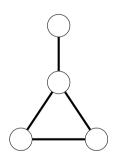
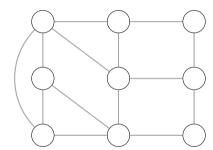
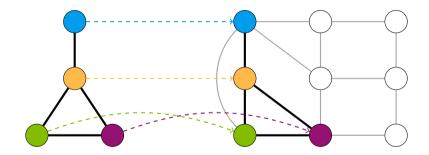
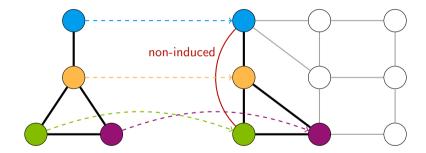
Finding Little Graphs Inside Big Graphs

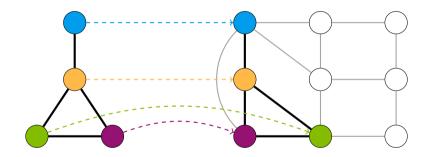
Ciaran McCreesh

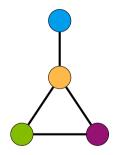


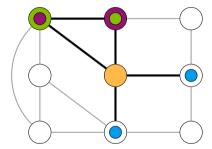


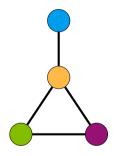


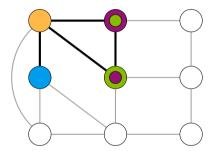


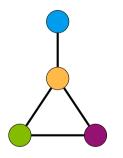


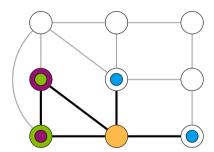


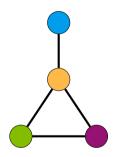


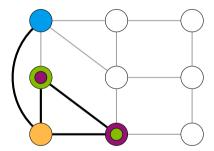


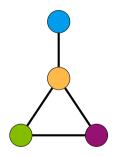


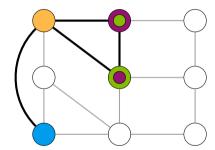




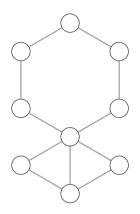




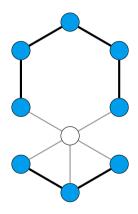


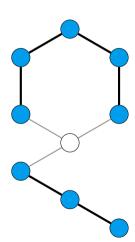


Maximum Common Induced Subgraph

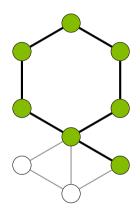


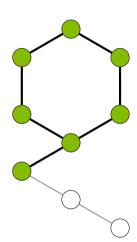
Maximum Common Induced Subgraph



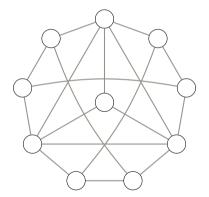


Maximum Common Induced Connected Subgraph

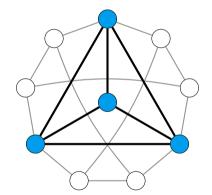




Maximum Clique



Maximum Clique



- Chemistry, biochemistry, and drug design (graphs are molecule fragments or proteins).
- Computer vision.
- Compilers (instruction generation, code rewriting).
- Plagiarism and malware detection.
- Livestock epidemiology (contact and trade graphs).
- Designing mechanical lock systems.

In Theory...

- Subgraph finding is hard.
- Subgraph counting is hard.
- Approximate subgraph finding is hard.

In Practice...

- We have good *solvers* for subgraph problems.
- Some applications involve solving thousands of subgraph isomorphism queries per second.
- We can solve clique on larger graphs than we can solve all-pairs shortest path.¹

¹Terms and conditions apply.

In Practice...

- We have good *solvers* for subgraph problems.
- Some applications involve solving thousands of subgraph isomorphism queries per second.
- We can solve clique on larger graphs than we can solve all-pairs shortest path.¹
- Maximum common subgraph is still a nightmare. . .

¹Terms and conditions apply.

In Practice...

- We have good *solvers* for subgraph problems.
- Some applications involve solving thousands of subgraph isomorphism queries per second.
- We can solve clique on larger graphs than we can solve all-pairs shortest path.¹
- Maximum common subgraph is still a nightmare. . .
- People often don't actually want to solve simple subgraph isomorphism.

¹Terms and conditions apply.

Graphs Aren't Just Graphs

- Vertex and / or edge labels, or broader compatibility functions.
- Directed edges.
- Multi-edges, more than one edge between vertices.
- Hyper-edges, between more than two vertices.
- Partially defined graphs?
- No need for injectivity (homomorphism), or only local injectivity.

