Your First Constraint Programming Puzzle

m Place each of the numbers 1to 8 in circles.

m Adjacent circles can’t have consecutive numbers.

Ciaran McCreesh

(ou Can Trust (But Don’t Hav

Unlver51ty
o of Glasgow

A Constraint Programming Solver You
Can Trust (But Don’t Have To)

Ciaran McCreesh /ﬁ Royal Academy

of Engineering

Heckling Encouraged

\ YOUR IIIEA_S ARE BAD
m This talk is an overview of what |).

plan to do for the next five years.

m I’m not heavily committed to many
of the details.

AND YOUSHOULD FEEL BAD

Ciaran McCreesh

A Constraint Programming Solver You Can Trust (But Don’t Have To)

The Constraint Programming Process

Real world problem G
lModelIing
High level model (Essence, MiniZinc)
lCompiIation :
Low level model (CP, MIP, SAT,...) ?
lPreprocessing :
Solver’s internal representation
lSoIving
Solution

Ciaran McCreesh

A Constraint Programm r You Can Trust (But Don’t Have To)

A Very Realistic Real World Problem

m You have eight exams to schedule over eight days, one exam per
day.

m Students can’t have an exam two days in a row.

m Some students take both of subjects 1and 2, 1and 3, 1 and 4, 1
and 5,2 and 4, ...

Ciaran McCreesh

A Constraint Programm r You Can Trust (But Don’t Have To)

A Very Realistic Real World Problem

THE CONVERSATION a

COVID15 Arts + Culture Business + Economy Education Enviranment + Energy Health + Medicine Politics + Society Science + Tochnology COP26

What problems will Al solve in future? An old
British gameshow can help explain

Noverber3, 2015 1. 176m G

Authors

-
e o s s
@ e

lanrceivs esearch unding from he EPSAC and
the Royal Acacemy of Engineering. He Dector of
the Graduata Academyof the S Iformatcs
and Computer Sience Allance and on he bos
i ————"

Patric rossr doss ot wrk for, consut. o
stares i or rceive funding rom any company or
orgniston that wou beneh o e rccle,
e discose o relevant aiaions o her
scademic sppontment.

g0 University
D o Clasgon

Orinal Crysal Maze prsentr Richard O'ren. A Sutrn

University f Glsgom and Universy o ¢ Andrens
The Crystal Maze, the popular UK television show from the early 1990s, included e funing 25 membrs o The Conversaion K.
a puzzle that is very useful for explaining one of the main conundrums in The Comeraion UK receivesfing o thse
artificial intelligence. The puzzle appeared a few times in the show’s Futuristic organitions

Ciaran McCreesh

A Constraint Programming Solver You Can Trust (But Don’t Have To)

A High Level Model

include "globals.mzn";

int: n = 8;
array[1..n] of var 1..n: xs;

int: m = 17;

array[1..m, 1..2] of 1..n: edges =
cr1, 211, 311, 41]1,5

| 2, 4 12,5]| 2, 6| 3, 4

| 3, 71 4, 5| 4, 7| 4, 8

| 5, 6 |5, 75,816,817, 811;

constraint (alldifferent(xs));

constraint forall (e in 1..m) (
abs(xs[edges[e, 111 - xs[edges[e, 2]11) != 1);

Ciaran McCreesh

ver You Can (But Don’t Have To)

A High Level Model

$ minizinc --solver org.gecode.gecode
xs = arrayld(1..

8, [5, 3, 2,8,1, 17,

..8, 3,5, 7,1

..8, [4,6, 7,1

..8, [6, 4, 2, 8, 1, 7,

» 8, 2,

y8’ 2)

crystalmaze.mzn

41);
3D);
61);

51);

er You Can Trust (But Don’t Have To)

