
Auditable Constraint Programming
Ciaran McCreesh
With numerous co-conspirators, including Bart Bogaerts, Jan Elffers,
Stephan Gocht, Ross McBride, Matthew McIlree, Jakob Nordström,
Andy Oertel, Patrick Prosser, and James Trimble

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Demotivation

My first experience of research: a summer internship reimplementing
a clique algorithm from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Ciaran McCreesh

Auditable Constraint Programming 1 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Demotivation

My first experience of research: a summer internship reimplementing
a clique algorithm from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Ciaran McCreesh

Auditable Constraint Programming 1 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Demotivation

My first experience of research: a summer internship reimplementing
a clique algorithm from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Ciaran McCreesh

Auditable Constraint Programming 1 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

How Do We Know Our Solvers Are Correct?

I’ve wanted to write a CP solver for years.

How will I know it’s right? What if I ruin some poor student’s life by
publishing wrong answers?

What if someone uses my solver for kidney exchange or workplace
allocation or deciding adoptive parents?

Ciaran McCreesh

Auditable Constraint Programming 2 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

How Do We Know Our Solvers Are Correct?

I’ve wanted to write a CP solver for years.

How will I know it’s right? What if I ruin some poor student’s life by
publishing wrong answers?

What if someone uses my solver for kidney exchange or workplace
allocation or deciding adoptive parents?

Ciaran McCreesh

Auditable Constraint Programming 2 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

The Slide That Keeps Getting Me Into Trouble

2021 MiniZinc challenge: for 1.28% of instances, wrong solutions were
claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

Not limited to a single solver, problem, or constraint.

Not even consistent—same solver on same hardware and same
instance can give different results on different runs.

I don’t want my solver to produce wrong answers!

Or at least, when it’s wrong, I want a guaranteed way of detecting it.

Ciaran McCreesh

Auditable Constraint Programming 3 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

The Slide That Keeps Getting Me Into Trouble

2021 MiniZinc challenge: for 1.28% of instances, wrong solutions were
claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

Not limited to a single solver, problem, or constraint.

Not even consistent—same solver on same hardware and same
instance can give different results on different runs.

I don’t want my solver to produce wrong answers!

Or at least, when it’s wrong, I want a guaranteed way of detecting it.

Ciaran McCreesh

Auditable Constraint Programming 3 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Ciaran McCreesh

Auditable Constraint Programming 4 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Ciaran McCreesh

Auditable Constraint Programming 4 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Ciaran McCreesh

Auditable Constraint Programming 4 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.
Ciaran McCreesh

Auditable Constraint Programming 4 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is A Proof?

Ciaran McCreesh

Auditable Constraint Programming 5 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

The SAT Problem

Variable x : takes value true (=1) or false (=0)

Literal ℓ : variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The SAT Problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Ciaran McCreesh

Auditable Constraint Programming 6 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of clauses (CNF constraints).

Each clause follows “obviously” from everything we know so far.

Final clause is empty, meaning contradiction (written ⊥).
Means original formula must be inconsistent.

Ciaran McCreesh

Auditable Constraint Programming 7 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.
Ciaran McCreesh

Auditable Constraint Programming 8 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨�y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨�u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨�y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨�u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨�u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨�y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (��p�∨�u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y�∨�z) ∧ (x∨�z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨z) ∧ (�x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨�z) ∧ (�x�∨�z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Auditable Constraint Programming 9 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof.

Ciaran McCreesh

Auditable Constraint Programming 10 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof.

Ciaran McCreesh

Auditable Constraint Programming 10 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof.

Ciaran McCreesh

Auditable Constraint Programming 10 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (�u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (�u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (�u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y�∨�z) ∧ (x∨�z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨z) ∧ (�x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨�z) ∧ (�x�∨�z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨�u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨�u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨�u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (��p�∨�u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Auditable Constraint Programming 11 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Writing Proofs in the DRAT Format
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

Ciaran McCreesh

Auditable Constraint Programming 12 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Writing Proofs in the DRAT Format
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

Ciaran McCreesh

Auditable Constraint Programming 12 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Writing Proofs in the DRAT Format
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥

Ciaran McCreesh

Auditable Constraint Programming 12 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Writing Proofs in the DRAT Format
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥

DPLL Proof in DRAT

6 7 0
6 -7 0
6 0
-6 0
0

Ciaran McCreesh

Auditable Constraint Programming 12 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Writing Proofs in the DRAT Format
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥

DPLL Proof in DRAT

6 7 0
6 -7 0
6 0
-6 0
0

CDCL Proof in RUP
u ∨ x
x
⊥

Ciaran McCreesh

Auditable Constraint Programming 12 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Writing Proofs in the DRAT Format
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥

DPLL Proof in DRAT

6 7 0
6 -7 0
6 0
-6 0
0

CDCL Proof in RUP
u ∨ x
x
⊥

CDCL Proof in DRAT

4 6 0
-6 0
0

Ciaran McCreesh

Auditable Constraint Programming 12 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Resolution Proofs

Fact
RUP proofs can be seen as shorthand for Resolution proofs.

