
Your First Constraint Programming Puzzle

Place each of the numbers 1 to 8 in circles.

Adjacent circles can’t have consecutive numbers.
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Heckling Encouraged

This talk is an overview of what I
plan to do for the next five years.

I’m not heavily commi�ed to many
of the details.
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The Constraint Programming Process

Real world problem

High level model (Essence, MiniZinc)

Low level model (CP, MIP, SAT, . . . )

Solver’s internal representation

Solution

Modelling

Compilation

Preprocessing

Solving

?
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A Very Realistic Real World Problem

You have eight exams to schedule over eight days, one exam per
day.

Students can’t have an exam two days in a row.

Some students take both of subjects 1 and 2, 1 and 3, 1 and 4, 1
and 5, 2 and 4, . . .
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A High Level Model

include "globals.mzn";

int: n = 8;
array [1..n] of var 1..n: xs;

int: m = 17;
array [1..m, 1..2] of 1..n: edges =
[| 1, 2 | 1, 3 | 1, 4 | 1, 5
| 2, 4 | 2, 5 | 2, 6 | 3, 4
| 3, 7 | 4, 5 | 4, 7 | 4, 8
| 5, 6 | 5, 7 | 5, 8 | 6, 8 | 7, 8 |];

constraint (alldifferent(xs));

constraint forall (e in 1..m) (
abs(xs[edges[e, 1]] - xs[edges[e, 2]]) != 1);

Ciaran McCreesh

A Constraint Programming Solver You Can Trust (But Don’t Have To) 5 / 39



A High Level Model

$ minizinc --solver org.gecode.gecode -a crystalmaze.mzn
xs = array1d(1..8, [5, 3, 2, 8, 1, 7, 6, 4]);
----------
xs = array1d(1..8, [6, 4, 2, 8, 1, 7, 5, 3]);
----------
xs = array1d(1..8, [3, 5, 7, 1, 8, 2, 4, 6]);
----------
xs = array1d(1..8, [4, 6, 7, 1, 8, 2, 3, 5]);
----------
==========
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Using a Solver Directly

Problem p;

vector <IntegerVariableID > xs;
for (int i = 0 ; i < 8 ; ++i)

xs.push_back(p.create_integer_variable (1_i, 8_i));

vector <pair <int , int > > edges{ { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 },
{ 1, 3 }, { 1, 4 }, { 1, 5 }, { 2, 3 }, { 2, 6 }, { 3, 4 }, { 3, 6 },
{ 3, 7 }, { 4, 5 }, { 4, 6 }, { 4, 7 }, { 5, 7 }, { 6, 7 } };

for (auto & [ x1, x2 ] : edges) {
auto diff = p.create_integer_variable (-7_i, 7_i);
p.post(Minus{ xs[x1], xs[x2], diff });
p.post(NotEquals{ diff , 0_c });
p.post(NotEquals{ diff , 1_c });
p.post(NotEquals{ diff , -1_c });

}

p.post(AllDifferent{ xs });
p.branch_on(xs);
solve(p, [&] (const State & s) -> bool {

cout << "␣␣" << s(xs[0]) << "␣" << s(xs[1]) << endl;
cout << s(xs[2]) << "␣" << s(xs[3]) << "␣" << s(xs[4]) << "␣" << s(xs[5]) << endl;
cout << "␣␣" << s(xs[6]) << "␣" << s(xs[7]) << endl << endl;
return true;

});
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Using a Solver Directly

$ ./crystal_maze
3 5

7 1 8 2
4 6

4 6
7 1 8 2

3 5

5 3
2 8 1 7

6 4

6 4
2 8 1 7

5 3
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How Solvers Work

Variables are a set of non-deleted values.

Inference from each constraint.

Propagation until we can’t do inference.

Backtracking search.
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The Inconvenient Secret

For somewhere between 0.1% (my clique experiments) and 1.28%
(MiniZinc challenge 2021) of instances, we get the wrong
solution.

False claims of unsatisfiability.
False claims of optimality.
Infeasible solutions produced.
The same solver run on the same instance on the same hardware
twice in a row can claim both unsatisfiability and satisfiability.

This includes academic and commercial CP and MIP solvers.

Extensive testing hasn’t fixed this.

Formal methods are far from being able to handle solvers.