Using a Solver Directly

Problem p;

vector<IntegerVariableID> xs;
for (int i = 0 ; i < 8 ; ++1i)
xs.push_back(p.create_integer_variable(1_i, 8_1i));

vector<pair<int, int> > edges{ { o, 1 3}, { 0, 2}, { o, 3 3}, {0, 473,
1,33 (1,43 (1,53, (2,33 {2,613 {3,432 {3,617
3,73 (4,523, {4,613}, (4,73 {5 73 {6,731

for (auto & [x1, x2] : edges) {
auto diff = p.create_integer_variable(-7_i, 7_1i);
p.post(Minus{ xs[x1], xs[x2], diff 3});
p.post(NotEquals{ diff, @0_c });
p.post(NotEquals{ diff, 1_c });
p.post(NotEquals{ diff, -1_c });

}

p.post(AllDifferent{ xs 3});
p.branch_on(xs);
solve(p, [&] (const State & s) -> bool {
cout << "__" << s(xs[0]) << "_" << s(xs[1]) << endl;
cout << s(xs[2]) << "_" << s(xs[3]) << "_." << s(xs[4]) << "_" << s(xs[5]) << endl;
cout << "__" << s(xs[6]) << "_" << s(xs[7]) << endl << endl;
return true;

1;

‘ou Can t (But Don’t Hav

Using a Solver Directly

$./crystal_maze
35

7182
46

Ciaran McCreesh

‘ou Can (But Don’t Have To)

How Solvers Work

m Variables are a set of non-deleted values.
m Inference from each constraint.
m Propagation until we can’t do inference.

m Backtracking search.

Ciaran McCreesh

ver You Can (But Don’t Have To)

The Inconvenient Secret

m For somewhere between 0.1% (my clique experiments) and 1.28%
(MiniZinc challenge 2021) of instances, we get the wrong
solution.

m False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

The same solver run on the same instance on the same hardware

twice in a row can claim both unsatisfiability and satisfiability.

m This includes academic and commercial CP and MIP solvers.
m Extensive testing hasn’t fixed this.
m Formal methods are far from being able to handle solvers.

m The situation for SAT solvers is somewhat better.

Ciaran McCreesh

er You Can Trust (But Don’t Have To)

Proof Logging in SAT

m Solvers must produce independently-verifiable proofs.
m Seems to reduce bugs, rather than just catching them.
m Vital for social acceptability of computer-generated maths.

m Most of the focus is on unsatisfiability.

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

Proof Logging in SAT

COUNTEREXAMPLE TO EULER’S CONJECTURE
ON SUMS OF LIKE POWERS .

BY L. J. LANDER AND T. R. PARKIN
Communicated by J. D. Swift, June 27, 1966
A direct search on the CDC 6600 yielded ’ ’
27° 4 84% 4 110° 4 133° = 1445

as the smallest instance in which four fifth powers sum to a fifth
power. This is a counterexample to a conjecture by Euler [1] that at
least # nth powers are required to sum to an nth power, n>2.

REFERENCE .

1. L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York,
1952, p. 648.

But Don’t Have To)

Proof Logging in SAT

2 JUNE 2016 | VOL 534 | NATURE | 17

Maths proof smashes size record

Supercomputer produces a 200-terabyte proof — but is it really mathematics?

BY EVELYN LAMB

hree computer scientists have announced

the largest-ever mathematical proof: a

I file that comes in ata whopping 200ter-

abytes, equivalent to all the digitized text held

by the US Library of Congress. The researchers

have created' a 68-gigabyte compressed version

of their solution — which would allow anyone

with about 30,000 hours of spare processor time

to download, reconstruct and verify it — but
ahuman could never hope to read through it.

Ciaran McCreesh

A Constr

aint Programming

Computer-assisted proofs too large to be
directly verifiable by humans have become
common, as have computers that solve prob-
lems in combinatorics — the study of finite
discrete structures — by checking through
umpteen individual cases. Still, “200 terabytes
is unbelievable’, says Ronald Graham, a math-
ematician at the University of California, San
Diego. The previous record-holder is thought
to be a 13-gigabyte proof’, published in 2014.