Model axioms From the input

Resolution x1 ∨ x2 ∨ . . . ∨ xi ∨ c c ∨ y1 ∨ y2 ∨ . . . yj
x1 ∨ x2 ∨ . . . ∨ xi ∨ y1 ∨ y2 ∨ . . . ∨ yj

To prove unsatisfiability: resolve until you reach the empty
clause.

Ciaran McCreesh

Auditable Constraint Programming 13 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Reusing DRAT Isn’t Feasible

Stronger reasoning is hard in theory and in practice.
Resolution can’t count efficiently.

Closely tied to how MiniSAT works:
Proofs are (mostly) sequences of learned clauses.
Something special and strange happens to learned unit clauses.

Preprocessing is possible (sometimes), but not easy.
We need to do full-on reformulation, though.

Not clear how to do optimisation, enumeration, counting, . . .

Ciaran McCreesh

Auditable Constraint Programming 14 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Opinionated Requirements For This To Work

1 Efficiently work with what solvers actually do, not idealised
algorithms.

2 No need for a new proof format for every new propagator or
solver.

Constraint programming has 423 different global constraints,
many of which have several different propagators.
Some propagators are buggy, and at least one has faulty theory
behind it. . .

3 Proof format must still be simple and well-founded.
Need to be able to trust the verifier.
Interactions between features can be subtle: even deletions aren’t
that easy to get right.

Ciaran McCreesh

Auditable Constraint Programming 15 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Opinionated Requirements For This To Work

1 Efficiently work with what solvers actually do, not idealised
algorithms.

2 No need for a new proof format for every new propagator or
solver.

Constraint programming has 423 different global constraints,
many of which have several different propagators.
Some propagators are buggy, and at least one has faulty theory
behind it. . .

3 Proof format must still be simple and well-founded.
Need to be able to trust the verifier.
Interactions between features can be subtle: even deletions aren’t
that easy to get right.

Ciaran McCreesh

Auditable Constraint Programming 15 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Opinionated Requirements For This To Work

1 Efficiently work with what solvers actually do, not idealised
algorithms.

2 No need for a new proof format for every new propagator or
solver.

Constraint programming has 423 different global constraints,
many of which have several different propagators.
Some propagators are buggy, and at least one has faulty theory
behind it. . .

3 Proof format must still be simple and well-founded.
Need to be able to trust the verifier.
Interactions between features can be subtle: even deletions aren’t
that easy to get right.

Ciaran McCreesh

Auditable Constraint Programming 15 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Unexpected and Remarkable Claim

We can do everything we want with a proof format which is only
slightly more sophisticated than DRAT.

Using proof logs during development leads to faster
development than not doing proof logging.

You should make your students and postdocs adopt this
technology right now.

Ciaran McCreesh

Auditable Constraint Programming 16 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Unexpected and Remarkable Claim

We can do everything we want with a proof format which is only
slightly more sophisticated than DRAT.

Using proof logs during development leads to faster
development than not doing proof logging.

You should make your students and postdocs adopt this
technology right now.

Ciaran McCreesh

Auditable Constraint Programming 16 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Unexpected and Remarkable Claim

We can do everything we want with a proof format which is only
slightly more sophisticated than DRAT.

Using proof logs during development leads to faster
development than not doing proof logging.

You should make your students and postdocs adopt this
technology right now.

Ciaran McCreesh

Auditable Constraint Programming 16 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

From CNF to Pseudo-Boolean

A set of {0, 1}-valued variables xi , 1 means true.

Constraints are linear inequalities∑︁
i

cixi ≥ C

Write x i to mean 1 − xi .

Can rewrite CNF to pseudo-Boolean directly,

x1 ∨ x2 ∨ x3 ↔ x1 + x2 + x3 ≥ 1

Ciaran McCreesh

Auditable Constraint Programming 17 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Cutting Planes Proofs

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i aiℓi ≥ A∑

i
⌈ ai
c

⌉
ℓi ≥

⌈A
c

⌉
Ciaran McCreesh

Auditable Constraint Programming 18 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Extension Variables

Suppose we want new, fresh variable a encoding

a ⇔ (3x + 2y + z + w ≥ 3)

Introduce constraints

3a + 3x + 2y + z + w ≥ 3 5a + 3x + 2y + z + w ≥ 5

Should be fine, so long as a hasn’t been used before.

