
What Maximum Clique Algorithms
Can Teach Us, and Vice-Versa
Ciaran McCreesh



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 1 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 1 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Ancient History

Second DIMACS Implementation Challenge, 1992-93.
Maximum clique.
Graph colouring.
Satisfiability.

“Recent results in complexity theory have shown that, in a
worst-case sense, the problems that are the subject of this
Challenge are not only hard to solve optimally, they are hard to
approximate. Our goal in this Challenge is to provide an
impetus for a coordinated a�ack on the question of how hard
they are in practice.” 1

1h�p://archive.dimacs.rutgers.edu/pub/challenge/call.txt
Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 2 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

File Format

p edge 12 25 e 3 11
e 1 2 e 4 6
e 1 5 e 5 8
e 1 8 e 6 7
e 1 10 e 6 12
e 1 11 e 7 9
e 1 12 e 7 11
e 2 5 e 7 12
e 2 8 e 8 9
e 2 10 e 9 10
e 3 4 e 9 11
e 3 6 e 9 12
e 3 10 e 10 11

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 3 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Set of Instances

Random graphs with various sizes, densities, and models.

Graphs with a large known clique hidden in a quasi-random
graph.

Fault diagnosis applications.

Coding theory (Hamming, Johnson).

Mathematical conjectures (Keller, Steiner triples).

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 4 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Experimental Protocol

“BENCHMARKING: Whether you are studying exact or approximate
algorithms, this code can serve as a simple benchmark for calibrating
your machine’s speed relative to those of the other participants. If
possible, please compile and run it on the supplied p=0.5 random
graphs r100.5.b, r200.5.b, r300.5.b, r400.5.b, and r500.5.b and report
your times. For comparison purposes, the SGI Challenge "user" times
(not counting input time) for one run on each graph were 0.08, 1.00,
7.87, 47.68, and 179.98 seconds, respectively. The code can also be
used as a common point of reference for papers implementing exact
clique algorithms.”2

2h�p://archive.dimacs.rutgers.edu/pub/challenge/graph/solvers/README
Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 5 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Experimental Protocol

$ gcc -o dfmax -O2 dfmax.c
dfmax.c:70:1: warning: return type defaults to ’int ’ [-Wimplicit -int]
dfmax.c:81:11: warning: implicit declaration of function ’time ’; did you mean ’times ’? [-Wimplicit -function -declaration]
dfmax.c:90:3: warning: implicit declaration of function ’exit ’ [-Wimplicit -function -declaration]
dfmax.c:90:3: warning: incompatible implicit declaration of built -in function ’exit ’
dfmax.c:15:1: note: include ’<stdlib.h>’ or provide a declaration of ’exit ’
dfmax.c:92:2: warning: implicit declaration of function ’strcpy ’ [-Wimplicit -function -declaration]
dfmax.c:92:2: warning: incompatible implicit declaration of built -in function ’strcpy ’
dfmax.c:15:1: note: include ’<string.h>’ or provide a declaration of ’strcpy ’
dfmax.c:106:25: warning: implicit declaration of function ’atoi ’ [-Wimplicit -function -declaration]
dfmax.c:148:13: warning: implicit declaration of function ’maxind ’; did you mean ’main ’? [-Wimplicit -function -declaration]
dfmax.c:256:7: warning: implicit declaration of function ’get_params ’ [-Wimplicit -function -declaration]
dfmax.c:287:16: warning: implicit declaration of function ’calloc ’ [-Wimplicit -function -declaration]
dfmax.c:287:16: warning: incompatible implicit declaration of built -in function ’calloc ’
dfmax.c:308:2: warning: incompatible implicit declaration of built -in function ’free ’
dfmax.c:253:2: warning: ignoring return value of ’fread ’, declared with attribute warn_unused_result [-Wunused -result]
$ time dfmax r500.5
real 0m4.100s
$ time glasgow_clique_solver r500.5
real 0m0.695s

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 5 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Experimental Protocol