Graphs Aren't Just Graphs

- Vertex and / or edge labels, or broader compatibility functions.
- Directed edges.
- Multi-edges, more than one edge between vertices.
- Hyper-edges, between more than two vertices.
- Partially defined graphs?
- No need for injectivity (homomorphism), or only local injectivity.
- Don't forget about loops!

Graphs Aren't Just Graphs

- Vertex and / or edge labels, or broader compatibility functions.
- Directed edges.
- Multi-edges, more than one edge between vertices.
- Hyper-edges, between more than two vertices.
- Partially defined graphs?
- No need for injectivity (homomorphism), or only local injectivity.
- Don't forget about loops!
- Might want all solutions, or a count.

Two Solver Design Philosophies

- II Pick a vertex, guess where it goes, and start trying to grow a connected component.
 - Popular solvers: VF2, VF3, RI, TurbolSO, ...
 - Very fast to start up.
 - Often good on easy instances.
 - Spectacularly bad on hard instances, and on some easy instances.
- 2 Use constraint programming, build a mapping from the pattern graph to the target graph.
 - LAD. Glasgow Subgraph Solver.
 - Consistent performance on easy instances.
 - Much better on hard instances.

The Glasgow Subgraph Solver

Algorithm Basics

https://github.com/ciaranm/glasgow-subgraph-solver

- A CP style solver specifically for subgraph algorithms.
- Subgraph isomorphism, and all its variants (induced / non-induced, homomorphism, locally injective, labels, side constraints, directed, . . .).
- Also special algorithms for clique.
- Guaranteed no bugs!

The Glasgow Subgraph Solver

Algorithm Basics

https://github.com/ciaranm/glasgow-subgraph-solver

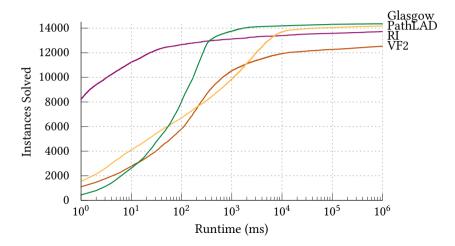
- A CP style solver specifically for subgraph algorithms.
- Subgraph isomorphism, and all its variants (induced / non-induced, homomorphism, locally injective, labels, side constraints, directed, . . .).
- Also special algorithms for clique.
- Guaranteed no bugs!
 - Or at least, any buggy output will always be detected, if you enable proof logging.

Benchmark Instances

http://perso.citi-lab.fr/csolnon/SIP.html

- 14,621 instances from Christine Solnon's collection:
 - Randomly generated with different models (MIVIA suite).
 - Real-world graphs.
 - Computer vision problems.
 - Biochemistry problems.
 - Phase transition instances.
- At least...
 - \geq 2,110 satisfiable.
 - $ightharpoonup \geq 12,322$ unsatisfiable.
- A lot of them are very easy for good algorithms.

Is It Any Good?



Easy Conclusion!

■ CP is best!

An Observation about Certain Datasets

Algorithm Basics 0000000000000

- All of the randomly generated instances from the MIVIA suites are satisfiable.
- The target graphs are randomly generated, and patterns are made by selecting random connected subgraphs and permuting them.
- These instances are usually rather easy. . .
- Many papers use *only* these instances for benchmarking.

A Different Easy Conclusion!

CP is slow! RI is best!

Constraint Programming

- We have some variables, each of which has a domain of possible values.
- Give each variable a value from its domain, whilst respecting all constraints.

Building a Mapping

Algorithm Basics

- One variable per pattern vertex.
- Domains and values are target vertices.
- We think of these variables as defining a function.

Injectivity

- Can't map to the same target vertex twice.
- Could say that each pair of pattern vertices are not equal?

Injectivity

- Can't map to the same target vertex twice.
- Could say that each pair of pattern vertices are not equal?
- We prefer high-level constraints, so we just say "all different".

Adjacency

- If A and B are adjacent in the pattern, f(A) must be adjacent to f(B) in the target.
- lacksquare Various ways of encoding this. In SAT we'd need n^4 clauses, or n^3 if we're sneaky.
- In practice: we write a special constraint propagator to do this efficiently.

Backtracking Search, Maintaining Consistency

- lacktriangle Pick a variable V that has more than one value remaining.
- \blacksquare For each of its values v in turn:
 - lacksquare Try V=v, and do some inference.
 - \blacksquare No other variable can take the value v.
 - lacktriangle Variables adjacent to V must be given values adjacent to v.
 - If we get an empty domain, we made a bad guess.
 - If every variable has one value left, we have a solution.
 - Otherwise, recurse.

Data Structures

- We store a set of values for every variable.
- Need to be able to test whether a specific value is present, remove values, count how many values remain.
- Must either be copyable, or have some way of doing backtracking.