The situation for SAT solvers is somewhat be�er.
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Proof Logging in SAT

Solvers must produce independently-verifiable proofs.

Seems to reduce bugs, rather than just catching them.

Vital for social acceptability of computer-generated maths.

Most of the focus is on unsatisfiability.
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Proof Logging in SAT
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Proof Logging in SAT
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Resolution Proofs

Model axioms From the input

Resolution x1 ∨ x2 ∨ . . . ∨ xi ∨ c c ∨ y1 ∨ y2 ∨ . . . yj
x1 ∨ x2 ∨ . . . ∨ xi ∨ y1 ∨ y2 ∨ . . . ∨ yj

To prove unsatisfiability: resolve until you reach the empty
clause.
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Resolution Proofs

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

1, 5 on y x ∨ z (7)

6, 7 on z x (8)

3, 8 on x y (9)

4, 8 on x z (10)

2, 8 on x y ∨ z (11)

9, 11 on y z (12)

10, 12 on z ∅ (13)
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Equisatisfiability and Completeness

Start with the constraints we’re given.

At each step in a proof, add a new constraint which obviously
doesn’t a�ect satisfiability.

If we can derive contradiction, there were no solutions to the
original problem.

Using resolution, we can always do this for any unsatisfiable
SAT problem.
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Reverse Unit Propagation Proofs

Unit propagation:
Look for a clause containing just one literal ℓ .
Delete ℓ from every other clause.
Repeat until you can’t do anything.

Reverse unit propagation:
Add the negation of a constraint C, and unit propagate.
If contradiction is reached, derive C.

Can rewrite to resolution in polynomial time.
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Backtracking Search as RUP

Every time you backtrack, output a RUP step for the sequence of
guesses you just made.
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

RUP x (7)
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

RUP x (7)

x assumed

y from 5

z from 6

x from 1
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

RUP x (7)

RUP x (8)
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

RUP x (7)

RUP x (8)

x assumed

y from 3

z from 4

x from 2
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

RUP x (7)

RUP x (8)

RUP ∅ (9)
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Backtracking Search as RUP

x ∨ y ∨ z (1)

x ∨ y ∨ z (2)

x ∨ y (3)

x ∨ z (4)

x ∨ y (5)

x ∨ z (6)

RUP x (7)

RUP x (8)

RUP ∅ (9)

x from 7

x from 8
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This Won’t Work for Constraint Programming

“All di�erent” requires exponential length proofs in resolution.

Internal representation has to closely match the input.

Also need to consider optimisation, enumeration, satisfiable
instances, . . .
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Richer Proof Logs

Logs could contain every kind of propagation done by every
implementation of every constraint?

Hard to trust the proof logs.
Can’t entirely trust certain “proofs” of valid kinds of inference
from the literature either. . .

Can we make a proof system which is “powerful enough”, but
also simple?
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Extension Variables

Given a constraint (not necessarily CNF) C and a fresh variable
y , introduce

y ↔ C

Now we have polynomial length proofs for “all di�erent”.
But not necessarily a useful polynomial. . .
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Pseudo-Boolean Models

A set of {0, 1}-valued variables xi , 1 means true.

Constraints are linear inequalities∑︁
i

cixi ≥ C

Write x i to mean 1 − xi .

Can rewrite CNF to pseudo-Boolean directly,

x1 ∨ x2 ∨ x3 ↔ x1 + x2 + x3 ≥ 1
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Cu�ing Planes Proofs

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ Z

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i aiℓi ≥ A∑

i
⌈ ai
c

⌉
ℓi ≥

⌈A
c

⌉
Extremely easy and compact proofs for all-di�erent.
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Reverse Unit Propagation, Revisited

Can define RUP similarly for pseudo-Boolean constraints.

“Unit propagation” is integer bounds consistency.

It does the same thing on clauses.

RUP can be rewri�en to cu�ing planes in polynomial time.
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VeriPB

/StephanGocht/VeriPB

MIT licence, wri�en in Python with parsing in C.
Useful features like tracing and proof debugging.