The puzzle that required the 200-terabyte
proof, called the Boolean Pythagorean triples

Solver You Can Trust (But Don’t Have To)

problem, has troubled mathematicians for dec-
ades. In the 1980s, Graham offered a prize of
US$100 for anyone who could solve it. (He pre-
sented the cheque to one of the three computer
scientists, Marijn Heule of the University of
"Texas at Austin, last month.) The problem asks
whether it is possible to colour each positive
integer either red or blue, so that no trio of inte-
gers a, b and ¢ that satisfy Pythagoras’ famous
equation a’ + b’ = are all the same colour. For
example, for the Pythagorean triple 3, 4and 5,
if 3 and 5 were blue, 4 would have to be red. »

Resolution Proofs

Model axioms From the input

x1VxoV...VxiVc cVyiVy V.
XV V...V VyiVys VeV,

Resolution

m To prove unsatisfiability: resolve until you reach the empty
clause.

r You Can Trust (But Don’t Have To)

Resolution Proofs

xVyvz () 1,50ny xVz (7)
IVFVE @) 6,70nz X (8)
vy) 3,80n x y 9)
. @ 4,80n x z (10)
XV) 2,80n x yVvz (11)
V3 ®) 9,11ony z (12)

10,120n z 0 (13)

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

Equisatisfiability and Completeness

m Start with the constraints we’re given.

m At each step in a proof, add a new constraint which obviously
doesn’t affect satisfiability.

m If we can derive contradiction, there were no solutions to the
original problem.

m Using resolution, we can always do this for any unsatisfiable
SAT problem.

Ciaran McCreesh

A Constraint Programm r You Can Trust (But Don’t Have To)

Reverse Unit Propagation Proofs

m Unit propagation:
m Look for a clause containing just one literal ¢.
m Delete £ from every other clause.
m Repeat until you can’t do anything.
m Reverse unit propagation:
m Add the negation of a constraint C, and unit propagate.
m If contradiction is reached, derive C.

m Can rewrite to resolution in polynomial time.

Ciaran McCreesh

aint Prog i (ou Can Trust (But Don’t Have To)

Backtracking Search as RUP

m Every time you backtrack, output a RUP step for the sequence of
guesses you just made.

er You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyvz (1)

XVyvz (2
XVy ©)
XV z (4)
xVy (5)
xVZz (6)

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyVvz (1) RUP x (7)
XVyvz (2
XVy ®3)
XV z (4)
xVy (5)
xVZz (6)

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyVvz (1) RUP x (7)
XVyvz (2 X assumed

XVy (3) y from5

XV z (4) Zfrom 6

xVYy (5) x from 1

xVZz (6)

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyVvz (1) RUP x (7)
xXVyvz (2 RUPX (8)
XVy ®3)
XV z (4)
xVy (5)
xVZz (6)

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyVvz (1) RUP x (7)
XVyvz (2 RUP x (8)
XVy (3) x assumed

XV z (4) y from 3

xVYy (5) zfrom 4

xVz (6) X from 2

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyVvz (1) RUP x (7)
xXVyvz (2 RUP x (8)
XVy (3) RUP 0 9)
XV z (4)
VY 6
xVZz (6)

Ciaran McCreesh

A Constraint Programmin r You Can Trust (But Don’t Have To)

Backtracking Search as RUP

xVyVvz (1) RUP x (7)
XVyvz (2 RUP x (8)
XVy (3) RUP 0 9)
XV z (4) x from 7

xVYy (5) X from 8

xVZz (6)

Ciaran McCreesh

A Constraint Programmin r You Can Trust (But Don’t Have To)

This Won’t Work for Constraint Programming

m “All different” requires exponential length proofs in resolution.
m Internal representation has to closely match the input.

m Also need to consider optimisation, enumeration, satisfiable
instances, ...

Ciaran McCreesh

er You Can Trust (But Don’t Have To)

Richer Proof Logs

m Logs could contain every kind of propagation done by every
implementation of every constraint?

m Hard to trust the proof logs.
m Can’t entirely trust certain “proofs” of valid kinds of inference
from the literature either...

m Can we make a proof system which is “powerful enough”, but
also simple?

