Finding Little Graphs Inside Big Graphs Ciaran McCreesh

Graph Problems	Graph Solvers	
00000		

Subgraph Isomorphism

Ciaran McCreesh

"Really Hard" Problems

Maximum Common Induced Subgraph

Ciaran McCreesh

"Really Hard" Problems

Maximum Common Induced Connected Subgraph

Ciaran McCreesh

Graph Problems	Graph Solvers 0000000	"Really Hard" Problems

Maximum Clique

Ciaran McCreesh

In Theory...

- Subgraph finding is hard.
- Subgraph counting is hard.
- Approximate subgraph finding is hard.

In Practice...

- We have good *solvers* for subgraph problems.
- Some applications involve solving thousands of subgraph isomorphism queries per second.
- We can solve clique on larger graphs than we can solve all-pairs shortest path.¹

¹Terms and conditions apply.

Popular Families of Subgraph Isomorphism Algorithm

Connectivity-based:

- VF2 (2004), VF3 (2017)
- RI (2013)
- Constraint programming:
 - Ullman (1976)
 - LAD (AIJ 2010), SND (CP 2014), PathLAD (LION 2016)
 - Glasgow (CP 2015, LION 2016, CPAIOR 2019, ...)

Connectivity Algorithms

- Pick a pattern vertex and a target vertex.
- Recursively try to grow a mapping by looking at vertices connected to vertices that have already been used.

A Quick Introduction to Constraint Programming

- A declarative way of describing (hard) problems.
- A set of variables, each of which has a (finite) domain of values.
- A set of constraints (in any form we like, so arbitrary arity, non-linear, etc).
- Combining inference and clever backtracking search, give each variable a value from its domain, such that all constraints are respected.

Subgraph Finding, as a Constraint Program

- A variable for each pattern vertex. The domains are all of the target vertices.
- At least two sets of constraints:
 - Adjacent pairs of vertices must be mapped to adjacent pairs of vertices.
 - Injectivity, known as "all different".

Further Constraints We Can Deduce About Graphs

- A pattern vertex of degree *k* cannot be mapped to a target vertex of degree *k* − 1 or smaller.
 - We can also reason about neighbourhood degree sequences.
- Two pattern vertices that are distance *d* apart cannot be mapped to a pair of target vertices that are further than *d* apart.
 - We can also reason about the number of distinct short simple paths between two vertices.

 Graph Problems
 Graph Solvers
 Which is Faster?
 "Really Hard" Problems

 000000
 0000000
 00000
 00000

Intelligent Backtracking Search

- It's a good idea to solve the hardest part of the problem first.
- For CP algorithms, branch on the smallest domain first, tie-breaking on the highest degree, and start by trying the highest degree target vertex first.
 - Then do more sneaky things involving slight randomisation, restarts, parallel search, ...
- For connectivity algorithms: try high degree, or rarest label?

The Glasgow Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

- Subgraph isomorphism, and all its variants (induced / non-induced, homomorphism, locally injective, labels, side constraints, directed, ...).
- Also special algorithms for clique.

Benchmark Instances

- 14,621 instances from Christine Solnon's collection:
 - Randomly generated with different models.
 - Real-world graphs.
 - Computer vision problems.
 - Biochemistry problems.
 - Phase transition instances.
- At least...
 - \ge 2,110 satisfiable.
 - \ge 12,322 unsatisfiable.
- A lot of them are very easy for good algorithms.

Graph Problems	Graph Solvers	Which is Faster?	"Really Hard" Problems
000000	0000000	0●000	

Horse Race!

Graph Problems	Graph Solvers	Which is Faster?	"Really Hard" Problems
000000	0000000	00●00	

Easy Conclusion!

■ CP is best!

Ciaran McCreesh

An Observation about Certain Datasets

- All of the randomly generated instances from the MIVIA suites are satisfiable.
- The target graphs are randomly generated, and patterns are made by selecting random connected subgraphs and permuting them.
- These instances are usually rather easy...
- Many papers use *only* these instances for benchmarking.

Graph Problems	Graph Solvers	Which is Faster?	"Really Hard" Problems
000000	0000000	0000●	

A Different Easy Conclusion!

• CP is slow! RI is best!

Ciaran McCreesh

Graph Problems	Graph Solvers	"Really Hard" Problems
000000	0000000	●0000

Is Clique-Finding Hard?

Ciaran McCreesh

Is Clique-Finding Hard?

Ciaran McCreesh

Graph Problems	Graph Solvers	"Really Hard" Problems
000000	0000000	●0000

Is Clique-Finding Hard?

Ciaran McCreesh

"Really Hard" Problems 00000

Cliques in Random Graphs

Does G(150, x) contain a clique of twenty vertices?

Graph Problems	Graph Solvers	"Really Hard" Problems
000000	0000000	00●00

Intuition

- High density means lots of occurrences, so wherever we look, it's easy to find one of them.²
- Low density means no occurrences, and we can quickly show we run out of edges after doing a bit of branching.
- If we expect there to be just one solution, it's really hard to find it if it exists, and really hard to rule it out if it doesn't exist.

Ciaran McCreesh

²This statement is technically a massive lie.

Graph Problems	Graph Solvers	"Really Hard" Problems
000000	0000000	000●0

So What?

- This has practical implications in solver design, and in designing systems built around solvers.
- There's a lot more to hardness than worst-case complexity analysis.
- Understanding how algorithms behave is important.
- Maybe we should try doing some science?

http://github.com/ciaranm
ciaran.mccreesh@gmail.com