“4. The CPU mark. In order to compensate for di�erent processor
speeds, Controller will standardize (i.e., scale) times according to the
CPU marks provided by PassMark Single Thread Performance 3 .
Currently, the top CPU mark is 3,255, while mid-range desktop
processors have marks around 2,000. So, we choose the mark 2,000 to
define our standardized times. This means that if a run is performed
in a processor Intel Core i9-9900T @ 2.10GHz that has mark 2,400, all
local elapsed times will be multiplied by 1.2 to obtain the
corresponding standardized times. This also means that a
standardized time limit of 1,800 seconds will actually correspond to
1,500 seconds in that particular machine.”2

2h�p://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 5 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Very Incomplete Guide to Maximum Clique Solvers

Since 1992, several papers per year.

Many omissions, particularly of ideas that only showed up in
one paper.

Prosser, Algorithms 5(4) 2012 and my PhD thesis have more
history.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 6 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Branch. . .

Grow a maximum clique A, from the vertex set P :
Pick a vertex v . Either v is in a maximum clique:

Let P ′ be the set of vertices in P that are adjacent to v .
Recurse, finding a maximum clique in A′ = A ∪ {v} and P ′.

Or it isn’t. Throw out v from P and pick another v .

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 7 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

. . . and Bound

Keep track of the largest clique found so far, the incumbent, l .

If |C | + |P | ≤ l , backtrack.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 8 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Degree Filtering

Every vertex in a clique of size l has degree at least l − 1.

Can calculate degree either in the original graph, or in A ∪ P .

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 9 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

The Colour Bound

1

3

7

2

4

9

5
6

10

8

11
12

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 10 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

The Colour Bound

But how do we produce a colouring quickly?
Greedily!
But what order do we use for colouring the vertices?

More details: papers by Etsuji Tomita and co-authors.

Interesting fact: the colour bound is strictly be�er than degree.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 10 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Bit-Parallelism

Propagation is a few clock cycles.

Over a million full colourings and recursive calls per second on a
512 vertex graph.

More details: papers by Pablo San Segundo and co-authors.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 11 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Thread-Parallelism

Average speedups of around 28× on a 32 core processor, but high
variance.

Large superlinear speedups extremely common.

More details: McCreesh and Prosser, ACM TOPC 2(1) 2015.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 12 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Colour Ordering

1

3

7

2

4

9

56

10

8

11 12

1 3 7 2 4 9 5 6 10 8 11 12

1 1 1 2 2 2 3 3 3 4 4 4

Vertices in colour order

Number of colours used

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 13 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Colour Ordering

Vertices in the rightmost colour class are “generally expected [to
have a] high probability of belonging to a maximum clique”
according to Tomita and Kameda, J. Global Optimization, 37(1)
2007.

It’s not true.

Right to le� is still be�er even if the algorithm is only proving
optimality.

Be�er clique algorithms have worse anytime behaviour and take
longer to find a strong incumbent.

More details: McCreesh and Prosser, CP 2014, and part two of
this talk.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 13 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Colour Ordering

Vertices in the rightmost colour class are “generally expected [to
have a] high probability of belonging to a maximum clique”
according to Tomita and Kameda, J. Global Optimization, 37(1)
2007.

It’s not true.

Right to le� is still be�er even if the algorithm is only proving
optimality.

Be�er clique algorithms have worse anytime behaviour and take
longer to find a strong incumbent.

More details: McCreesh and Prosser, CP 2014, and part two of
this talk.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 13 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Colour Ordering

Vertices in the rightmost colour class are “generally expected [to
have a] high probability of belonging to a maximum clique”
according to Tomita and Kameda, J. Global Optimization, 37(1)
2007.

It’s not true.

Right to le� is still be�er even if the algorithm is only proving
optimality.

Be�er clique algorithms have worse anytime behaviour and take
longer to find a strong incumbent.

More details: McCreesh and Prosser, CP 2014, and part two of
this talk.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 13 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Priming

Run local search before starting the main algorithm, to get a
good initial incumbent.