Data Structures

- We store a set of values for every variable.
- Need to be able to test whether a specific value is present, remove values, count how many values remain.
- Must either be copyable, or have some way of doing backtracking.
- Objectively correct answer: bitsets.

Degree Filtering

Neighbourhood Degree Sequences

Dynamic Degrees?

- If a target vertex disappears from every domain, can pretend it's not there at all.
- This reduces the degree of all of its neighbours.
- Maybe this leads to more filtering?

Dynamic Degrees?

- If a target vertex disappears from every domain, can pretend it's not there at all.
- This reduces the degree of all of its neighbours.
- Maybe this leads to more filtering?
- Problem: detecting this can be moderately expensive, so possibly not worth doing?

Adjacency Filtering

Injectivity Filtering

$$A \in \{1, 2\}$$

$$B \in \{2,3\}$$

$$C \in \{1,3\}$$

$$D \in \{1, 4, 5, 6\}$$

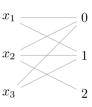
$$E \in \{2,5\}$$

$$F \in \{3, 5\}$$

- Draw a vertex on the left for each variable, and a vertex on the right for each value.
- Draw edges from each variable to each of its values.
- A maximum cardinality matching is where you pick as many edges as possible, but each vertex can only be used at most once.
- We can find this in polynomial time.
- There is a matching which covers each variable if and only if the constraint can be satisfied.
- In fact, there is a one to one correspondence between perfect matchings and solutions to the constraint.

- Draw a vertex on the left for each variable, and a vertex on the right for each value.
- Draw edges from each variable to each of its values.
- A maximum cardinality matching is where you pick as many edges as possible, but each vertex can only be used at most once.
- We can find this in polynomial time.
- There is a matching which covers each variable if and only if the constraint can be satisfied
- In fact, there is a one to one correspondence between perfect matchings and solutions to the constraint.

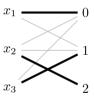
- Draw a vertex on the left for each variable, and a vertex on the right for each value.
- Draw edges from each variable to each of its values.
- A maximum cardinality matching is where you pick as many edges as possible, but each vertex can only be used at most once.
- We can find this in polynomial time.
- There is a matching which covers each variable if and only if the constraint can be satisfied.
- In fact, there is a one to one correspondence between perfect matchings and solutions to the constraint.



- Draw a vertex on the left for each variable, and a vertex on the right for each value.
- Draw edges from each variable to each of its values.

Filtering

- A maximum cardinality matching is where you pick as many edges as possible, but each vertex can only be used at most once.
- We can find this in polynomial time.
- There is a matching which covers each variable if and only if the constraint can be satisfied.
- In fact, there is a one to one correspondence between perfect matchings and solutions to the constraint.



Sudoku

From Wikipedia, the free encyclopedia

Not to be confused with Sodoku or Sudeki.

Sudoku (when sūdoku², digit-single) \sim /su:'doʊku:/, /-'do-/, /sə-/; originally called **Number Place**, [1] is a logic-based, [2][3] combinatorial [4] number-placement puzzle. The objective is to fill a 9×9 grid with digits so that each column, each row, and each of the nine 3×3 sub-grids that compose the grid (also called "boxes", "blocks", "regions", or "sub-squares") contains all of the digits from 1 to 9. The puzzle setter provides a partially completed grid, which for a well-posed puzzle has a unique solution.

0	3			/					ı
6			1	9	5				ı
	9	8					6		ı
8				6				3	ı
4			8		3			1	ı
7				2				6	ı
Ξ	6		Г			2	8		ı
Ξ			4	1	9			5	ı
Ξ				8			7	9	ı

A typical Sudoku puzzle

The same puzzle with solution numbers marked in red

18	23	23	245	456	456	279	378	23589	

18	23	23	245	456	456	279	378	23589	

1	23	23	245	456	456	279	378	23589	

|--|

phs Algorithm Basics **Filtering** Search Detour: Hard Instances Back to Search Summary Research Topics

1	23	23	245	456	456	279	378	23589	
---	----	----	-----	-----	-----	-----	-----	-------	--

raphs Algorithm Basics **Filtering** Search Detour: Hard Instances Back to Search Summary Research Topics

|--|

hs Algorithm Basics **Filtering** Search Detour: Hard Instances Back to Search Summary Research Topics

	1	23	23	45	456	456	79	78	589	
--	---	----	----	----	-----	-----	----	----	-----	--

hs Algorithm Basics **Filtering** Search Detour: Hard Instances Back to Search Summary Research Topics

|--|

Generalised Arc Consistency

- Arc Consistency (AC): for a binary constraint, each value is supported by at least one value in the other variable.
- Generalised Arc Consistency (GAC): for a global constraint, we can pick any value from any variable, and find a supporting set of values from each other variable in the constraint simultaneously.
 - Each remaining value appears in at least one solution to the constraint.

