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Modelling and Solving Hard Problems

Your typical algorithms class: in theory, some problems are
(probably) exponentially hard no ma�er what we do.
This talk:

We need to solve them anyway. . .
And we need to solve several problems simultaneously. . .
And we have awkward side constraints.
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Modelling

Express a problem as a collection of variables, each of which
has a domain of possible values, together with a set of
constraints.

% graph colouring optimisation problem , simple model

int: n; % number of vertices
array [1..n, 1..n] of 0..1: A; % adjacency
array [1..n] of var 1..n: v; % v[i] = j means vertex i has colour j

% adjacent vertices must have different colours
constraint forall(i, j in 1..n where i < j /\ A[i, j] = 1)

(v[i] != v[j]);

% objective is to minimise chi
var 1..n: chi;
constraint chi = max(v);
solve minimize chi;
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Solving

SAT solvers: only 0/1 variables and CNF constraints.

PB solvers: only 0/1 variables, linear inequalities.

MIP solvers: only integer and 0/1 variables, linear inequalities.
CP solvers: mixed variable types and rich constraints.

All di�erent, cardinality, occurrence
Regular expressions on sequences
Array indexing
Lexicographic and order

Ciaran McCreesh

An Introduction to (Talks About) Constraint Programming 3 / 13



Inference

Each constraint has an associated algorithm, which can
eliminate infeasible values from domains.

For example, suppose we have a constraint saying that these
variables must all take di�erent values:

18 23 23 245 456 456 279 378 23589

Now each value remaining in each domain is supported by at
least one assignment of values to each other variable. We say
this constraint has achieved generalised arc consistency.
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Each constraint has an associated algorithm, which can
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For example, suppose we have a constraint saying that these
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Inference

Each constraint has an associated algorithm, which can
eliminate infeasible values from domains.

For example, suppose we have a constraint saying that these
variables must all take di�erent values:

1 23 23 45 456 456 79 78 589

Now each value remaining in each domain is supported by at
least one assignment of values to each other variable. We say
this constraint has achieved generalised arc consistency.
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Propagation

A�er one constraint deletes a value, this may allow other
constraints to delete further values.

We could keep running each constraint’s algorithm in turn until
we reach a fixed point. But doing this quickly is important.

Is this fixed point unique?
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Search

Propagation doesn’t solve the problem. So now what?

Pick a variable, try giving it one of its values from its domain,
and propagate again. If we find a solution, we’re done. If we get
a domain wipeout, we guessed incorrectly, so backtrack and try
something else. Otherwise, recurse and try again.
In practice, the search order is very important, and we use
heuristics:

Which variable do we pick? “Smallest domain first” and “most
constrained” are usually good starting points.
What about values?
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Reformulation

We always ask: is there another model? Ge�ing a good model
ma�ers a lot for CP.

For that ma�er, CP also likes “tidied up” input.

We can even have multiple models simultaneously, and channel
between them.

Even good models o�en exhibit symmetries. We can o�en
specify additional constraints to eliminate these.
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Evaluating Models and Solvers

We have to do computational experiments.
These are easy to do badly.

What instances do we use?
What do we compare to? Are all the solvers correct? Can we even
get other people’s source code?
Do we compare average runtimes, or something else? What if
some instances time out on some solvers?
Are we just measuring programmer skill or programming
language overheads?
Does our hardware behave itself?

Ciaran McCreesh

An Introduction to (Talks About) Constraint Programming 8 / 13



Sca�er Plots
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Cumulative Plots
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When Are Hard Problems Hard?
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The Next Generation of Solvers?

Conventional CP solvers can only reason about one constraint at
a time. Future solvers may be able to do be�er:

Learning, by creating new constraints by analysing conflicts.
Decision diagrams have a di�erent notion of consistency
involving paths through a search tree, which can sometimes be
stronger.
Views can avoid the introduction of auxiliary variables.
Hybrid solvers can solve subproblems using di�erent solving
technologies.

High level types, such as partitions and graphs, allow for
automatic reformulation.

Be�er search? And what about parallelism?

Can we do be�er with bad models? And can we automatically
clean up bad inputs?
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Should We Trust Solvers?

How do we know solvers don’t contain bugs?
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