“We run the ILS heuristic with 100000 scans for all the
considered instances except gen400_p0.9_55 and p_hat1000-3 for
which we use 60 millions scans because these two instances are
computationally di�icult.”, Maslov et al, J. Global Optimization,
59(1) 2014.

More details: papers by Etsuji Tomita and Pablo San Segundo.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 14 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Stronger Bounds

Produce a be�er colouring than a greedy colouring.
Produce a bound that’s be�er than colouring.

Fractional colourings?
MaxSAT-inspired bounds?

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 15 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

MaxSAT Bounds

Encode as MaxSAT:
Hard clauses for each non-edge: x2 ∨ x3.
Naïve encoding: so� clause for each xi .
Be�er encoding: so� clause for each colour class, x1 ∨ x3 ∨ x7.

MaxSAT not competitive:
Unit propagation way too slow.
Learned clauses not re-used?
Need to use dynamic colourings.

But we can steal MaxSAT conflict analysis algorithms.

This can, for example, identify three di�erently coloured vertices
that do not form a triangle.

More details: papers by Pablo San Segundo and Chu-Min Li.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 16 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Proof Logging

A solver widely claimed to be state of the art is buggy, but nearly
always produces the right answer.
Proof logging could catch this, but. . .

Clique solvers are much faster than SAT solvers.
Bounds involve strong reasoning.

More details: Gocht et al, CP 2020 and part two of this talk.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 17 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

The DIMACS Instances

Heavy bias towards “large hidden solution” instances and
random instances.

The application instances are extremely easy.

Still a few open instances, and a few more that can only be
solved with years of CPU time.
Su�iciently few hard instances that, e.g. random permutations
can easily change which algorithm is “state of the art”.

Particularly on the “large hidden clique” instances.

Still widely used.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 18 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Random Instances

Prosser, Algorithms 5(4) 2012. Both plots have 100 samples per
density step. The le�-hand plot seems to go up in density steps of
0.01, and the right-hand plot, 0.05.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 19 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Random Instances

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

G(150, x)

G(100, x)

G(50, x)

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 19 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Random Instances

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

G(150, x)

G(100, x)

G(50, x)

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 19 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Random Instances

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

G(150, x)

G(100, x)

G(50, x)

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 19 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Large Sparse Graphs

Biggest DIMACS graph: 4,000 vertices, density 0.5.
This will fit in an adjacency matrix.

O�en claimed that large sparse graphs are “more realistic”.
Not immediately clear why anyone would want to find a clique
in a road network. . .

Not in this talk: algorithms that run on large sparse graphs.
Sneaky data structures.
Replace the colouring with something faster.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 20 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximum Common Subgraph

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 21 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximum Common Subgraph

a

b c d

1 2

3 4

1 2 3 4a ↦→ { }

1

2

3

4

b ↦→

1 2 3 4c ↦→ { }

1

2

3

4

↦→d

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 21 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximum Common Connected Subgraph?

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 22 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximum Common Connected Subgraph?

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 22 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Enumeration

Output all maximal cliques.

Several published tables of results are wrong. . .

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 23 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Weighted

Vertices have weights.
Weighted colour bounds?

Lack of good benchmark instances, so authors reuse DIMACS
graphs and assign weight v mod 200 + 1 to vertex v .

Why this is bad, and be�er instances: McCreesh et al, CP 2017.
Proof logging: Gocht et al, CP 2020.

Cu�ing planes proofs are awesome.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 24 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Relaxations

Distance: k-clique, k-club.

Degree relaxations: k-plex.

Density relaxations.

More: Pa�illo et al, Eur. J. of Operational Research, 226(1) 2013.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 25 / 63



https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk


In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Phase Transitions
N

um
be

ro
fr

ec
ur

siv
e

ca
lls

Proportion
SAT

Edge probability

Does G(150, x) contain a clique of twenty vertices?

Sat?
Mean Search

100

101

102

103

104

105

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 26 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Intuition

Low density means no occurrences, and we can quickly show we
run out of edges a�er doing a bit of branching.