Ciaran McCreesh

Auditable Constraint Programming 19 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Interleaving RUP and Extended Cutting Planes

Can define RUP similarly for pseudo-Boolean constraints.
It does the same thing on clauses.
Should probably be called “reverse integer bounds consistency”.

Idea: use RUP for backtracking, and include explicit extended
cutting planes steps to justify reasoning.

Ciaran McCreesh

Auditable Constraint Programming 20 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logs for Extended Cutting Planes

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints.

Each constraint follows “obviously” from what is known so far.

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint

Final constraint is 0 ≥ 1.

Ciaran McCreesh

Auditable Constraint Programming 21 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it.

Introduces a new constraint saying “not this solution”.

So the proof semantics are “unsatisfiable, except for all the
solutions I told you about”.

For optimisation:

Define an objective f =
∑

i wiℓi , wi ∈ Z, to minimise in the
pseudo-Boolean model.

To maximise, negate objective.

Log a solution 𝛼 , get a solution-improving constraint∑
i wiℓi ≤ −1 +∑

i wi𝛼 (ℓi).

Ciaran McCreesh

Auditable Constraint Programming 22 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it.

Introduces a new constraint saying “not this solution”.

So the proof semantics are “unsatisfiable, except for all the
solutions I told you about”.

For optimisation:

Define an objective f =
∑

i wiℓi , wi ∈ Z, to minimise in the
pseudo-Boolean model.

To maximise, negate objective.

Log a solution 𝛼 , get a solution-improving constraint∑
i wiℓi ≤ −1 +∑

i wi𝛼 (ℓi).

Ciaran McCreesh

Auditable Constraint Programming 22 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

The VeriPB System

https://gitlab.com/MIAOresearch/software/VeriPB

MIT licence, written in Python with parsing in C++.

Useful features like tracing and proof debugging.

Ciaran McCreesh

Auditable Constraint Programming 23 / 48

https://gitlab.com/MIAOresearch/software/VeriPB

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Making a Proof-Logging Solver

1 Output a pseudo-Boolean encoding of the problem.
2 Make the solver log its search tree.

Output a small header.
Output something on every backtrack.
Output something every time a solution is found.
Output a small footer.

3 Figure out how to log propagations.

Ciaran McCreesh

Auditable Constraint Programming 24 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Auditable Constraint Programming 25 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Auditable Constraint Programming 25 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Auditable Constraint Programming 25 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Auditable Constraint Programming 25 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Auditable Constraint Programming 25 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Extremely Critical Point That is Easily Misunderstood

We’re working with a normal constraint programming solver
here.

The Pseudo-Boolean encoding is only for the proof, and does not
affect how the solver works.

Ciaran McCreesh

Auditable Constraint Programming 26 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Compiling CP Variables

Given A ∈ {−3 . . . 9}:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3
+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

Ciaran McCreesh

Auditable Constraint Programming 27 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Compiling CP Variables

Given A ∈ {−3 . . . 9}:

−32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ −3 and
32aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 + −16ab4 ≥ −9

Ciaran McCreesh

Auditable Constraint Programming 27 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Compiling CP Variables

Given A ∈ {−3 . . . 9}:

−32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ −3 and
32aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 + −16ab4 ≥ −9

Then where needed, define:

a≥4 ↔ −32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ 4

a≥5 ↔ −32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ 5

a=4 ↔ a≥4 ∧ a≥5

We can do this in the pseudo-Boolean model, where needed, or lazily
inside the proof using extension variables.

Ciaran McCreesh

Auditable Constraint Programming 27 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Introducing Useful Facts About Variables

When creating x=i , also introduce

x≥i → x≥j and x≥h → x≥i

for the closest two values h and j that already have equality variables.

All-different is easier if we introduce

u∑︁
i=ℓ

x=i ≥ 1

which is also easy to do in a proof.

Ciaran McCreesh

Auditable Constraint Programming 28 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Introducing Useful Facts About Variables

When creating x=i , also introduce

x≥i → x≥j and x≥h → x≥i

for the closest two values h and j that already have equality variables.

All-different is easier if we introduce

u∑︁
i=ℓ

x=i ≥ 1

which is also easy to do in a proof.

Ciaran McCreesh

Auditable Constraint Programming 28 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Compiling Constraints

Also need to compile every constraint to pseudo-Boolean form.

Doesn’t need to be a propagating encoding.

Can use additional variables.

Ciaran McCreesh

Auditable Constraint Programming 29 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Compiling Constraints

Given 2A + 3B + 4C ≥ 42, where A,B,C ∈ {−3 . . . 9},

−64aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3 + 32ab4
+ − 96bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3 + 48bb4
+ − 128cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 + 64cb4 ≥ 42.