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

Extension Variables

m Given a constraint (not necessarily CNF) C and a fresh variable
y, introduce
y e C

m Now we have polynomial length proofs for “all different”.
m But not necessarily a useful polynomial...

Ciaran McCreesh

ver You Can (But Don’t Have To)

Pseudo-Boolean Models

A set of {0, 1}-valued variables x;, 1 means true.

m Constraints are linear inequalities

Z cixj > C

i
m Write x; to mean 1 — x;.

m Can rewrite CNF to pseudo-Boolean directly,

X1 VXV X3 d X1+X,+x3>1

Ciaran McCreesh

ver You Can (But Don’t Have To)

Cutting Planes Proofs
Model axioms From the input

Literal axioms >0

Z,-a,l;ZA Z,-b,'f,‘Z B

Addition
2ilai+b)ti>A+B
Multiplication Yiaiti> A
foranyce 2 2icaiti > cA
Division 2iaiti > A
+ i A
forany c e N F |'a?'|g’. > |'?'|

m Extremely easy and compact proofs for all-different.

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

Reverse Unit Propagation, Revisited

Can define RUP similarly for pseudo-Boolean constraints.
“Unit propagation” is integer bounds consistency.

It does the same thing on clauses.

RUP can be rewritten to cutting planes in polynomial time.

Ciaran McCreesh

er You Can Trust (But Don’t Have To)

VeriPB
O/StephanGocht/VeriPB

m MIT licence, written in Python with parsing in C.
m Useful features like tracing and proof debugging.

m Jan Elffers, Stephan Gocht, Ciaran McCreesh, Jakob Nordstrom: Justifying All
Differences Using Pseudo-Boolean Reasoning. AAAI 2020.

m Stephan Gocht, Ciaran McCreesh, Jakob Nordstrom: Subgraph Isomorphism Meets
Cutting Planes: Solving With Certified Solutions. 1JCAI 2020.

m Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordstrom, Patrick Prosser,
James Trimble: Certifying Solvers for Clique and Maximum Common (Connected)
Subgraph Problems. CP 2020.

m Stephan Gocht, Jakob Nordstrom: Certifying Parity Reasoning Efficiently Using
Pseudo-Boolean Proofs. AAAI 2021.

m Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, Jakob Nordstréom: Certified
Dominance and Symmetry Breaking for Combinatorial Optimisation. AAAI 2022.

Ciaran McCreesh

A Cons a (a ust (But Don’t Have To)

/StephanGocht/VeriPB

Compiling CP Variables to PB

m A CP variable X € {1, 2, 3} becomes x1, x, X3.
m Each variable takes exactly one value:

vaz1 Z—1xvz—1
veD(X) veD(X)

m Questionable design choice: also create a > encoding,

X>v = X>v-1

X>y = X>y+1

Xy = X>vy

Xy — YZv+1

Xy AXyg1 A ... _)YZV
Xy A X>y41 = Xy

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

Compiling CP Variables to PB

CP Model

x €{1,2,3}

Generated OPB Fragment

* variable x domain

T x_1 1 x_2 1 x_3 >= H

-1 x_1 -1 x_2 -1 x_3 >= -1 ;

* variable x greater or equal encoding
1 x_ge_1 >= 1 ;

1 x_ge_1 1 ~x_ge_2 >= 1 ;
1T ~x_1 1 x_ge_1 >= 1 ;

1 ~x_1 1 ~x_ge_2 >= 1 ;

T x_1 1 x.2 1 x_3 1 ~x_ge_1 >= 1 ;
T ~x_ge_1 1 x_ge_2 1 x_1 >= 1 3

1T ~x_ge_2 1 x_ge_1 >= 1 ;

1 x_ge_2 1 ~x_ge_3 >= 1 ;
1
1
1
1
1
1
1

~x_2 1 x_ge_2 >= 1 ;

~x_2 1 ~x_ge_3 >= 1 ;

x_2 1 x_3 1 ~x_ge_2 >= 1 ;
~x_ge_2 1 x_ge_3 1 x_2 >= 1 ;
~x_ge_3 1 x_ge_2 >= 1 ;