High density means lots of occurrences, so wherever we look,
it’s easy to find one of them.

If we expect there to be just one solution, it’s really hard to find
it if it exists, and really hard to rule it out if it doesn’t exist.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 27 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Intuition

Low density means no occurrences, and we can quickly show we
run out of edges a�er doing a bit of branching.

High density means lots of occurrences, so wherever we look,
it’s easy to find one of them.

If we expect there to be just one solution, it’s really hard to find
it if it exists, and really hard to rule it out if it doesn’t exist.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 27 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation, an Incomplete Picture

Prosser, Algorithms 5(4) 2012. Both plots have 100 samples per
density step. The le�-hand plot seems to go up in density steps of
0.01, and the right-hand plot, 0.05.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 28 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Which is the Hardest Density?

Which density is hardest, for the optimisation problem?

Does this change depending upon the number of vertices? The
algorithm used? The random graph model selected?

Is this the same as the hardest density for the decision problem,
if we can also pick the decision number? And if so, which
decision number do we pick?

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 29 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Really Big Experiments

Increase density from 0 to 1 in steps of 0.001? This is around one
pixel per step.

Mean runtimes seem to se�le down at around 10,000 samples.
We probably want 100,000 samples to be safe.

Back of the envelope feasibility estimates: 18 years.
Conveniently, this is around 150,000 core hours.

. . . And the rest of this work was a bit below 1,000,000 core hours.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 30 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation, Refined

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

G(150, x)

G(100, x)

G(50, x)

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 31 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation, Refined

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

G(150, x)

G(100, x)

G(50, x)

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 31 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation, Refined

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

G(150, x)

G(100, x)

G(50, x)

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 31 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation versus Decision

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 32 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation versus Decision

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 32 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation versus Decision

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 32 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation versus Decision

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 32 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Optimisation versus Decision

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 32 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Finding versus Proving Optimality

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 33 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Finding versus Proving Optimality

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Total
Find

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 33 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Finding versus Proving Optimality

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Total
Find

Proof

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 33 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Solution Size

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 34 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Solution Size

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 34 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Solution Size

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 34 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Solution Size

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

16
17

18
19
20

21
22

23

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 34 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Solution Size

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

5354
55
56
57585960616263646566
6768

6970717273747576

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 34 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Optimal Solution Frequency

100

101

102

103

104

105

106

0.68 0.7 0.72 0.74 0.76 0.78 0.8

Co
un

t/
N

um
be

ro
fc

al
ls

Edge probability

Total search

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 35 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Optimal Solution Frequency

100

101

102

103

104

105

106

0.68 0.7 0.72 0.74 0.76 0.78 0.8

Co
un

t/
N

um
be

ro
fc

al
ls

Edge probability

Total search
Frequency

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 35 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Optimal Solution Frequency

100

101

102

103

104

105

106

0.68 0.7 0.72 0.74 0.76 0.78 0.8

Co
un

t/
N

um
be

ro
fc

al
ls

Edge probability

Total search
Frequency

Solution count

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 35 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Optimal Solution Frequency

100

101

102

103

104

105

106

0.68 0.7 0.72 0.74 0.76 0.78 0.8

Co
un

t/
N

um
be

ro
fc

al
ls

Edge probability

Total search
Frequency

Solution count
Search to �nd

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 35 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Di�iculty by Optimal Solution Frequency

100

101

102

103

104

105

106

0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Co
un

t/
N

um
be

ro
fc

al
ls

Edge probability

Total search
Frequency

Solution count
Search to �nd

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 35 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Search Order

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Total

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 36 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Search Order

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Total Total, Anti

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 36 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Search Order

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fr
ec

ur
siv

e
ca

lls

Edge probability

Total
Find

Total, Anti
Find, Anti

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 36 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

First Solution �ality

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fi
rs

ts
ol

ut
io

n
qu

al
ity

Edge probability

Default Anti

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 37 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Solution �ality over Time

N
um

berofcalls

Incumbent

Good Heuristic

10 15 20
100

101

102

103

104

105

106

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 38 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Solution �ality over Time

N
um

berofcalls

Incumbent

Anti Heuristic

10 15 20
100

101

102

103

104

105

106

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 38 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Open �estions

Other solvers?
Trying to use other people’s solvers for this work is a large part of
why I now believe proof logging needs to become standard for
algorithm implementation papers. . .