Ciaran McCreesh

Auditable Constraint Programming 29 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Compiling Constraints

Given (A,B,C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)], define

3t0 + a=1 + b=2 + c=3 ≥ 3 i.e. t0 → (a=1 ∧ b=2 ∧ c=3)
3t1 + a=1 + b=4 + c=4 ≥ 3 i.e. t1 → (a=1 ∧ b=4 ∧ c=4)
3t2 + a=2 + b=2 + c=5 ≥ 3 i.e. t2 → (a=2 ∧ b=2 ∧ c=5)

using a tuple selector variable

t0 + t1 + t2 = 1

Ciaran McCreesh

Auditable Constraint Programming 29 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging Search Trees

Want to just output a reverse unit propagation step on every
backtrack.

This works for forward-checking / DPLL, but not with strong
propagators.

The key invariant: any propagation visible to the CP solver must be
reflected either

By “unit propagation” on the pseudo-Boolean model,

Or by reverse unit propagation on the backtrack clause.

Ciaran McCreesh

Auditable Constraint Programming 30 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging Inference: The Easy Cases

If it follows from bounds consistency on the pseudo-Boolean model,
no further proof logging needed.

For example, a tuple in a table constraint becoming infeasible.

Intuition: some facts are so obvious they don’t need stated.

Ciaran McCreesh

Auditable Constraint Programming 31 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging Inference: Using RUP

Some facts are “obvious” once we tell the proof verifier they are true,
but not otherwise.

For example, a variable losing a value due to a table constraint.

We log these propagations using RUP.

Intuition: like singleton arc consistency.

Ciaran McCreesh

Auditable Constraint Programming 32 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging Inference: Explicit Justifications

Some facts aren’t “obvious” but can be justified explicitly.

All-different: sum up the “variable takes at least one value” and
“value is used at most once” constraints for a Hall set or Hall violator.

Integer linear inequalities: the slack algorithm gives an easy proof.

Ciaran McCreesh

Auditable Constraint Programming 33 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1
v=1 ≥ 0

Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Justifying All-Different Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1
v=1 ≥ 0

0 ≥ 1
Ciaran McCreesh

Auditable Constraint Programming 34 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Logging Reformulations

Some reformulations can be done inside the proof log:

Turning not-equals from sums into binary constraints.

2D element constraints.

Autotabulation.

Ciaran McCreesh

Auditable Constraint Programming 35 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Symmetry Elimination

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without
repetition, adjacent circles cannot
have consecutive numbers.

We can introduce these constraints inside the proof, rather than as
part of the pseudo-Boolean model. Based upon a dominance rule, no
group theory required!

Ciaran McCreesh

Auditable Constraint Programming 36 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Symmetry Elimination

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without
repetition, adjacent circles cannot
have consecutive numbers.

We can introduce these constraints inside the proof, rather than as
part of the pseudo-Boolean model. Based upon a dominance rule, no
group theory required!

Ciaran McCreesh

Auditable Constraint Programming 36 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Symmetry Elimination

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without
repetition, adjacent circles cannot
have consecutive numbers.

We can introduce these constraints inside the proof, rather than as
part of the pseudo-Boolean model. Based upon a dominance rule, no
group theory required!

Ciaran McCreesh

Auditable Constraint Programming 36 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Symmetry Elimination

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without
repetition, adjacent circles cannot
have consecutive numbers.

We can introduce these constraints inside the proof, rather than as
part of the pseudo-Boolean model. Based upon a dominance rule, no
group theory required!

Ciaran McCreesh

Auditable Constraint Programming 36 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

The Glasgow Constraint Solver

https://github.com/ciaranm/glasgow-constraint-solver

MIT licence, written in fancy modern C++.
A growing collection of global constraints:

Absolute value.
All-different.
Circuit (check and prevent).
Element.
Integer linear (in)equalities (with large domains, and GAC
reformulation).
Minumum and Maximum.
Regular (and hence Stretch, Geost, DiffN).
Smart Table (and hence Lex, At Most One, Not All Equal).

I couldn’t think of a name.
Ciaran McCreesh

Auditable Constraint Programming 37 / 48

https://github.com/ciaranm/glasgow-constraint-solver

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

Problem p;
auto va = p.create_integer_variable(1_i, 5_i, "a");
auto vb = p.create_integer_variable(1_i, 2_i, "b");
auto vc = p.create_integer_variable(2_i, 3_i, "c");
auto vd = p.create_integer_variable(2_i, 3_i, "d");
p.post(AllDifferent({va, vb, vc, vd}));
p.post(LinearLessEqual{Linear{{1_i, va}, {1_i, vb}, {1_i, vc}}, 9_i});

auto obj = p.create_integer_variable(0_i, 10000_i, "obj");
p.post(LinearEquality{Linear{{2_i, va}, {3_i, vd}, {-1_i, obj}}, 0_i});
p.minimise(obj);

cout << solve_with(p,
SolveCallbacks{

.solution = [&](const CurrentState & s) -> bool {
cout << "a = " << s(va) << " b = " << s(vb) << " c = " << s(vc)