~x_3 1 x_ge_3 >= 1 ;

x_3 1 ~x_ge_3 >= 1 ;

Compiling Not Equals to PB

m CP variables X € {1,2,3} and Y € {2, 3,4}, constraint X # Y.

m For each value they have in common, we can’t pick both:

Xy +yy <1 i.e. =Ix2+ =1y, > —1

x3+y; <1 i.e. Iz +—Ty; > —1

m In OPB:

* not equals x y
-1 x_2 -1 y_2 >= -1
-1 x_3 -1 y_3 >= -1

)

)

er You Can Trust (But Don’t Have To)

Compiling All-Different

m CPvariables X € {1,2,3}, Y € {2,3}, Z € {2, 3,4}, constraint
alldifferent({X, Y, Z}).

m We could do pairwise not-equals, as in SAT, or...

m For each value, it can be used at most once:

=1x; 2 —1

-+ -1y, + =1z, 2 -1
=lyz +-1z3 2 -1

=1z = -1

m In OPB:

* all different X Y Z
-1 x_2 -1 y_2 -1 z_2 >= -1
-1 y_3 -1 z_3 >= -1 ;

’

Ciaran McCreesh

er You Can Trust (But Don’t Have To)

Compiling Table

m CP variables take one of a list of feasible tuples:
(X,Y,Z) €{(1,2,3),(1,3,4), (2,1, 1)}
m Encode using a selector variable S:

S1+s5+s3=1
S1 XAy ANZ3
52—>X1/\y3/\Z4

S3—>X2/\y1/\Z1

r You Can Trust (But Don’t Have To)

The Glasgow Constraint Solver

O/ciaranm/glasgow— constraint-solver

m MIT licence, written in fancy modern C++.
m Currently implements the bare minimum needed to give this
talk.

m | couldn’t think of a name.

er You Can Trust (But Don’t Have To)

/ciaranm/glasgow-constraint-solver

Proof = Search + Justified Deletions

m Whenever a variable loses a value, this must be visible to the
proof verifier.

m Any constraint where unit propagation gives the same
consistency as CP requires no work.

m Can use RUP statements or explicit cutting planes proofs for the
rest.

Ciaran McCreesh

er You Can Trust (But Don’t Have To)

Not Equals

auto valuel = state.optional_single_value(v1l);
auto value2 = state.optional_single_value(v2);
if (valuel && value2)
return pair{
(xvaluel != xvalue2) ? Inf::NoChange : Inf::Contradiction,
Prop::DisableUntilBacktrack
};
else if (valuel)
return pair{
state.infer(v2 != %valuel, NoJustification{ }),
Prop::DisableUntilBacktrack
};
else if (value2)
return pair{
state.infer (vl != %value2, NoJustification{ }),
Prop::DisableUntilBacktrack

return pair{ Inf::NoChange, Prop::Enable };

But Don’t Have T

Table Constraints

// check whether selectable tuples are still feasible
state.for_each_value(table.selector, [&] (Integer tuple_idx) {
bool is_feasible = /x ... x/;

if (! is_feasible) {
switch (state.infer(

table.selector != tuple_idx,
NoJustification{ 3})) {
case Inf::NoChange: break;
case Inf::Change: changed = true; break;
case Inf::Contradiction: contradiction = true; break;

s

Ciaran McCreesh

ver You Can (But Don’t Have To)

Table Constraints

// check for supports in selectable tuples
for (auto & var : table.vars) {

state.for_each_value(var, [&] (Integer val) {
bool supported = /x ... */;

if (! supported) {

switch (state.infer(var != val, JustifyUsingRUP{ })) {

case Inf::NoChange: break;

case Inf::Change: changed = true; break;

case Inf::Contradiction: contradiction = true; break;
}

1

if (contradiction)

return pair{ Inf::Contradiction, Prop::Enable };

Ciaran McCreesh

ver You Can (But Don’t Have To)

Linear Inequalities

m If specified using the > encoding, follows using RUP.

m Probably possible to introduce the > encoding using extension
variables?