Jan El�ers, Stephan Gocht, Ciaran McCreesh, Jakob Nordström: Justifying All
Di�erences Using Pseudo-Boolean Reasoning. AAAI 2020.
Stephan Gocht, Ciaran McCreesh, Jakob Nordström: Subgraph Isomorphism Meets
Cu�ing Planes: Solving With Certified Solutions. IJCAI 2020.
Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser,
James Trimble: Certifying Solvers for Clique and Maximum Common (Connected)
Subgraph Problems. CP 2020.
Stephan Gocht, Jakob Nordström: Certifying Parity Reasoning E�iciently Using
Pseudo-Boolean Proofs. AAAI 2021.
Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, Jakob Nordström: Certified
Dominance and Symmetry Breaking for Combinatorial Optimisation. AAAI 2022.
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Compiling CP Variables to PB

A CP variable X ∈ {1, 2, 3} becomes x1, x2, x3.
Each variable takes exactly one value:∑︁

v∈D(X )
xv ≥ 1

∑︁
v∈D(X )

−1xv ≥ −1

�estionable design choice: also create a ≥ encoding,

x≥v → x≥v−1
x ≥v → x ≥v+1

xv → x≥v
xv → x ≥v+1

xv ∧ xv+1 ∧ . . . → x ≥v

x≥v ∧ x ≥v+1 → xv
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Compiling CP Variables to PB

CP Model

x ∈ {1, 2, 3}

Generated OPB Fragment
* variable x domain
1 x_1 1 x_2 1 x_3 >= 1 ;
-1 x_1 -1 x_2 -1 x_3 >= -1 ;
* variable x greater or equal encoding
1 x_ge_1 >= 1 ;
1 x_ge_1 1 ~x_ge_2 >= 1 ;
1 ~x_1 1 x_ge_1 >= 1 ;
1 ~x_1 1 ~x_ge_2 >= 1 ;
1 x_1 1 x_2 1 x_3 1 ~x_ge_1 >= 1 ;
1 ~x_ge_1 1 x_ge_2 1 x_1 >= 1 ;
1 ~x_ge_2 1 x_ge_1 >= 1 ;
1 x_ge_2 1 ~x_ge_3 >= 1 ;
1 ~x_2 1 x_ge_2 >= 1 ;
1 ~x_2 1 ~x_ge_3 >= 1 ;
1 x_2 1 x_3 1 ~x_ge_2 >= 1 ;
1 ~x_ge_2 1 x_ge_3 1 x_2 >= 1 ;
1 ~x_ge_3 1 x_ge_2 >= 1 ;
1 ~x_3 1 x_ge_3 >= 1 ;
1 x_3 1 ~x_ge_3 >= 1 ;
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Compiling Not Equals to PB

CP variables X ∈ {1, 2, 3} and Y ∈ {2, 3, 4}, constraint X ≠ Y .

For each value they have in common, we can’t pick both:

x2 + y2 ≤ 1 i.e. −1x2 + −1y2 ≥ −1
x3 + y3 ≤ 1 i.e. −1x3 + −1y3 ≥ −1

In OPB:
* not equals x y
-1 x_2 -1 y_2 >= -1 ;
-1 x_3 -1 y_3 >= -1 ;
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Compiling All-Di�erent

CP variables X ∈ {1, 2, 3}, Y ∈ {2, 3}, Z ∈ {2, 3, 4}, constraint
alldi�erent({X ,Y ,Z }).
We could do pairwise not-equals, as in SAT, or. . .
For each value, it can be used at most once:

−1x1 ≥ −1
−1x2 + −1y2 + −1z2 ≥ −1

−1y3 + −1z3 ≥ −1
−1z4 ≥ −1

In OPB:
* all different X Y Z
-1 x_2 -1 y_2 -1 z_2 >= -1 ;
-1 y_3 -1 z_3 >= -1 ;
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Compiling Table

CP variables take one of a list of feasible tuples:

(X ,Y ,Z ) ∈ {(1, 2, 3), (1, 3, 4), (2, 1, 1)}

Encode using a selector variable S:

s1 + s2 + s3 = 1

s1 → x1 ∧ y2 ∧ z3
s2 → x1 ∧ y3 ∧ z4
s3 → x2 ∧ y1 ∧ z1
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The Glasgow Constraint Solver

/ciaranm/glasgow-constraint-solver

MIT licence, wri�en in fancy modern C++.

Currently implements the bare minimum needed to give this
talk.

I couldn’t think of a name.
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Proof = Search + Justified Deletions

Whenever a variable loses a value, this must be visible to the
proof verifier.