<< " d = " << s(vd) << " obj = " << s(obj) << endl;
return true;

},
},
ProofOptions{"tutorial.opb", "tutorial.veripb"});

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

$./build/tutorial_proof
a = 4 b = 1 c = 2 d = 3 obj = 17
a = 4 b = 1 c = 3 d = 2 obj = 14
propagators: 3
recursions: 5
failures: 1
propagations: 20 7 0
max depth: 2
solutions: 2
solve time: 0.001696s

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* #variable= 38 #constraint= 48
min: 1 xObj_b_0 2 xObj_b_1 4 xObj_b_2 8 xObj_b_3 16 xObj_b_4 32 xObj_b_5

64 xObj_b_6 128 xObj_b_7 256 xObj_b_8 512 xObj_b_9 1024 xObj_b_10
2048 xObj_b_11 4096 xObj_b_12 8192 xObj_b_13 ;

* variable xA_a 1 .. 5 bits encoding
1 xA_b_0 2 xA_b_1 4 xA_b_2 >= 1 ;
-1 xA_b_0 -2 xA_b_1 -4 xA_b_2 >= -5 ;
* variable xB_b 1 .. 2 bits encoding
1 xB_b_0 2 xB_b_1 >= 1 ;
-1 xB_b_0 -2 xB_b_1 >= -2 ;
* variable xC_c 2 .. 3 bits encoding
1 xC_b_0 2 xC_b_1 >= 2 ;
-1 xC_b_0 -2 xC_b_1 >= -3 ;
* variable xD_d 2 .. 3 bits encoding
1 xD_b_0 2 xD_b_1 >= 2 ;
-1 xD_b_0 -2 xD_b_1 >= -3 ;
* variable xObj_obj 0 .. 10000 bits encoding
1 xObj_b_0 2 xObj_b_1 4 xObj_b_2 8 xObj_b_3 16 xObj_b_4 32 xObj_b_5

64 xObj_b_6 128 xObj_b_7 256 xObj_b_8 512 xObj_b_9 1024 xObj_b_10
2048 xObj_b_11 4096 xObj_b_12 8192 xObj_b_13 >= 0 ;

-1 xObj_b_0 -2 xObj_b_1 -4 xObj_b_2 -8 xObj_b_3 -16 xObj_b_4 -32 xObj_b_5
-64 xObj_b_6 -128 xObj_b_7 -256 xObj_b_8 -512 xObj_b_9 -1024 xObj_b_10
-2048 xObj_b_11 -4096 xObj_b_12 -8192 xObj_b_13 >= -10000 ;

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* constraint all different on A, B, C, D
-1 xA_eq_1 -1 xB_eq_1 >= -1 ;
-1 xA_eq_2 -1 xB_eq_2 -1 xC_eq_2 -1 xD_eq_2 >= -1 ;
-1 xA_eq_3 -1 xC_eq_3 -1 xD_eq_3 >= -1 ;

* need xA_ge_2
1 xA_b_0 2 xA_b_1 4 xA_b_2 2 ~xA_ge_2 >= 2 ;
-1 xA_b_0 -2 xA_b_1 -4 xA_b_2 6 xA_ge_2 >= -1 ;
* need lower bound xA_eq_1
1 ~xA_ge_2 1 ~xA_eq_1 >= 1 ;
-1 ~xA_ge_2 1 xA_eq_1 >= 0 ;
* need xB_ge_2
1 xB_b_0 2 xB_b_1 2 ~xB_ge_2 >= 2 ;
-1 xB_b_0 -2 xB_b_1 2 xB_ge_2 >= -1 ;
* need lower bound xB_eq_1
1 ~xB_ge_2 1 ~xB_eq_1 >= 1 ;
-1 ~xB_ge_2 1 xB_eq_1 >= 0 ;
* need xA_ge_3
1 xA_b_0 2 xA_b_1 4 xA_b_2 3 ~xA_ge_3 >= 3 ;
-1 xA_b_0 -2 xA_b_1 -4 xA_b_2 5 xA_ge_3 >= -2 ;
-1 xA_ge_3 1 xA_ge_2 >= 0 ;
* need xA_eq_2
1 xA_ge_2 1 ~xA_ge_3 2 ~xA_eq_2 >= 2 ;
-1 xA_ge_2 -1 ~xA_ge_3 1 xA_eq_2 >= -1 ;
* and so on...