Hall Sets

- A Hall set of size n is a set of n variables from an "all different" constraint, whose domains have n values between them.
- If we can find a Hall set, we can safely remove these values from the domains of every other variable involved in the constraint.
- Hall's Marriage Theorem: doing this is equivalent to deleting every edge from the matching graph which cannot appear in any perfect matching.
- So, if we delete every Hall set, we delete every value that cannot appear in at least one way of satisfying the constraint. In other words, we obtain GAC.

- \blacksquare There are 2^n potential Hall sets, so considering them all is probably a bad idea...
- Similarly, enumerating every perfect matching is #P-hard.
- However, there is a polynomial algorithm!

GAC for All-Different

 x_0

 x_1

 x_2

 x_3

 x_4

 x_5

 x_6

 x_7

 x_8

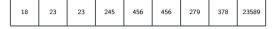
3

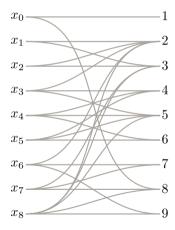
56

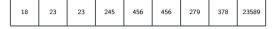
9

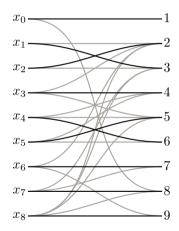
18	23	23	245	456	456	279	378	23589	
----	----	----	-----	-----	-----	-----	-----	-------	--

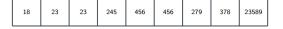
x_0		
x_1		
x_2		
x_3		
x_4		
x_5		
x_6		
x_7		
x_8		

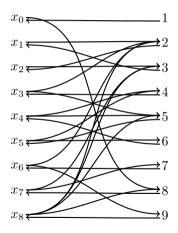


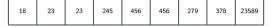


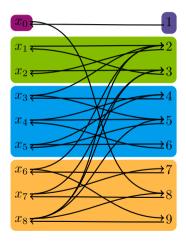


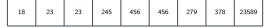


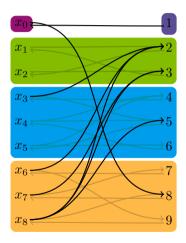


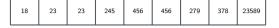


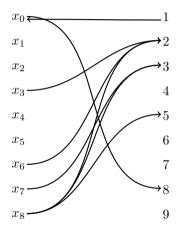




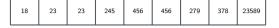


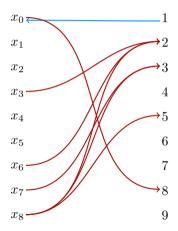




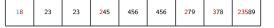


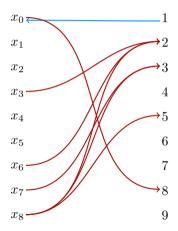
GAC for All-Different





GAC for All-Different



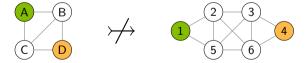


Is This a Good Idea?

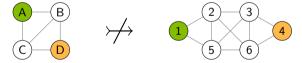
- Various techniques to avoid running all-different all of the time.
 - Faster bit-parallel propagator that can miss some deletions.
- Can also do all-different on edges. . .

■ Adjacent vertices must be mapped to adjacent vertices.

- Adjacent vertices must be mapped to adjacent vertices.
- Vertices that are distance 2 apart must be mapped to vertices that are within distance 2.

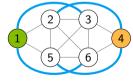


- Adjacent vertices must be mapped to adjacent vertices.
- Vertices that are distance 2 apart must be mapped to vertices that are within distance 2.
- lacktriangle Vertices that are distance k apart must be mapped to vertices that are within distance k.



- \blacksquare G^d is the graph with the same vertex set as G, and an edge between v and w if the distance between v and w in G is at most d.
- \blacksquare For any d, a subgraph isomorphism $i:P \rightarrowtail T$ is also a subgraph isomorphism $i^d: P^d \rightarrow T^d$

Filtering



- We can do something stronger: rather than looking at distances, we can look at (simple) paths, and we can count how many there are.
- This is NP-hard in general, but only lengths 2 and 3 and counts of 2 and 3 are useful in practice.
- We construct these graph pairs once, at the top of search, and use them for degree-based filtering at the top of search, and "adjacency" filtering during search.

Supplemental Graphs

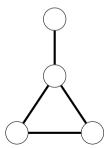
Induced Subisomorphisms

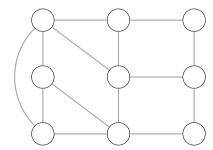
Partially Defined Graphs

Clique Neighbourhood Filtering

- If a pattern vertex is contained in a k-vertex clique, it must be mapped to a target vertex contained in at least a k-vertex clique.
- Valid without injectivity (with a caveat for loops).