Ciaran McCreesh

ver You Can (But Don’t Have To)

All-Different

Ve{il 4}
wWe{1 23 }
Xe{ 23 }
Ye{1 3}
Ze{1 3}

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

All-Different

Ve{il 4}
wWe{123 }
Xe{ 23 }
Ye{1 3}
Ze{1 3}

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

All-Different

Ve{il 4}
We{1 23 } wil+ w2+ w3 >1
Xe{ 23 }
Ye{1 3 }
Ze{1 3 }

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

All-Different
Ve{il 4}
We{1 23 } wil+ w2+ w3 >1
Xe{ 23 } X_2+ x_3 >1
Ye{1 3 1 oyl + y_3 > 1
Ze{1 3 1} oz + z_3 >1

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

All-Different
Ve{il 4}

We{1 23 } w1+ w2+ w.3 > 1
Xe{ 23 } X_2+ x_3 >1
Ye{1 3 1 oyl + y_3 > 1
Ze{1 3 1} oz + z_3 >1

- —v_T+-w_1+ -y_1+-z_1> -1

- -W_2+—-X_2 > -1

— —W_3+—-Xx_3+-y_3+-z_3> -1

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

All-Different
Ve{il 4}

We{1 23 } w1+ w2+ w.3 > 1
Xe{ 23 } X_2+ x_3 >1
Ye{1 3 1 oyl + y_3 > 1
Ze{1 3 1} oz + z_3 >1

- —v_T+-w_1+ -y_1+-z_1> -1

- -W_2+—-X_2 > -1

— —W_3+—-Xx_3+-y_3+-z_3> -1
-v_1 > 1

Ciaran McCreesh

ver You Can Trust (But Don’t Have To)

All-Different

Ve{il 4
We{1 2
Xe{ 2
Ye{1
Ze{1

e e

Ciaran McCreesh

w_1+ w_2+ w_3 >
X_2+ x_3 >

y_1 + y_3 >
z_1 + z_3 >
—v_T+-w_1+ -y_1+-z_12>
—W_2+—x_2 >
—wW_3+—Xx_3+-y_3+-z_32>

—-v_1 >
v_1 >

—_ =

ver You Can Trust (But Don’t Have To)

All-Different

Ve{il 4
We{1 2
Xe{ 2
Ye{1
Ze{1

e e

Ciaran McCreesh

w_1+ w_2+ w_3 >
X_2+ x_3 >

y-1 + y.3 >
z_1 + z_3 >
—v_T+-w_1+ -y_1+-z_12>
—W_2+—x_2 >
—wW_3+—Xx_3+-y_3+-z_32>

—-v_1 >
v_1 >
0 >

—_ =

ver You Can Trust (But Don’t Have To)

All-Different

// is our matching big enough?
if (left_covered.size() != vars.size()) {
// nope. we’ve got a maximum cardinality matching that leaves
// at least one thing on the left uncovered.
return state.infer(FalselLiteral{ }, JustifyExplicitly({
[&] (Proof & proof) {
prove_matching_is_too_small(vars, vals,
constraint_numbers, proof, edges,
left_covered, matching);

s

But Don’t Have T

Putting This Together

Problem p{ Proof{ "three_all_differents.opb",
"three_all_differents.veripb" } };

auto w = p.create_integer_variable(o_i, 1_.i, "w");
auto x = p.create_integer_variable(1_i, 2_i, "x");
auto y = p.create_integer_variable(o_i, 2_i, "y");
auto z = p.create_integer_variable(o_i, 1_i, "z");

p.post(AllDifferent{ { w, x, ¥ } });
p.post(AllDifferent{ { x, y, z } });
p.post(AllDifferent{ { w, z } });

solve(p, [&] (const State & s) -> bool {
cout << s(w) << "_" << s(x) << "M
<< s(y) << "M << s(z) << endl;
return true;

s

Ciaran McCreesh

ver You Can (But Don’t Have To)

Putting This Together

$./three_all_differents
propagators: 4

recursions: 3

failures: 2

propagations: 12

max depth: 1

solutions: @

solve time: 0.000819s

$ veripb --stats three_all_differents.{opb,veripb}
c statistic: time total: 0.00s
Verification succeeded.

