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Solvers

Increasingly being used for decision making, not just decision
support.
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The Problem

Solvers have bugs.
Some models are mishandled.

O�en reasonably easy to spot, but hard to deal with.

Some instances will make the solver give the wrong answer.
O�en rare: between one in a hundred and one in ten thousand,
and only on relatively large instances.

Even if the answer is right, it might have been reached by
unsound reasoning.

Much more common, but essentially impossible to detect.
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For Example. . .

$ ./glasgow_clique_solver 25-727-9826.clq
size = 10
vertices = 1 2 4 9 15 20 21 22 24 25

$ ./MoMC2016 25-727-9826.clq
M 21 20 11 4 22 19 24 1 13
s Instance 25-727-9826.clq Max_CLQ 9
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Unit Testing?

Tells you that some parts of your solver produce the answer you
expect on some inputs.
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Whole Program Testing?

Need many instances that are reasonably easy to solve.

Optimal solutions must be known.
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Proofs of Correctness?

Tell you nothing about the algorithm implementation.

Proofs are just as susceptible to missing cases or combinations
of e�ects as programs are, and with fewer opportunities
(compiler, testing, real instances) for this to be caught.
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Formal Verification?

A few a�empts on relatively simple solvers.

Nothing on the scary algorithms.

Particularly hard to do with performance-critical algorithms and
solvers.
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None of This Works. . .

MoMC was widely tested, and its algorithm proven correct.
For the bug to result in a wrong solution being given:

The graph density must be between 0.6 and 0.8.
The optimal solution must be unique. . .
. . . and it must include the last vertex in the input graph. . .
. . . and it must not be detected during presolve. . .
. . . and the bound function has to behave in a certain way.

On the other hand, in any given run, the solver usually throws
away large numbers of subproblems without justification.
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Two Di�erent Solvers

Removes the need to know what the optimal solution is, for
whole program test instances.
Given enough instances, eventually they will disagree.

But only if you generate instances that could trigger the bug. . .

Needs two good solvers that use very di�erent techniques.
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Two Independent Implementations

Run two independent implementations of the same algorithm,
compare their step by step function calls (or at least compare
number of recursive calls made).

Requires, e.g. stable sorting, reproducible random number
generation.

A good way of converging on the same bugs. . .

Also doesn’t help you if the algorithm is incorrect.
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Solution Checkers

For yes-instances of decision problems, it is usually relatively
easy to check whether a solution is valid.

Similarly, for optimisation problems, we can check that a
solution is valid.
Have someone else independently write a solution checker.

Should be much less e�ort than a full solver.
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The Idea Behind Proof Logging

Have the solver output a solution, together with an auditable
“proof”.

When we’re dealing with NP-hard problems, this proof can be
exponentially long, but hopefully only proportional to how long
the solver took.

Someone else writes a “proof checker”, which is much simpler
than the solver.

A bit like a solution checker, but for unsatisfiable instances.
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How It Works in SAT

A common proof format known as DRAT.

Essentially, a sequence of redundant clauses.

In the annual SAT competition, solvers are expected to be able to
produce proofs.
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Are Computer Proofs Socially Acceptable?
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Why DRAT Proofs Won’t Work Elsewhere

DRAT proofs are very closely tied to SAT solving.
SAT solvers can’t count:

Exponential proofs for simple “pigeonhole” problems.
Can’t reason about vertex degrees in graphs.
Can’t do all-di�erent reasoning.

Solvers that perform stronger reasoning than SAT solvers will
need a stronger proof format.

But can we trust a proof checker that knows dozens of rich
constraints?
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However. . .

Recent discovery: pseudo-boolean (cu�ing planes) proofs can
express everything we currently do in subgraph algorithms, such
as. . .

All di�erent and Hall sets,
Colour bounds,
Neighbourhood degree sequence reasoning,
Counting short paths.

But pseudo-boolean solvers know nothing about graphs,
matching algorithms, etc.
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Trustworthy Solvers

High-level solvers should use verifiable compilation techniques
to produce low-level models.
Low-level CP solvers should be “auditable”. For any answer, we
should be able to request a proof:

In a standard format,
Which does not take much longer than the original solution to
produce,
That is easily verifiable by a much simpler tool,
And that does not prevent solvers from supporting new global
constraints.

These proofs should be translatable back into high-level terms.
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Safe Model Compilation

It’s possible for compilers, and they have front-end languages
and target architectures that are much richer than CP models
and solvers.

We can already translate backwards, for outpu�ing solutions.
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A Proof Language for CP

DRAT won’t work.

Cu�ing planes might be enough.

We might need a suite of proof languages that can be combined.
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Does Anyone Care?
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What if it Actually Works?

Might auditable algorithms and solvers become a necessity, for
liability reasons?

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 21 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

Making the Glasgow Subgraph Solver Produce Proofs

Theoretically possible.

Practically possible, but quite a bit of engineering work.
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A Very Small CP Solver

/ciaranm/certified-constraint-solver

Wri�en to iron out the engineering details before tacking a more
complex solver.
Supports not equals (AC), all di�erent (GAC), and table
constraints (checking).