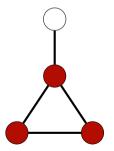
Filtering

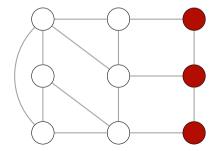




Clique Neighbourhood Filtering

- If a pattern vertex is contained in a k-vertex clique, it must be mapped to a target vertex contained in at least a k-vertex clique.
- Valid without injectivity (with a caveat for loops).

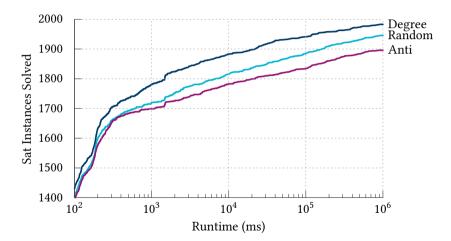




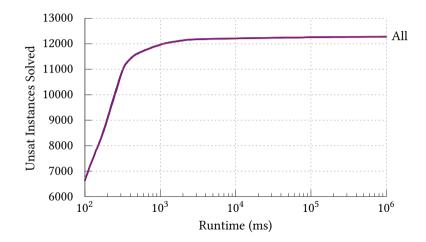
Variable and Value Ordering Heuristics

- Variable ordering (i.e. pattern vertices): smallest domain first, tie-breaking on highest degree.
 - Tends to pick vertices adjacent to things we've already picked.
- Value ordering (i.e. target vertices): highest degree to lowest.

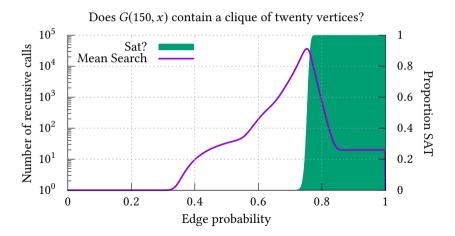
Sanity Check



Sanity Check

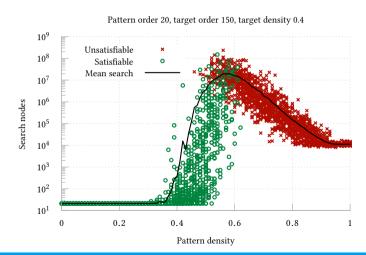


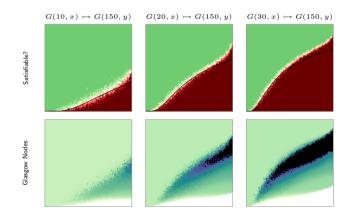
Clique in Random Graphs

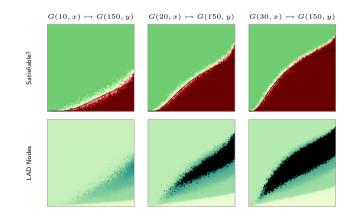


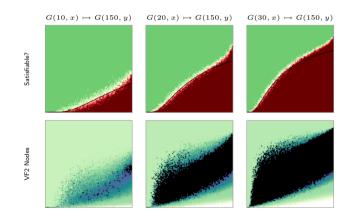
Let's Generate Random Instances a Different Way

- Decide upon a pattern graph order (number of vertices) and density.
- Decide upon a target graph order and density.
- Generate instances at random, independently.







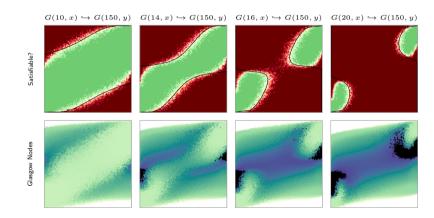


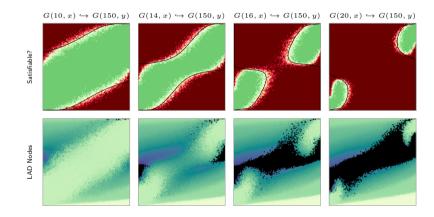
Hand-Wavy Theoretical Justification

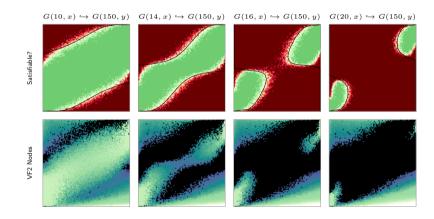
- Maximise the expected number of solutions during search?
- If P = G(p, q) and T = G(t, u).