Any constraint where unit propagation gives the same
consistency as CP requires no work.

Can use RUP statements or explicit cu�ing planes proofs for the
rest.
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Not Equals

auto value1 = state.optional_single_value(v1);
auto value2 = state.optional_single_value(v2);
if (value1 && value2)

return pair{
(* value1 != *value2) ? Inf:: NoChange : Inf:: Contradiction ,
Prop:: DisableUntilBacktrack

};
else if (value1)

return pair{
state.infer(v2 != *value1 , NoJustification{ }),
Prop:: DisableUntilBacktrack

};
else if (value2)

return pair{
state.infer(v1 != *value2 , NoJustification{ }),
Prop:: DisableUntilBacktrack

};
else

return pair{ Inf::NoChange , Prop:: Enable };
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Table Constraints

// check whether selectable tuples are still feasible
state.for_each_value(table.selector , [&] (Integer tuple_idx) {

bool is_feasible = /* ... */;

if (! is_feasible) {
switch (state.infer(

table.selector != tuple_idx ,
NoJustification{ })) {

case Inf:: NoChange: break;
case Inf:: Change: changed = true; break;
case Inf:: Contradiction: contradiction = true; break;

}
}

});
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Table Constraints

// check for supports in selectable tuples
for (auto & var : table.vars) {

state.for_each_value(var , [&] (Integer val) {
bool supported = /* ... */;

if (! supported) {
switch (state.infer(var != val , JustifyUsingRUP{ })) {

case Inf:: NoChange: break;
case Inf:: Change: changed = true; break;
case Inf:: Contradiction: contradiction = true; break;

}
}

});

if (contradiction)
return pair{ Inf:: Contradiction , Prop:: Enable };

}
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Linear Inequalities

If specified using the ≥ encoding, follows using RUP.

Probably possible to introduce the ≥ encoding using extension
variables?
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 } w_1 + w_2 + w_3 ≥ 1
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 } w_1 + w_2 + w_3 ≥ 1
X ∈ { 2 3 } x_2 + x_3 ≥ 1
Y ∈ { 1 3 } y_1 + y_3 ≥ 1
Z ∈ { 1 3 } z_1 + z_3 ≥ 1
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 } w_1 + w_2 + w_3 ≥ 1
X ∈ { 2 3 } x_2 + x_3 ≥ 1
Y ∈ { 1 3 } y_1 + y_3 ≥ 1
Z ∈ { 1 3 } z_1 + z_3 ≥ 1

→ −v_1 + −w_1 + −y_1 + −z_1 ≥ −1
→ −w_2 + −x_2 ≥ −1

→ −w_3 + −x_3 + −y_3 + −z_3 ≥ −1
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 } w_1 + w_2 + w_3 ≥ 1
X ∈ { 2 3 } x_2 + x_3 ≥ 1
Y ∈ { 1 3 } y_1 + y_3 ≥ 1
Z ∈ { 1 3 } z_1 + z_3 ≥ 1

→ −v_1 + −w_1 + −y_1 + −z_1 ≥ −1
→ −w_2 + −x_2 ≥ −1

→ −w_3 + −x_3 + −y_3 + −z_3 ≥ −1

−v_1 ≥ 1
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 } w_1 + w_2 + w_3 ≥ 1
X ∈ { 2 3 } x_2 + x_3 ≥ 1
Y ∈ { 1 3 } y_1 + y_3 ≥ 1
Z ∈ { 1 3 } z_1 + z_3 ≥ 1

→ −v_1 + −w_1 + −y_1 + −z_1 ≥ −1
→ −w_2 + −x_2 ≥ −1

→ −w_3 + −x_3 + −y_3 + −z_3 ≥ −1

−v_1 ≥ 1
v_1 ≥ 0
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All-Di�erent

V ∈ { 1 4 }
W ∈ { 1 2 3 } w_1 + w_2 + w_3 ≥ 1
X ∈ { 2 3 } x_2 + x_3 ≥ 1
Y ∈ { 1 3 } y_1 + y_3 ≥ 1
Z ∈ { 1 3 } z_1 + z_3 ≥ 1

