.
Probably some other constraints.

Interesting project: categorise the global constraints catalogue.

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 40 / 40



http://www.dcs.gla.ac.uk/~ciaran

ciaran.mccreesh@glasgow.ac.uk

http://www.dcs.gla.ac.uk/~ciaran
mailto:ciaran.mccreesh@glasgow.ac.uk

	What We Have Now
	Checking Outputs, not Programs
	The Long Term Vision
	A Proof of Concept
	Ugly Technical Details

