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Maximum Common Induced Connected Subgraph
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Maximum Clique
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Who Cares?

Chemistry, biochemistry, and drug design (graphs are molecule
fragments or proteins).

Computer vision.

Compilers (instruction generation, code rewriting).

Plagiarism and malware detection.

Livestock epidemiology (contact and trade graphs).

Designing mechanical lock systems.
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In Theory. . .

Subgraph finding is hard.

Subgraph counting is hard.

Approximate subgraph finding is hard.
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In Practice. . .

We have good solvers for subgraph problems.

Some applications involve solving thousands of subgraph
isomorphism queries per second.

We can solve clique on larger graphs than we can solve all-pairs
shortest path.1

Maximum common subgraph is still a nightmare. . .

1Terms and conditions apply.
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Subgraph Isomorphism, as a Constraint Program

A variable for each pa�ern vertex. The domains are all of the
target vertices.
At least two sets of constraints:

Adjacent pairs of vertices must be mapped to adjacent pairs of
vertices.
All di�erent.

Then we get clever:
Extra constraints about degrees, paths, . . .
Be�er data structures and propagation queues.
Very good variable- and value-ordering heuristics.
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The Glasgow Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

A CP style solver specifically for subgraph algorithms.

Subgraph isomorphism, and all its variants (induced /
non-induced, homomorphism, locally injective, labels, side
constraints, directed, . . . ).

Also special algorithms for clique.
Guaranteed no bugs!

Or at least, any buggy output will always be detected, if you
enable proof logging.
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Benchmark Instances

14,621 instances from Christine Solnon’s collection:
Randomly generated with di�erent models.
Real-world graphs.
Computer vision problems.
Biochemistry problems.
Phase transition instances.

At least. . .
≥ 2,110 satisfiable.
≥ 12,322 unsatisfiable.

A lot of them are very easy for good algorithms.
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Hardware

HPC, optimised for throughput not reproducibility.2

Dual Intel Xeon E5-2695 v4 CPUs, 2 × 18 cores

256GBytes RAM

GCC 7.2.0

C++ native threads, SGI MPT MPI

2This work used the Cirrus UK National Tier-2 HPC Service at EPCC
(h�p://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC
(EP/P020267/1)
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Is It Any Good?
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Search Order

Variable ordering (i.e. pa�ern vertices): smallest domain first,
tie-breaking on highest degree.

Value ordering (i.e. target vertices): highest degree to lowest.
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Hand-Wavy Theoretical Justification

Maximise the expected number of solutions during search?

If P = G(p, q) and T = G(t, u),

〈Sol〉 = t · (t − 1) · . . . · (t − p + 1)︸                            ︷︷                            ︸
injective mapping

· uq ·(p2)︸︷︷︸
adjacency

Smallest domain first keeps remaining domain sizes large.

High pa�ern degree makes the remaining pa�ern subgraph
sparser, reducing q.

High target degree leaves as many vertices as possible available
for future use, making u larger.
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Subgraph Isomorphism in Random Graphs

G(10, x)� G(150, y) G(20, x)� G(150, y) G(30, x)� G(150, y)
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Induced Subgraph Isomorphism is More Complicated. . .

G(10, x)� G(150, y) G(14, x)� G(150, y) G(16, x)� G(150, y) G(20, x)� G(150, y)

Sa
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Back to Value-Ordering Heuristics

Largest target degree first.
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However. . .

What if several vertices have the same degree?

Is a vertex of degree 10 really that much be�er than a vertex of
degree 9?
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Discrepancy Search?
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Discrepancy Search?
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Random Search with Restarts and Nogood Recording

Back to the random value-ordering heuristic.

Aggressive restarts: every 100ms.

Nogood recording and 2WL to avoid repeating work.
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Random Search with Restarts and Nogood Recording
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Value-Ordering Heuristics as Distributions

Traditional view: value-ordering defines a search order.

New view: value-ordering defines what proportion of the search
e�ort should be spent on di�erent subproblems.

According to people who know more statistics than me, if
solutions are uniformly distributed, then random search with
restarts should be be�er than DFS.
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A Slightly Random Value-Ordering Heuristic

For a fixed domain Dv , pick a vertex v ′ from a domain Dv with
probability

p(v ′) = 2deg(v
′)∑

w∈Dv
2deg(w)

Equally likely to pick between two vertices of degree d .

Twice as likely to select a vertex of degree d than a vertex of
degree d − 1.

Justification: solution density and expected distribution of
solutions.
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Is It Be�er?
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Parallel Search

Each thread gets its own random seed.

Barrier synchronise on restarts.

Share nogoods.
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Is It Even Be�erer?
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Is There Another Way?

This approach: assume the inputs are random graphs.

Another possibility: “From Support Propagation to Belief
Propagation in Constraint Programming.”, Gilles Pesant, JAIR 66
(2019).

At AAAI 2020: “A Learning based Branch and Bound for
Maximum Common Subgraph related Problems”, Yanli Liu,
Chumin Li, Hua Jiang.
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Can You Help?

Be�er search

Conflict analysis

Symmetries

Benchmark instances

Side constraints

Subgraph counting
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Conclusion

CP can help with designing other algorithms, too.

Subgraph isomorphism is a nice testbed for learning about CP,
because it’s just the right amount of complicated.
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