Ciaran McCreesh

(ou Can Trust (But Don’t Hav

Putting This Together

* #variable= 9 #constraint= 16

* convenience true and false variables
* variable w domain

1T w0 1 w1 > 1

=T w0 -1 w_1 >= -1
* variable x domain
T x.1 1 x_2 >= 1 ;
-1 x_1 -1 x_2 >= -1 ;

* variable y domain

Ty o1y 11yz2>1;

-1 y_0 -1 y_1 -1 y_2 > -1 ;
* variable z domain

1 z_.0 1 z_1 > 1 ;

-1 z_0 -1 z_1 >= -1 ;

* constraint all different
-1 w_0 -1 y_0 >= -1 ;

=1 wo1l =1 x21 -1 y_ 1 >= -1
-1 x_2 -1 y_2 >= -1,

* constraint all different
-1y 0 -1 z_0 > -1 ;

-1 x_1 -1 y_1 -1 z_1 >= -1
-1 x_2 -1 y_2 >= -1 3

* constraint all different
-1 w_0 -1 z_0 >= -1 ;

-1 w_1 -1 z_1 >= -1 ;

You Can

Putting This Together

pseudo-Boolean proof version 1.0

f‘
*
u
u
*
p
*
u
*
u
u
u
u
*
u
*
u
c

guessing w_0, decision stack is []

1T ~w_0 1 ~y_0 >= 1 ;

1 ~w_0 1 ~z_0 >= 1 ;

all different, found hall set { xy } {1 2 }
35+ 13 + 14 + 0

backtracking

1 ~w_0 >= 1 ;

guessing w_1, decision stack is []

T ~w_1 1 ~x_1 >= 1 ;

T ~w_1 1 ~y_1 >= 1 ;

T ~w_1 1 ~y_2 >= 1 ;

1T ~w_1 1 ~z_1 >= 1 ;

backtracking

1 ~w_1 >= 1 ;

backtracking

>= 1

How Expensive is Proof Logging?

m Laurent D. Michel, Pierre Schaus, Pascal Van Hentenryck:
MiniCP: a lightweight solver for constraint programming. Math.
Program. Comput. 13(1) (2021).

m Five benchmark problems allowing comparison of solvers “doing
the same thing”:

m Simple models.

m Fixed search order and well-defined propagation consistency
levels.

m Few global constraints.

m Compiled Java code for MiniCP, and source for benchmarks.

m Sadly, there are some discrepancies...

Ciaran McCreesh

A Constraint Programm r You Can Trust (But Don’t Have To)

How Expensive is Proof Logging?

Runtime (s)
Instance Nodes Glasgow Glasgow+Proof VeriPB MiniCP Choco
Magic Series 1,192 17.3 35.4 331.0x 24.0 25.4
46M propagations, 415MByte OPB file, 1.2GByte VeriPB file
(other model) 596 1.6 3.9 29.8%

690K propagations, 419MByte OPB file, 141MByte VeriPB file

Magic Square 6,024,078 54.1 604.6 30.2% 34.7 18.9
181M propagations, 527KByte OPB file, 50GByte VeriPB file

n Queens 49,339,389 395.0 2454.8 19.2x 491.7 278.5
2.2B propagations, 48MByte OPB file, 169GByte VeriPB file

QAP 123,333 35.9 125.4 10 days? 8.6 6.3
13M propagations, 14GByte OPB file (with cheating), 6.2GByte VeriPB file
Need to deal with very large integer domains
Element2D with constant arrays using GAC table is slow

TSP Haven’t implemented Circuit constraint yet

Ciaran McCreesh

ver You Can (But Don’t Have To)

Should We Trust This?