→ −v_1 + −w_1 + −y_1 + −z_1 ≥ −1
→ −w_2 + −x_2 ≥ −1

→ −w_3 + −x_3 + −y_3 + −z_3 ≥ −1

−v_1 ≥ 1
v_1 ≥ 0

0 ≥ 1
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All-Di�erent

// is our matching big enough?
if (left_covered.size() != vars.size ()) {

// nope. we’ve got a maximum cardinality matching that leaves
// at least one thing on the left uncovered.
return state.infer(FalseLiteral{ }, JustifyExplicitly{

[&] (Proof & proof) {
prove_matching_is_too_small(vars , vals ,

constraint_numbers , proof , edges ,
left_covered , matching );

}
});

}
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Pu�ing This Together

Problem p{ Proof{ "three_all_differents.opb",
"three_all_differents.veripb" } };

auto w = p.create_integer_variable (0_i, 1_i, "w");
auto x = p.create_integer_variable (1_i, 2_i, "x");
auto y = p.create_integer_variable (0_i, 2_i, "y");
auto z = p.create_integer_variable (0_i, 1_i, "z");
p.post(AllDifferent{ { w, x, y } });
p.post(AllDifferent{ { x, y, z } });
p.post(AllDifferent{ { w, z } });

solve(p, [&] (const State & s) -> bool {
cout << s(w) << "␣" << s(x) << "␣"

<< s(y) << "␣" << s(z) << endl;
return true;

});
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Pu�ing This Together

$ ./three_all_differents
propagators: 4
recursions: 3
failures: 2
propagations: 12
max depth: 1
solutions: 0
solve time: 0.000819s
$ veripb --stats three_all_differents.{opb,veripb}
c statistic: time total: 0.00s
Verification succeeded.
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Pu�ing This Together

* #variable= 9 #constraint= 16
* convenience true and false variables
* variable w domain
1 w_0 1 w_1 >= 1 ;
-1 w_0 -1 w_1 >= -1 ;
* variable x domain
1 x_1 1 x_2 >= 1 ;
-1 x_1 -1 x_2 >= -1 ;
* variable y domain
1 y_0 1 y_1 1 y_2 >= 1 ;
-1 y_0 -1 y_1 -1 y_2 >= -1 ;
* variable z domain
1 z_0 1 z_1 >= 1 ;
-1 z_0 -1 z_1 >= -1 ;
* constraint all different
-1 w_0 -1 y_0 >= -1 ;
-1 w_1 -1 x_1 -1 y_1 >= -1 ;
-1 x_2 -1 y_2 >= -1 ;
* constraint all different
-1 y_0 -1 z_0 >= -1 ;
-1 x_1 -1 y_1 -1 z_1 >= -1 ;
-1 x_2 -1 y_2 >= -1 ;
* constraint all different
-1 w_0 -1 z_0 >= -1 ;
-1 w_1 -1 z_1 >= -1 ;
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Pu�ing This Together

pseudo -Boolean proof version 1.0
f
* guessing w_0 , decision stack is [ ]
u 1 ~w_0 1 ~y_0 >= 1 ;
u 1 ~w_0 1 ~z_0 >= 1 ;
* all different , found hall set { x y } { 1 2 }
p 3 5 + 13 + 14 + 0
* backtracking
u 1 ~w_0 >= 1 ;
* guessing w_1 , decision stack is [ ]
u 1 ~w_1 1 ~x_1 >= 1 ;
u 1 ~w_1 1 ~y_1 >= 1 ;
u 1 ~w_1 1 ~y_2 >= 1 ;
u 1 ~w_1 1 ~z_1 >= 1 ;
* backtracking
u 1 ~w_1 >= 1 ;
* backtracking
u >= 1 ;
c -1
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How Expensive is Proof Logging?

Laurent D. Michel, Pierre Schaus, Pascal Van Hentenryck:
MiniCP: a lightweight solver for constraint programming. Math.
Program. Comput. 13(1) (2021).
Five benchmark problems allowing comparison of solvers “doing
the same thing”:

Simple models.
Fixed search order and well-defined propagation consistency
levels.
Few global constraints.

Compiled Java code for MiniCP, and source for benchmarks.

Sadly, there are some discrepancies. . .
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How Expensive is Proof Logging?