What do MaxSAT, pseudo-Boolean, and MIP solvers do on these
instances?

Other models of randomness?

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 39 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Colour Class Ordering

1

3

7

2

4

9

56

10

8

11 12

1 3 7 2 4 9 5 6 10 8 11 12

1 1 1 2 2 2 3 3 3 4 4 4

Vertices in colour order

Number of colours used

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 40 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Smallest Domain First?

Branching on a colour class is like branching on a domain in CP,
where the values are the vertices in the colour class plus a null
value.

Smallest domain first is a good heuristic.

Greedy colourings tend to produce larger colour classes first.

Right to le� is smallest domain first.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 41 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

We Can Measure This!
So

rte
dn

es
s

Number of colour classes

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Shu�ed

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 42 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

We Can Measure This!
So

rte
dn

es
s

Number of colour classes

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Sorted

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 42 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

We Can Measure This!
So

rte
dn

es
s

Number of colour classes

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Default ordering

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 42 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Increasing Sortedness Decreases Search Space Size

0

100000

200000

300000

400000

500000

600000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
ro

fc
ol

ou
rin

gs

Edge probability

Default
2DF
SDF

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 43 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

However. . .

Small impact on runtime.

Hard to sell “understanding why this algorithm works”
compared to “this new algorithm is be�er”.

John N. Hooker: “Testing heuristics: We have it all wrong”. J.
Heuristics 1(1) 1995.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 44 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Certifying Solvers

Alongside an answer, a certifying solver produces an easily
verifiable certificate.

Provides a way of guaranteeing an output is correct.

Certificate checking can be done independently, using a simple
solver-independent tool.
Doesn’t guarantee that a solver is correct, just that if it ever
produces an incorrect answer then it will be detected.

Even if due to hardware or compiler errors.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 45 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Pseudo-Boolean Proof Logging

In the SAT community: CNF formulae, proofs in RUP, DRAT,
LRAT, GRIT, . . .

But not if the SAT solver does cardinality reasoning.

Here: pseudo-Boolean formulae, proofs using reverse unit
propagation and cu�ing planes derivations.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 46 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

In Action. . .

$ ./glasgow_clique_solver p_hat500-2.clq
nodes = 108217
clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238 269 300 302 308 342 348 349 368 381 383 384 404 412 425 432 445 457 480 489 500
runtime = 175ms

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 47 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

In Action. . .

$ ./glasgow_clique_solver p_hat500-2.clq
nodes = 108217
clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238 269 300 302 308 342 348 349 368 381 383 384 404 412 425 432 445 457 480 489 500
runtime = 175ms

$ ./glasgow_clique_solver p_hat500-2.clq --prove proof
runtime = 16,347ms

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 47 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

In Action. . .

$ ./glasgow_clique_solver p_hat500-2.clq
nodes = 108217
clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238 269 300 302 308 342 348 349 368 381 383 384 404 412 425 432 445 457 480 489 500
runtime = 175ms

$ ./glasgow_clique_solver p_hat500-2.clq --prove proof
runtime = 16,347ms

$ ls -lh proof.log proof.opb
-rw-rw-r-- 1 ciaranm ciaranm 558M Aug 23 21:43 proof.log
-rw-rw-r-- 1 ciaranm ciaranm 1.4M Aug 23 21:42 proof.opb

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 47 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

In Action. . .