Su�icient for Sudoku, clique, graph colouring, subgraph
isomorphism, . . .

The solver is definitely buggy.

But when it outputs an answer, we can verify it is correct!
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For Example. . .

$ cat small.model
intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }
alldifferent { A B C }
alldifferent { C D E }
notequal B E

$ certified_constraint_solver \
--prove small.model

status = false
nodes = 5

$ ls small.*
small.log small.model small.opb

$ refpy small.{opb,log}
Verification succeeded.
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Checking the Proof

/StephanGocht/refpy

A proof checker for cu�ing planes proofs.

Knows nothing about Hall sets, matching algorithms, strongly
connected components, . . .

Wri�en entirely independently. No collusion.
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Our Example, Again

intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }
alldifferent { A B C }
alldifferent { C D E }
notequal B E
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Pseudo-Boolean Solving

Variables xi ∈ {0, 1}.

Literals `i are xi or xi , where xi + xi = 1.

Constraints
∑

i ai`i ≥ A, where ai,A ∈ Z.

Find a satisfying assignment maximising
∑

i ai`i , where ai ∈ Z.
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Compiling CP Variables to PB

A CP variable X ∈ {a, b, c} becomes xa, xb, xc .

Each variable takes exactly one value:∑
v∈D(X )

xv ≥ 1∑
v∈D(X )

−1xv ≥ −1
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Compiling CP Variables to PB

CP Model
intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }

Generated OPB Fragment
* variable A: (1, x1) (2, x2)
1 x1 1 x2 >= 1 ;
-1 x1 -1 x2 >= -1 ;
* variable B: (1, x3) (3, x4)
1 x3 1 x4 >= 1 ;
-1 x3 -1 x4 >= -1 ;
* variable C: (1, x5) (2, x6) (3, x7)
1 x5 1 x6 1 x7 >= 1 ;
-1 x5 -1 x6 -1 x7 >= -1 ;
* variable D: (1, x8) (2, x9)
1 x8 1 x9 >= 1 ;
-1 x8 -1 x9 >= -1 ;
* variable E: (1, x10) (3, x11)
1 x10 1 x11 >= 1 ;
-1 x10 -1 x11 >= -1 ;
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Compiling Not Equals to PB

CP variables X ∈ {a, b, c} and Y ∈ {b, c, d}, constraint X , Y .

For each value they have in common, we can’t pick both:

xb + yb ≤ 1 i.e. −1xb + −1yb ≥ −1

xc + yc ≤ 1 i.e. −1xc + −1yc ≥ −1
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Compiling Not Equals to PB

CP Model
intvar B { 1 3 }
intvar E { 1 3 }
notequal B E

Generated OPB Fragment
* variable B: (1, x3) (3, x4)
* variable E: (1, x10) (3, x11)
* not equals
-1 x3 -1 x10 >= -1 ;
-1 x4 -1 x11 >= -1 ;
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Compiling All-Di�erent

CP variables X ∈ {a, b, c}, Y ∈ {b, c}, Z ∈ {b, c, d}, constraint
alldi�erent({X ,Y ,Z }).

We could do pairwise not-equals, as in SAT, or. . .

For each value, it can be used at most once:

−1xa ≥ −1

−1xb + −1yb + −1zb ≥ −1

−1yc + −1zc ≥ −1

−1zd ≥ −1
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Compiling All-Di�erent

CP Model
intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
alldifferent 3 A B C

Generated OPB Fragment
* variable A: (1, x1) (2, x2)
* variable B: (1, x3) (3, x4)
* variable C: (1, x5) (2, x6) (3, x7)
* all different
-1 x1 -1 x3 -1 x5 >= -1 ;
-1 x2 -1 x6 >= -1 ;
-1 x4 -1 x7 >= -1 ;
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Compiling Table

Involves introducing auxiliary variables in the PB model.
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Cu�ing Planes Proofs

Model axioms From the input file

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication
for any c ∈ Z

∑
i ai`i ≥ A∑

i cai`i ≥ cA

Division
for any c ∈ N+

∑
i ai`i ≥ A∑

i
⌈ ai

c

⌉
`i ≥

⌈A
c

⌉
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Machine-Readable Proofs: Ge�ing Started

Proof Log
refutation using f l p c 0

f 18 0

l 11 0

Verifier Output
0 (rule 0): >= 0

1 (rule 1): +1x1 +1x2 >= 1
2 (rule 1): +1~x1 +1~x2 >= 1
3 (rule 1): +1x3 +1x4 >= 1
4 (rule 1): +1~x3 +1~x4 >= 1
* and so on
18 (rule 1): +1~x4 +1~x7 >= 1