Runtime (s)

Instance Nodes Glasgow Glasgow+Proof VeriPB MiniCP Choco

Magic Series 1,192 17.3 35.4 331.0× 24.0 25.4
46M propagations, 415MByte OPB file, 1.2GByte VeriPB file

(other model) 596 1.6 3.9 29.8×
690K propagations, 419MByte OPB file, 141MByte VeriPB file

Magic Square 6,024,078 54.1 604.6 30.2× 34.7 18.9
181M propagations, 527KByte OPB file, 50GByte VeriPB file

n�eens 49,339,389 395.0 2454.8 19.2× 491.7 278.5
2.2B propagations, 48MByte OPB file, 169GByte VeriPB file

QAP 123,333 35.9 125.4 10 days? 8.6 6.3
13M propagations, 14GByte OPB file (with cheating), 6.2GByte VeriPB file
Need to deal with very large integer domains
Element2D with constant arrays using GAC table is slow

TSP Haven’t implemented Circuit constraint yet
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Should We Trust This?

Real world problem

High level model (Essence, MiniZinc)

Low level model (CP, MIP, SAT, . . . )

Solver’s internal representation

Solution

Modelling

Compilation

Preprocessing

Solving

?

PB Encoding

VeriPB Proof +

Verifier
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Trusting the Modelling and Compilation

Outwith the scope of this project.
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Trusting the Pseudo-Boolean Encoding

Use simple encodings, not good encodings.

Still plenty of room for errors, e.g. the Element constraint is
fiddly.

Test that single-constraint models find exactly the right set of
solutions, compared to generate-and-test?
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Trusting the Pseudo-Boolean Encoding

auto data = vector{
tuple{ { 2, 5 }, { 1, 6 }, { 1, 12 } },
tuple{ { 1, 6 }, { 2, 5 }, { 5, 8 } },
/* ... */
tuple{ { 1, 1 }, { 2, 4 }, { -5, 5 } }

};

for (auto & [ r1 , r2 , r3 ] : data) {
if (! run_arithmetic_test <Plus >(r1, r2, r3,

[] (int a, int b, int c) {
return a + b == c;

}))
return EXIT_FAILURE;

if (! run_arithmetic_test <Div >(r1, r2, r3,
[] (int a, int b, int c) {

return 0 != b && a / b == c;
}))

return EXIT_FAILURE;
}
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Trusting the Pseudo-Boolean Encoding

set <tuple <int , int , int > > expected , actual;
for (int v1 = v1_range.first ; v1 <= v1_range.second ; ++v1)

for (int v2 = v2_range.first ; v2 <= v2_range.second ; ++v2)
for (int v3 = v3_range.first ; v3 <= v3_range.second ; ++v3)

if (is_satisfing(v1, v2, v3))
expected.emplace(v1, v2, v3);

Problem p{ Proof{ "test.opb", "test.veripb" } };
auto v1 = p.create_integer_variable(v1_range.first , v1_range.second );
auto v2 = p.create_integer_variable(v2_range.first , v2_range.second );
auto v3 = p.create_integer_variable(v3_range.first , v3_range.second );
p.post(Arithmetic_{ v1, v2, v3 });
solve(p, [&] (const State & s) -> bool {

actual.emplace(s(v1), s(v2), s(v3));
return true;

});

if (( expected != actual) ||
(0 != system("veripb␣test.opb␣test.veripb")))

return false;
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Trusting the Preprocessing and Solving

Fully verifiable (except possibly for enumeration. . . ).
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Trusting the Verification

Verifier is very simple, and knows nothing about constraint
programming.
Probably possible to produce a formally verified verifier.

Still potentially buggy, but formally verified code can only
contain “a be�er class” of bug.

Will require a “core” proof format.
Most syntactic sugar removed.
Rewriting or annotating RUP constraints?

A buggy proof simplification tool might break valid proofs, but is
unlikely to make invalid proofs valid.
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Other Things We Can Verify

Automatic tabulation.

Symmetries.

Restarts.

Clause learning.

Discrepancy search?
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What Will We Have?

Don’t know that the solvers are right.
Do know that if a solver ever produces a wrong answer, it can be
detected.

Even if due to a hardware or compiler error, or faulty maths.
We will need to get used to verification being (a constant factor)
slower than solving.

Also helps with testing and solver development: bugs are caught
if incorrect reasoning is performed, rather than if a wrong
answer is produced.

We also have a record of exactly what was actually solved.

Potentially possible to re-use proof logs for empirical
algorithmics?
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