$ ./glasgow_clique_solver p_hat500-2.clq
nodes = 108217
clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238 269 300 302 308 342 348 349 368 381 383 384 404 412 425 432 445 457 480 489 500
runtime = 175ms

$ ./glasgow_clique_solver p_hat500-2.clq --prove proof
runtime = 16,347ms

$ ls -lh proof.log proof.opb
-rw-rw-r-- 1 ciaranm ciaranm 558M Aug 23 21:43 proof.log
-rw-rw-r-- 1 ciaranm ciaranm 1.4M Aug 23 21:42 proof.opb

$ veripb proof.opb proof.log
INFO:root:total time: 428.89s
maximal used database memory: 0.003 GB
Verification succeeded.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 47 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Observations

The techniques we give are general, and not limited to one
specific solver.

Implementation e�ort is small, and can even speed up
development.
With the right proof logging format:

It’s natural to express combinatorial and graph arguments (even
if the proof format doesn’t know what a graph is).
Proofs are “the same length as” the amount of work done by the
solver.
Reformulations can be proof logged.

It’s time for competition organisers to start requiring proof
logging support.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 48 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

The Certifying Process

Express the problem in pseudo-Boolean form (0/1 integer linear
program; a superset of CNF):

A set of {0, 1}-valued variables xi .
We define x i = 1 − xi .
Integer linear inequalities

∑
i cixi ≥ C.

Optionally, an objective min
∑

i cixi .

Write this out as an OPB file.
Provide a proof log for this OPB file.

For unsat decision instances, prove 0 ≥ 1.
Can also log sat decision instances, enumeration, and
optimisation.

Feed the OPB file and the proof log to VeriPB.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 49 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Pseudo-Boolean Encoding

3

4

6
7

9

10

11
12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 50 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Search Tree

A: ∅
P: {1 . . . 12}

A: {12}
P: {1, 6, 7, 9}

A: {7, 12}
P: {6, 9} {7, 9, 12}

A: {7, 12}
P: {6}

A: {12}
P: {1, 6, 9}

A: {11}
P: {1, 3, 7, 9, 10}

A: {10, 11}
P: {1, 3, 9}
A: {11}
P: {1, 3, 7, 9}

A: {8}
P: {1, 2, 5, 9}

A: {5, 8}
P: {1, 2} {1, 2, 5, 8}

A: {8}
P: {1, 2, 9}

A: ∅
P: {1, 2, 3, 4, 5, 6, 7, 9, 10}

b1b2

b3b4

b5b6

done obj1

obj2

12 7 9

11

8

10

5 1, 2

12

11

8

7 9

10

5

i ii iii

ivv

vi vii

viii

ix x

xi

xii

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 51 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 52 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Reverse Unit Propagation?

Unit propagation is integer bounds consistency (the same as for
SAT on clauses, but stronger on linear inequalities).

Given the constraints we know so far C and a new constraint c,
check that C combined with the negation of c leads to
contradiction just through unit propagation.

If so, we may add c as a new constraint.

This is great for solver authors, because we don’t have to
explicitly justify adjacency reasoning.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 53 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Bound Functions

1

3

7

2

4

9

5
6

10

8

11
12

Given a k-colouring of a subgraph, that subgraph cannot have a
clique of more than k vertices.

Each colour class describes an at-most-one constraint.

This does not follow from reverse unit propagation.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 54 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Cu�ing Planes Proofs

We can add together two constraints to make a new constraint.

We can multiply a constraint by a non-negative integer.

We can divide a constraint by a positive integer, with rounding
up.

Using these steps, manually deriving at-most-one constraints for
colour classes is easy to implement, and e�icient.