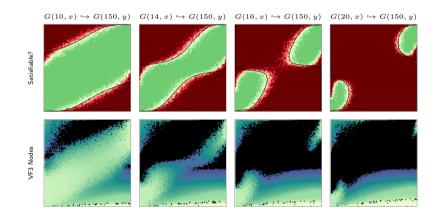
$$\langle Sol \rangle = \underbrace{t \cdot (t-1) \cdot \ldots \cdot (t-p+1)}_{\text{injective mapping}} \cdot \underbrace{u^{q \cdot \binom{p}{2}}}_{\text{adjacency}}$$

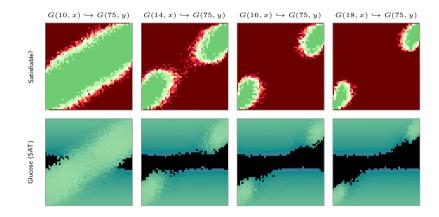
- Smallest domain first keeps remaining domain sizes large.
- \blacksquare High pattern degree makes the remaining pattern subgraph sparser, reducing q.
- \blacksquare High target degree leaves as many vertices as possible available for future use, making ularger.

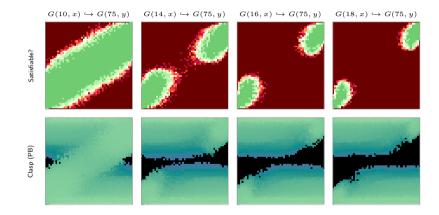


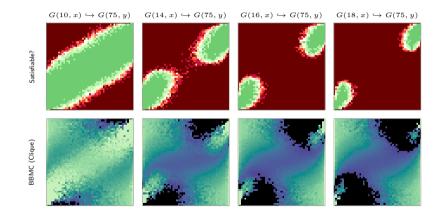


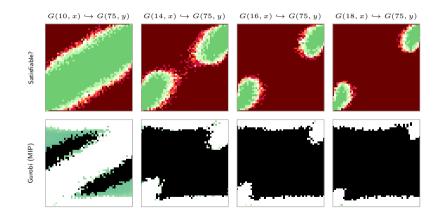








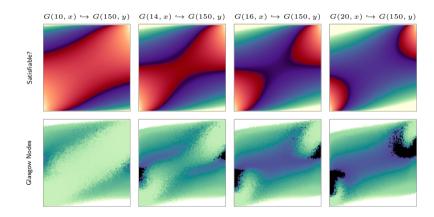




Constrainedness

$$\kappa = 1 - \frac{\log\left(t^{\underline{p}} \cdot u^{q \cdot \binom{p}{2}} \cdot (1 - u)^{(1 - q) \cdot \binom{p}{2}}\right)}{\log t^{\underline{p}}}$$

Constrainedness

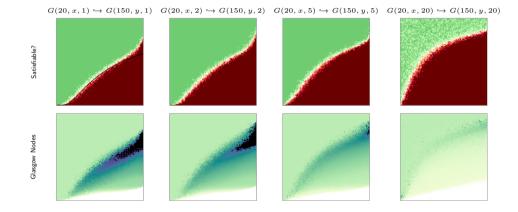


Labelled Subgraph Isomorphism

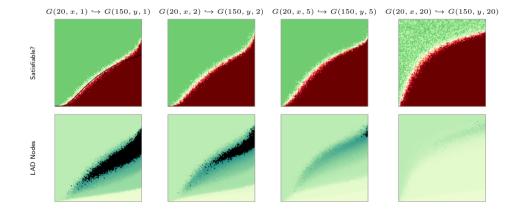
- Vertices have labels, and the isomorphism must preserve labels.
- Carbon must map to carbon, hydrogen to hydrogen. . . .

$$\langle Sol \rangle = \left(\frac{\Gamma(t/k+1)}{\Gamma(t/k-p/k+1)} \right)^k \cdot u^{q \cdot \binom{p}{2}}$$

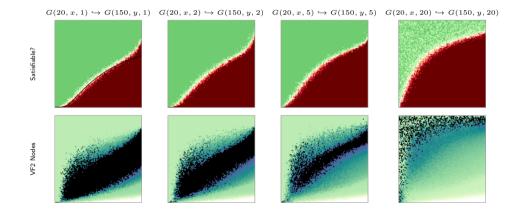
Labels and Phase Transitions



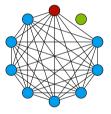
Labels and Phase Transitions

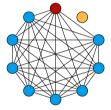


Labels and Phase Transitions



Connectivity Algorithms are Really Stupid





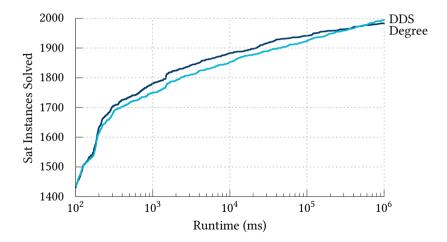
Back to Value-Ordering Heuristics

■ Largest target degree first.