Real world problem Gl
lModeIling
High level model (Essence, MiniZinc)
lCompiIation

Low level model (CP, MIP, SAT,) o
/ lPreprocessing ':
PB Encoding Solver’s internal representation
lSoIving

VeriPB Proof + Solution

/

Verifier

Ciaran McCreesh

A Constraint Program ser You Can Trust (But Don’t Have To)

Trusting the Modelling and Compilation

m Outwith the scope of this project.

er You Can Trust (But Don’t Have To)

Trusting the Pseudo-Boolean Encoding

m Use simple encodings, not good encodings.

m Still plenty of room for errors, e.g. the Element constraint is
fiddly.

m Test that single-constraint models find exactly the right set of
solutions, compared to generate-and-test?

Ciaran McCreesh

A Constraint Programm r You Can Trust (But Don’t Have To)

Trusting the Pseudo-Boolean Encoding

auto data = vector{
tuple{ { 2, 53}, {1,613 {1, 121} 3,
tuple{ { 1, 6 }, {2, 532}, {5, 8321},

/x .. %/
tuple{ { 1, 73}, {2, 43 { -5 51%}32

for (auto & [r1, r2, r3] : data) {
if (! run_arithmetic_test<Plus>(rl1, r2, r3,
[1 (int a, int b, int c) {
return a + b == c;
i9))
return EXIT_FAILURE;
if (! run_arithmetic_test<Div>(r1, r2, r3,
[1 (int a, int b, int c) {
return 0 != b & a / b == c;
i9))
return EXIT_FAILURE;

ust (But Don’t Have To)

Trusting the Pseudo-Boolean Encoding

set<tuple<int, int, int> > expected, actual;

for (int v1 = vi_range.first ; vl <= vil_range.second ; ++v1)
for (int v2 = v2_range.first ; v2 <= v2_range.second ; ++v2)
for (int v3 = v3_range.first ; v3 <= v3_range.second ; ++v3)

if (is_satisfing(vl, v2, v3))
expected.emplace(vl, v2, v3);

Problem p{ Proof{ "test.opb", "test.veripb" } };
auto vl = p.create_integer_variable(vi_range.first, vl_range.second);
auto v2 = p.create_integer_variable(v2_range.first, v2_range.second);
auto v3 = p.create_integer_variable(v3_range.first, v3_range.second);
p.post(Arithmetic_{ v1, v2, v3 });
solve(p, [&] (const State & s) -> bool {

actual.emplace(s(vl), s(v2), s(v3));

return true;

s

if ((expected != actual) ||
(0 != system("veripb_test.opb_test.veripb")))
return false;

But Don’t Have To)

Trusting the Preprocessing and Solving

m Fully verifiable (except possibly for enumeration...).

er You Can Trust (But Don’t Have To)

Trusting the Verification

m Verifier is very simple, and knows nothing about constraint
programming.
m Probably possible to produce a formally verified verifier.

m Still potentially buggy, but formally verified code can only
contain “a better class” of bug.

m Will require a “core” proof format.
m Most syntactic sugar removed.
m Rewriting or annotating RUP constraints?

m A buggy proof simplification tool might break valid proofs, but is
unlikely to make invalid proofs valid.

Ciaran McCreesh

er You Can Trust (But Don’t Have To)

Other Things We Can Verify

m Automatic tabulation.

Symmetries.
m Restarts.
m Clause learning.

m Discrepancy search?

Ciaran McCreesh

ver You Can (But Don’t Have To)

What Will We Have?

m Don’t know that the solvers are right.

m Do know that if a solver ever produces a wrong answer, it can be
detected.

m Even if due to a hardware or compiler error, or faulty maths.
m We will need to get used to verification being (a constant factor)
slower than solving.

m Also helps with testing and solver development: bugs are caught
if incorrect reasoning is performed, rather than if a wrong
answer is produced.

m We also have a record of exactly what was actually solved.

m Potentially possible to re-use proof logs for empirical
algorithmics?

Ciaran McCreesh

r You Can Trust (But Don’t Have To)

o1a| University
https://ciaranm.github.io/ ;éi qf(Elasgcnw

ciaran.mccreesh@glasgow.ac.uk

/§ Royal Academy
///’&ﬁ of Engineering

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