RUP can be wri�en as cu�ing planes steps, but it’s more work
for solver authors.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 55 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

What This Looks Like

pseudo-Boolean proof version 1.0
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
* at most one [ x1 x3 x9 ]
p nonadj1_3 2 * nonadj1_9 + nonadj3_9 + 3 d  tmp1
p obj1 tmp1 +
u 1 ~x11 1 ~x10 >= 1 ;  b3
* at-most-one [ x1 x3 x7 ]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d  tmp2
p obj1 tmp2 +
u 1 ~x11 >= 1 ;  b4
o x1 x2 x5 x8  obj2
u 1 ~x8 1 ~x5 >= 1 ;  b5
p obj2 nonadj1_9 +
u 1 ~x8 >= 1 ;  b6
* at-most-one [ x1 x3 x7 ] [ x2 x4 x9 ] [ x5 x6 x10 ]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d  tmp3
p obj2 tmp3 +
p nonadj2_4 2 * nonadj2_9 + nonadj4_9 + 3 d  tmp4
p obj2 tmp3 + tmp4 +
p nonadj5_6 2 * nonadj5_10 + nonadj6_10 + 3 d  tmp5
p obj2 tmp3 + tmp4 + tmp5 +
u >= 1 ;  done
c done 0

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 56 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Results

Implemented in the Glasgow Subgraph Solver.
Bit-parallel, can perform a colouring and recursive call in under a
microsecond.

59 of the 80 DIMACS instances take under 1,000 seconds to solve
without logging.

Produced and verified proofs for 57 of these 59 instances (the
other two reached 1TByte disk space).

Mean slowdown from proof logging is 80.1 (due to disk I/O).

Mean verification slowdown a further 10.1.

Approximate implementation e�ort: one Masters student.

Once you’ve done one solver, the rest are easy.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 57 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximal Clique Enumeration

There are contradictory results for several graphs in the
literature. . .
For proof logging:

Maximality property is easily expressed in PB (“either take v , or
at least one of v’s neighbours”).
Proof log every backtrack and every solution.
No need to proof log the “not set”.

This works for all maximal clique algorithms.

Implementation e�ort: roughly one day for someone who had
never implemented any kind of proof logging before.

Works for standard benchmark graphs of up to 10,000 vertices.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 58 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximum Weight Clique

a: 2

b: 5

c: 2

d: 7

e: 2

f: 2

pseudo-Boolean proof version 1.0
f 8 0
o xa xd  obj
p nonadja_e 2 * nonadja_f + nonadje_f + 3 d 2 *  cc1
p nonadjb_d 5 *  cc2
p nonadjc_d 2 *  cc3
p obj cc1 + cc2 + cc3 +  done
c done 0

Colour classes have weights.
Just multiply a colour class by its weight.

Vertices can split their weights between colour classes.
That’s fine, no changes needed.

Implementation e�ort: an a�ernoon, having seen roughly how
it’s done for unweighted cliques.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 59 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Maximum Common Subgraph via Clique

a

b c d

1 2

3 4

1 2 3 4a ↦→ { }

1
2
3
4

b ↦→

1 2 3 4c ↦→ { }

1
2
3
4

↦→d

We can encode this reduction using cu�ing planes rules. No
need for a di�erent OPB file.
The clique solver does not need to be modified.
This even works for connectivity.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 60 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Results

Implemented alongside the algorithm in under a day.

11,400 instances verified, proof logging slowdown of 28.6 and
39.7.

Verification slowdown of 11.3 and 73.1.

Caught a bug in the implementation that testing had missed.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 61 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Implementation E�ort

Cheap to implement.

Can potentially speed up development.
With the right proof logging format, proofs are easy to write,
but still simple.

No need to be aware of every single bound function or
propagator.
Proofs can still be “e�icient”.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 62 / 63



In The Beginning. . . Algorithms Instances Variants Interlude Random Instances Ordering Proof Logging

Proof Logging as Standard?

Lots of buggy solvers.
Culture of “my solver is faster on these benchmark instances!”,
and testing only on benchmark instances.
Particularly annoying because solvers are re-used for other
problems.

Proof-logging is too slow to require it to be on all the time.
Graph solvers can have much faster and stronger propagation
than SAT solvers.

Usable in practice for medium-sized instances.

Allows for reformulation.

Ciaran McCreesh

What Maximum Clique Algorithms Can Teach Us, and Vice-Versa 63 / 63



https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

	In The Beginning…
	Algorithms
	Instances
	Variants
	Interlude
	Random Instances
	Ordering
	Proof Logging