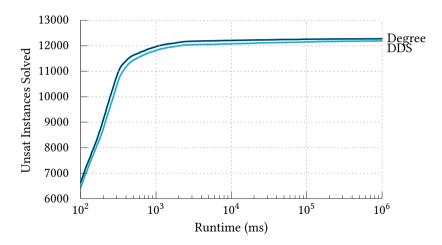
However...

- What if several vertices have the same degree?
- lacktriangle Is a vertex of degree 10 really that much better than a vertex of degree 9?

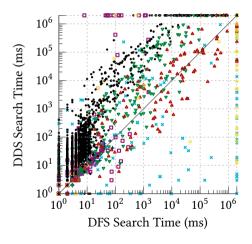
Discrepancy Search?



Discrepancy Search?



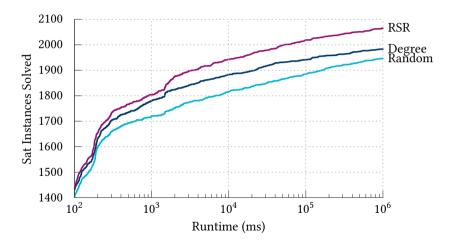
Discrepancy Search?



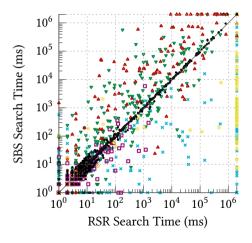
Random Search with Restarts and Nogood Recording

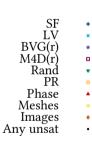
- Back to the random value-ordering heuristic.
- Aggressive restarts: every 100ms.
- Nogood recording and 2WL to avoid repeating work.

Random Search with Restarts and Nogood Recording



Random Search with Restarts and Nogood Recording





Back to Search

- Traditional view: value-ordering defines a search order.
- New view: value-ordering defines what proportion of the search effort should be spent on different subproblems.
- According to people who know more statistics than me, if solutions are uniformly distributed, then random search with restarts should be better than DFS.

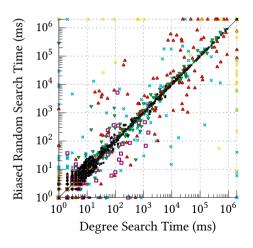
A Slightly Random Value-Ordering Heuristic

lacksquare For a fixed domain D_v , pick a vertex v' from a domain D_v with probability

$$p(v') = \frac{2^{\deg(v')}}{\sum_{w \in D_v} 2^{\deg(w)}}$$

- lacktriangle Equally likely to pick between two vertices of degree d.
- lacktriangle Twice as likely to select a vertex of degree d than a vertex of degree d-1.
- Justification: solution density and expected distribution of solutions.

A Slightly Random Value-Ordering Heuristic

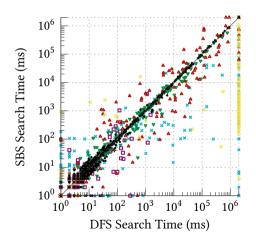


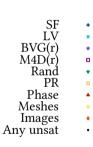
SF LV
BVG(r)
M4D(r)
Rand
PR
Phase
Meshes
Images
Any unsat

 Algorithm Basics
 Filtering
 Search
 Detour: Hard Instances
 Back to Search
 Summary

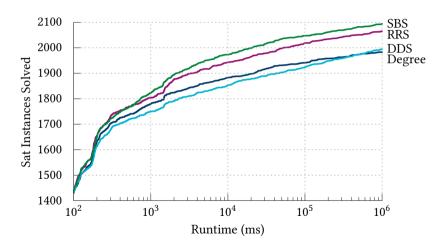
 000000000000
 00000000000
 00
 000000000
 0
 0

Is It Better?



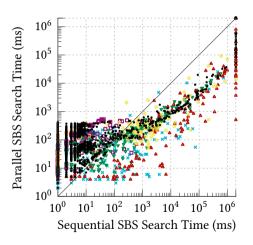


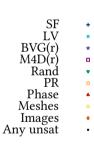
Is It Better?



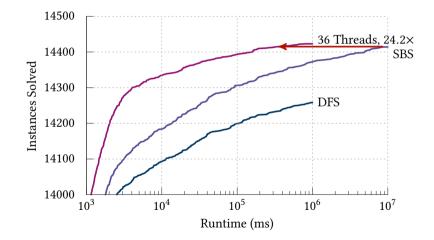
- Each thread gets its own random seed.
- Barrier synchronise on restarts.
- Share nogoods.

Is It Even Betterer?

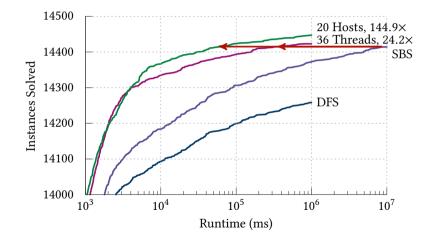




Is It Even Betterer?