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* constraint linear inequality 1*A 1*B 1*C <= 9
-1 xA_b_0 -2 xA_b_1 -4 xA_b_2 -1 xB_b_0 -2 xB_b_1 -1 xC_b_0 -2 xC_b_1 >= -9 ;

* constraint linear equality 2*A 3*D -1*Obj = 0
2 xA_b_0 4 xA_b_1 8 xA_b_2 3 xD_b_0 6 xD_b_1

-1 xObj_b_0 -2 xObj_b_1 -4 xObj_b_2 -8 xObj_b_3 -16 xObj_b_4
-32 xObj_b_5 -64 xObj_b_6 -128 xObj_b_7 -256 xObj_b_8
-512 xObj_b_9 -1024 xObj_b_10 -2048 xObj_b_11 -4096 xObj_b_12
-8192 xObj_b_13 >= 0 ;

-2 xA_b_0 -4 xA_b_1 -8 xA_b_2 -3 xD_b_0 -6 xD_b_1 1
xObj_b_0 2 xObj_b_1 4 xObj_b_2 8 xObj_b_3 16 xObj_b_4
32 xObj_b_5 64 xObj_b_6 128 xObj_b_7 256 xObj_b_8
512 xObj_b_9 1024 xObj_b_10 2048 xObj_b_11 4096 xObj_b_12
8192 xObj_b_13 >= 0 ;

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

pseudo-Boolean proof version 1.2
f 48 0

* all-different
u 1 xC_eq_2 1 xC_eq_3 >= 1 ;
u 1 xD_eq_2 1 xD_eq_3 >= 1 ;
p 49 50 + 35 + 45 +
u 1 ~xA_eq_1 >= 1 ;
u 1 ~xA_eq_2 >= 1 ;
u 1 ~xA_eq_3 >= 1 ;
u 1 ~xB_eq_2 >= 1 ;

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* justifying integer linear inequality Obj >= 14
* need A >= 4
u 1 xA_b_0 2 xA_b_1 4 xA_b_2 >= 4 ;
p 48 56 2 * + 7 3 * + 1 d
* need xObj_ge_14
red 1 xObj_b_0 2 xObj_b_1 4 xObj_b_2 8 xObj_b_3 16 xObj_b_4 32 xObj_b_5

64 xObj_b_6 128 xObj_b_7 256 xObj_b_8 512 xObj_b_9 1024 xObj_b_10
2048 xObj_b_11 4096 xObj_b_12 8192 xObj_b_13 14 ~xObj_ge_14 >= 14 ;
xObj_ge_14 0

red -1 xObj_b_0 -2 xObj_b_1 -4 xObj_b_2 -8 xObj_b_3 -16 xObj_b_4 -32 xObj_b_5
-64 xObj_b_6 -128 xObj_b_7 -256 xObj_b_8 -512 xObj_b_9 -1024 xObj_b_10
-2048 xObj_b_11 -4096 xObj_b_12 -8192 xObj_b_13 16370 xObj_ge_14 >= -13 ;
xObj_ge_14 1

u 1 xObj_ge_14 >= 1 ;

* justifying integer linear inequality Obj < 20
p 47 2 2 * + 8 3 * + 1 d
* need xObj_ge_20 (omitted)
u 1 ~xObj_ge_20 >= 1 ;

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* need xA_ge_5
red 1 xA_b_0 2 xA_b_1 4 xA_b_2 5 ~xA_ge_5 >= 5 ; xA_ge_5 0
red -1 xA_b_0 -2 xA_b_1 -4 xA_b_2 3 xA_ge_5 >= -4 ; xA_ge_5 1
u -1 xA_ge_5 1 xA_ge_4 >= 0 ;
* need xA_eq_4
red 1 xA_ge_4 1 ~xA_ge_5 2 ~xA_eq_4 >= 2 ; xA_eq_4 0
red -1 xA_ge_4 -1 ~xA_ge_5 1 xA_eq_4 >= -1 ; xA_eq_4 1
* guessing xA_eq_4, decision stack is []

* justifying integer linear inequality Obj < 18
* need A < 5
u -1 xA_b_0 -2 xA_b_1 -4 xA_b_2 11 ~xA_eq_4 >= -4 ;
p 47 71 2 * + 8 3 * + 1 d
* need xObj_ge_18 (omitted)
u 1 ~xA_eq_4 1 ~xObj_ge_18 >= 1 ;

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* guessing xC_eq_2, decision stack is [xA_eq_4]
* all-different
u 1 ~xA_eq_4 1 ~xC_eq_2 1 ~xD_eq_2 >= 1 ;

* justifying integer linear inequality Obj >= 17
* need D >= 3
u 1 xD_b_0 2 xD_b_1 6 ~xA_eq_4 6 ~xC_eq_2 >= 3 ;
p 48 56 2 * + 79 3 * + 1 d
* need xObj_ge_17 (omitted)
u 1 ~xA_eq_4 1 ~xC_eq_2 1 xObj_ge_17 >= 1 ;