19 (rule 2): +1x1 >= 0
20 (rule 2): +1~x1 >= 0
21 (rule 2): +1x2 >= 0
22 (rule 2): +1~x2 >= 0
* and so on
39 (rule 2): +1x11 >= 0
40 (rule 2): +1~x11 >= 0
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The CP Search Tree

intvar A { 1 2 }
intvar B { 1 3 }
intvar C { 1 2 3 }
intvar D { 1 2 }
intvar E { 1 3 }

notequal B E * C1
alldiff { A B C } * C2
alldiff { C D E } * C3

No propagation initially.
Guess A = 1, so A , 2:

B , 1, C , 1, C , 3 (C2)
E , 3 (C1)
C ∈ {2}, D ∈ {1, 2}, E ∈ {1} (C3 )

Guess A = 2, so A , 1:
C , 2 (C2)
D , 1 (C3)
Guess B = 1, so B , 3:

. . . (C1, C2, C3) . . . 
Guess B = 3, so B , 1:

. . . (C1, C2, C3) . . . 
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Overview of our Proof

1 Derive a1 ≥ 1.

2 Derive a2 + b1 ≥ 1.

3 Derive a2 + b3 ≥ 1.

4 Combine 2 and 3 to derive a2 ≥ 1.

5 Combine 1 and 4 to derive 0 ≥ 1.
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Justifying Deletions

Whenever a CP propagator performs a deletion F , v , generate
a proof line of the form

a1 + b2 + c2 + e1︸              ︷︷              ︸
A subsequence of the active guesses

+fv ≥ 1.

Remember the proof line number alongside F ’s domain.
When we get a domain wipeout, combine the reasons with the
“takes at least one value” model axiom to get

a1 + b2 + c2︸        ︷︷        ︸
A subsequence of earlier guesses

+e2 ≥ 1,

and remember this as the deletion reason for the last guess.
If we detect a contradiction involving multiple variables, derive
the same thing, using constraint-specific rules.
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Proving A , 1

Proof Log
* guess A=1 (x1) so A!=2 (x2)
p 2 0
* all different , B!=1
p 0 1 + 14 + 27 + 41 + 2 d 0
* all different , C!=1
p 0 1 + 14 + 23 + 41 + 2 d 0
* all different , C!=3
p 0 1 + 3 + 14 + 16 + 27 +

41 + 2 d 0
* not_equals , E!=3
p 3 42 + 18 + 2 d 0
* alldifferent contradiction
p 5 43 + 44 + 4 d 0
p 7 3 d 0
p 9 45 + 3 d 0
p 0 11 + 12 + 27 + 46 +

47 + 48 + 4 d 0

Verifier Output

41 (rule 3): +1~x1 +1~x2 >= 1

42 (rule 4): +1~x1 +1~x3 >= 1

43 (rule 5): +1~x1 +1~x5 >= 1

44 (rule 6): +1~x1 +1~x7 >= 1

45 (rule 7): +1~x1 +1~x11 >= 1

46 (rule 8): +1x6 +1~x1 >= 1
47 (rule 9): +1x8 +1x9 >= 1
48 (rule 10): +1x10 +1~x1 >= 1

49 (rule 11): +1~x1 >= 1

Ciaran McCreesh

My Solver Produces the Right Answer, and It Can Prove It 37 / 40



What We Have Now Checking Outputs, not Programs The Long Term Vision A Proof of Concept Ugly Technical Details

The Remainder of the Proof

Proof Log
* guessing A=1 (x1)
* ...
p 49 20 + 2 d 0
* guessing A=2 (x2)
* ...
* guessing A=2 (x2) B=1 (x3)
* ...
p 59 24 + 2 d 0
* guessing A=2 (x2) B=3 (x4)
* ...
p 66 26 + 2 d 0
p 3 60 + 67 + 3 d 0
p 68 22 + 2 d 0
p 1 50 + 69 + 3 d 0
c 70 0

Verifier Output

50 (rule 12): +1~x1 >= 1

60 (rule 22): +1~x3 +1~x2 >= 1

67 (rule 29): +1~x4 +1~x2 >= 1
68 (rule 30): +1~x2 >= 1
69 (rule 31): +1~x2 >= 1
70 (rule 32): >= 1
Verification succeeded.
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The Hall Violator Step
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The Hall Violator Step

1 For each variable in the Hall violator, take the “at least one value
from its domain” model axiom, and for each value already
eliminated from this domain, add the reason.

2 Divide 1 by a large number to remove duplicate guesses.

3 Add together each of the “this value can be used at most once”
model axioms for values in the Hall violator.

4 From 3, for each variable in the constraint, for each value in its
initial domain, if either the value is not in the Hall violator, or the
value is not in its current domain, cancel it using a literal axiom.

5 Add together 2 and 4. Divide by a large number.

6 Everything (except guesses) cancels out, but only if you correctly
found a Hall violator.
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Are Cu�ing Planes Proofs Enough for CP?

Can do:
Anything SAT can do.
All the clever subgraph isomorphism things we do currently.
GAC on all(?) of the polynomial-time flow-based constraints.
BC for linear inequalities over boolean variables (duh).
Probably some other constraints that SAT can’t do.

Can’t do:
Sparse domains.
Probably some other constraints.

Interesting project: categorise the global constraints catalogue.
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