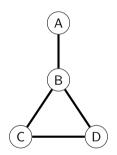


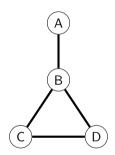
Is It Even Betterer?



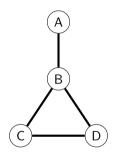
Lessons Learned

- Got to get a lot of things right:
 - Design.
 - Engineering.
 - Evaluation.
 - Understanding the hardware.
- Being clever only pays off if you can do it quickly.
 - Except sometimes it pays off even if it's really expensive.
- Not always clear what problem people really want to solve.

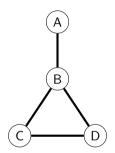




lacksquare Only find solutions where C < D.



- Only find solutions where C < D.
- What about for arbitrary symmetries, in both pattern and target graphs?



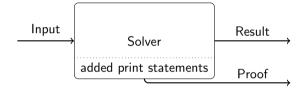
- Only find solutions where C < D.
- What about for arbitrary symmetries, in both pattern and target graphs?
- Dynamic symmetries?

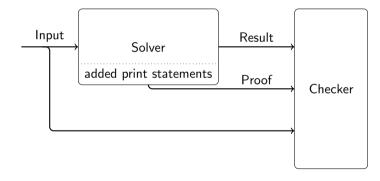
- We can easily enumerate all solutions.
- If we only need a count, can we speed things up?

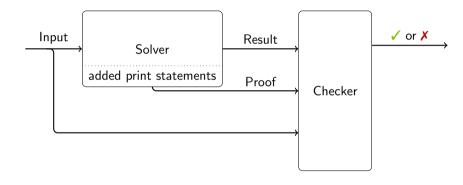
- We can easily enumerate all solutions.
- If we only need a count, can we speed things up?
- What if an approximate count is OK?

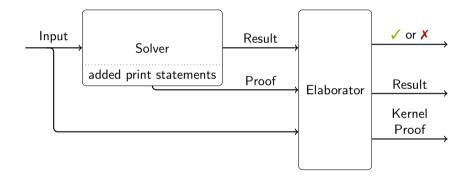
- We can easily enumerate all solutions.
- If we only need a count, can we speed things up?
- What if an approximate count is OK?
- What if we want a few solutions, but sampled uniformly?
 - Common in term-rewriting systems.

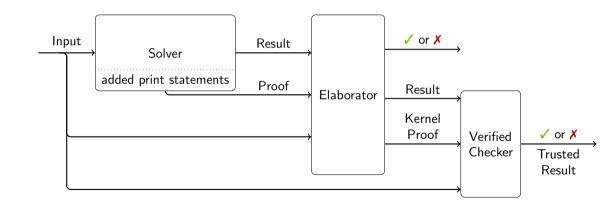
- We can easily enumerate all solutions.
- If we only need a count, can we speed things up?
- What if an approximate count is OK?
- What if we want a few solutions, but sampled uniformly?
 - Common in term-rewriting systems.
- How does this interact with symmetries and decomposition?











Components

■ What if the target graph has two components?

■ What if the pattern graph has two components?

Ciaran McCreesh

Components

- What if the target graph has two components?
- What if the pattern graph has two components?
- What if the graphs are "nearly" two components?

Learning

- Backtracking is bad. We should do CDCL!
- Except it doesn't seem to work very well...

Inference on Fancy Graphs

- What's the equivalent of neighbourhood degree sequence for directed graphs?
- What about if we have labels?
- Can these be computed efficiently?

Research Topics

Automatic Configuration

■ What if the pattern graph is a triangle? A claw? One edge and one non-edge? A large clique?

Automatic Configuration

- What if the pattern graph is a triangle? A claw? One edge and one non-edge? A large clique?
- Which supplemental graphs should we use?
- Which inference rules are helpful?

Presolving

- Constraint programming solvers take too long to start up for "really easy" instances.
- Run a "fast" solver for 0.1s and then switch?

Presolving

- Constraint programming solvers take too long to start up for "really easy" instances.
- Run a "fast" solver for 0.1s and then switch?
- Doesn't help us for very solution-dense enumeration problems though.

Performance Portability

■ Will algorithms designed on this year's hardware work well next year?

Performance Portability

- Will algorithms designed on this year's hardware work well next year?
- Or on Mac ARM hardware rather than Intel / AMD x64?

Performance Portability

- Will algorithms designed on this year's hardware work well next year?
- Or on Mac ARM hardware rather than Intel / AMD x64?
- On heterogeneous multi-core?

Research Topics

File Formats

■ Design a graph file format that isn't terrible.

https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