* solution
* need xObj_eq_17
red 1 xObj_ge_17 1 ~xObj_ge_18 2 ~xObj_eq_17 >= 2 ; xObj_eq_17 0
red -1 xObj_ge_17 -1 ~xObj_ge_18 1 xObj_eq_17 >= -1 ; xObj_eq_17 1
o xA_eq_4 xB_eq_1 xC_eq_2 xD_eq_3 xObj_eq_17 xObj_b_0 ~xObj_b_1

~xObj_b_2 ~xObj_b_3 xObj_b_4 ~xObj_b_5 ~xObj_b_6 ~xObj_b_7
~xObj_b_8 ~xObj_b_9 ~xObj_b_10 ~xObj_b_11 ~xObj_b_12 ~xObj_b_13

u 1 ~xObj_ge_17 >= 1 ;

* backtracking
u 1 ~xA_eq_4 1 ~xC_eq_2 >= 1 ;

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

A VeriPB Proof for a CP Problem

A ∈ {1 . . . 5}
B ∈ {1 . . . 2}
C ∈ {2 . . . 3}
D ∈ {2 . . . 3}
AllDiff (A,B,C,D)
A + B + C ≤ 9

minimise 2A + 3D

* then a bit more search happens (omitted), until...
* solution
o xA_eq_4 xB_eq_1 xC_eq_3 xD_eq_2 xObj_eq_14 ~xObj_b_0 xObj_b_1

xObj_b_2 xObj_b_3 ~xObj_b_4 ~xObj_b_5 ~xObj_b_6 ~xObj_b_7
~xObj_b_8 ~xObj_b_9 ~xObj_b_10 ~xObj_b_11 ~xObj_b_12 ~xObj_b_13

u 1 ~xObj_ge_14 >= 1 ;

* backtracking
u 1 ~xA_eq_4 1 ~xC_eq_3 >= 1 ;

* backtracking
u 1 ~xA_eq_4 >= 1 ;

* need upper bound xA_eq_5
red 1 xA_ge_5 1 ~xA_eq_5 >= 1 ; xA_eq_5 0
red -1 xA_ge_5 1 xA_eq_5 >= 0 ; xA_eq_5 1
* guessing xA_eq_5, decision stack is []

* backtracking
u 1 ~xA_eq_5 >= 1 ;

* backtracking
u >= 1 ;

* asserting contradiction
c -1

Ciaran McCreesh

Auditable Constraint Programming 38 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Propagator Bugs!

Early versions of integer linear inequality propagator had bug
with negative values and negative coefficients.

Integer division and modulus in C++ don’t do what you expect
for negative numbers.
I had forgotten this.

Using “trust me” assertions, no wrong answers from many tests.

Using proof logging: caught instantly.

Ciaran McCreesh

Auditable Constraint Programming 39 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Do We Have?

Don’t know that the solver is correct.
Do know that if a solver ever produces a wrong answer, it can be
detected.

Even if due to a hardware or compiler error, or faulty maths.
We will need to get used to verification being (a constant factor)
slower than solving.

Under the assumption that the pseudo-Boolean problem is
correct.

Also helps with testing and solver development: bugs are caught
if incorrect reasoning is performed, rather than if a wrong
answer is produced.

We get an auditable record of exactly what was actually solved.

Ciaran McCreesh

Auditable Constraint Programming 40 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Do We Have?

Don’t know that the solver is correct.
Do know that if a solver ever produces a wrong answer, it can be
detected.

Even if due to a hardware or compiler error, or faulty maths.
We will need to get used to verification being (a constant factor)
slower than solving.
Under the assumption that the pseudo-Boolean problem is
correct.

Also helps with testing and solver development: bugs are caught
if incorrect reasoning is performed, rather than if a wrong
answer is produced.

We get an auditable record of exactly what was actually solved.

Ciaran McCreesh

Auditable Constraint Programming 40 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Do We Have?

Don’t know that the solver is correct.
Do know that if a solver ever produces a wrong answer, it can be
detected.

Even if due to a hardware or compiler error, or faulty maths.
We will need to get used to verification being (a constant factor)
slower than solving.
Under the assumption that the pseudo-Boolean problem is
correct.

Also helps with testing and solver development: bugs are caught
if incorrect reasoning is performed, rather than if a wrong
answer is produced.

We get an auditable record of exactly what was actually solved.

Ciaran McCreesh

Auditable Constraint Programming 40 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Do We Have?

Don’t know that the solver is correct.
Do know that if a solver ever produces a wrong answer, it can be
detected.

Even if due to a hardware or compiler error, or faulty maths.
We will need to get used to verification being (a constant factor)
slower than solving.
Under the assumption that the pseudo-Boolean problem is
correct.

Also helps with testing and solver development: bugs are caught
if incorrect reasoning is performed, rather than if a wrong
answer is produced.

We get an auditable record of exactly what was actually solved.

Ciaran McCreesh

Auditable Constraint Programming 40 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Else Can VeriPB Do?

SAT with symmetries, cardinality, XOR reasoning, MaxSAT.
Uncovered several undetected bugs in state of the art solvers.
Can’t do MaxSAT hitting set solvers yet, MIP isn’t proof logged.

Certified translations from pseudo-Boolean to CNF.

Clique, subgraph isomorphism, maximum common (connected)
induced subgraph.

In progress: MIP preprocessing, dynamic programming, . . .

Ciaran McCreesh

Auditable Constraint Programming 41 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Reasoning Can We Justify?

With extension variables, as strong as Extended Frege.
So according to theorists, we can simulate pretty much
everything.

Up to a polynomial factor. . .

Except dominance is apparently even stronger?

Ciaran McCreesh

Auditable Constraint Programming 42 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Reasoning Can We Justify?

With extension variables, as strong as Extended Frege.
So according to theorists, we can simulate pretty much
everything.

Up to a polynomial factor. . .

Except dominance is apparently even stronger?

Ciaran McCreesh

Auditable Constraint Programming 42 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Reasoning Can We Justify?

With extension variables, as strong as Extended Frege.
So according to theorists, we can simulate pretty much
everything.

Up to a polynomial factor. . .

Except dominance is apparently even stronger?

Ciaran McCreesh

Auditable Constraint Programming 42 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

What Reasoning Can We Justify Efficiently?

Quadratic overheads are unpleasant.

Cutting planes is very good at justifying combinatorial
arguments.

It’s not really clear why.

Ciaran McCreesh

Auditable Constraint Programming 43 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Verifying the Verifier

How do we know the encoding is correct?

How do we know the verifier is correct?

How do we know the proof system is sound?

Ciaran McCreesh

Auditable Constraint Programming 44 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Proof Trimming

Proofs can be really really really big.

Often many steps end up being redundant for the final proof.

Could we make a tool that turns a really really really big proof
into a really big proof?

Ciaran McCreesh

Auditable Constraint Programming 45 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Going the Other Way

Can we use proofs to understand solver behaviour?
Why solvers work so well when they shouldn’t.
Why solvers perform so badly when they shouldn’t.

Explainability?

Ciaran McCreesh

Auditable Constraint Programming 46 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Where We’re At

Can verify solutions from state of the art combinatorial solving
algorithms, in a unified proof system.
Found many undetected bugs in widely used solvers.

Including in algorithms that have been “proved” correct.

Not being either proof logged or formally verified should be
considered socially unacceptable.

Perhaps studying proof logs can help explain why solvers work
so well?

Ciaran McCreesh

Auditable Constraint Programming 47 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Where We’re At

Can verify solutions from state of the art combinatorial solving
algorithms, in a unified proof system.
Found many undetected bugs in widely used solvers.

Including in algorithms that have been “proved” correct.

Not being either proof logged or formally verified should be
considered socially unacceptable.

Perhaps studying proof logs can help explain why solvers work
so well?

Ciaran McCreesh

Auditable Constraint Programming 47 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Where We’re At

Can verify solutions from state of the art combinatorial solving
algorithms, in a unified proof system.
Found many undetected bugs in widely used solvers.

Including in algorithms that have been “proved” correct.

Not being either proof logged or formally verified should be
considered socially unacceptable.

Perhaps studying proof logs can help explain why solvers work
so well?

Ciaran McCreesh

Auditable Constraint Programming 47 / 48

Demotivation Proof Logging for SAT Beyond SAT Proof Logging for CP Challenges Propaganda

Getting Involved

Glasgow has funding for PhD students starting this October.

I will be hiring for a three year postdoc position as soon as the
paperwork is finished.

The Glasgow constraint solver:
https://github.com/ciaranm/glasgow-constraint-solver

Install VeriPB:
https://gitlab.com/MIAOresearch/software/VeriPB

Documentation:
https://satcompetition.github.io/2023/downloads/

proposals/veripb.pdf

Tutorial:
https://www.youtube.com/watch?v=s_5BIi4I22w

Ciaran McCreesh

Auditable Constraint Programming 48 / 48

https://github.com/ciaranm/glasgow-constraint-solver
https://gitlab.com/MIAOresearch/software/VeriPB
https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://www.youtube.com/watch?v=s_5BIi4I22w

https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

	Demotivation
	Proof Logging for SAT
	Beyond SAT
	Proof Logging for CP
	Challenges
	Propaganda

