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Maximum k-Clique
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Maximum k-Club
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Existing Work

Many computational papers on the k-club problem.

Not a hereditary property, and modelling it is hard, so lots of
scope for being clever.

“Unlike the maximum clique problem, the maximum k-clique
problem has not been the subject of extensive research and we
are not aware of any computational results for this problem to
date.” (Shahinpour and Butenko, 2013)
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Reducing k-Clique to Clique
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But Is This Practical?

We probably want to work with large sparse graphs as inputs.

There are many good maximum clique algorithms for large
sparse graphs.

But G k is large and dense!

There are also good maximum clique algorithms for small
dense graphs, but small dense graphs can be very hard.

ω(G(500, 0.9)) can’t be solved in a CPU-decade.

It’s well known in the CP community that reduction to clique is
a bad way of solving things.

(This is not necessarily true, but it’s well known. . . )
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The Good News

Start with a state-of-the-art maximum clique algorithm for
small dense graphs.

Replace cubic preprocessing and inference with cheaper
quadratic algorithms.

Spend some time making the G k reduction fast.

Buy a hefty amount of RAM.
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The Results (k ∈ {2, 3, 4})

Erdős collaboration graphs:

|V | ≤ 6, 927, |E | ≤ 11, 850, D(G k) ≤ 0.57 (or = 1).
16 take < 1s, 2 take < 12s, 3 > 1h.

DIMACS 2 Clique Graphs with diameter > 2:

|V | ≤ 500, |E | ≤ 46, 627, D(G k) ≤ 0.87 (or = 1)
22 take < 1s, 2 take > 1h.

DIMACS 10 Partitioning Graphs (smallest 20):

|V | ≤ 36, 519, |E | ≤ 1, 007, 284, D(G k) ≤ 0.67.
2 take > 1h, most take well under a minute.

DIMACS 10 Clustering Graphs (smallest 20):

|V | ≤ 40, 421, |E | ≤ 175, 691, D(G k) ≤ 0.99.
7 take > 1h, most take well under a minute.
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But We Can Do Better
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Better Results!

Erdős collaboration graphs:

The three open instances now take 3.8s, 69.4s, 207.3s.

DIMACS 2 Clique Graphs:

The two open instances now take 0.1s.

DIMACS 10 Partitioning Graphs:

One open instance now takes 16.9s, the other still takes > 1h.

DIMACS 10 Clustering Graphs:

Two open instances closed.

Not a universal success, though:

Factor of 10 slowdown on a few fairly easy instances.
Without laziness, the results are terrible. . .
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What About Parallel Search?

Active research topic for maximum clique.

Work stealing strategies really make a huge difference (often
more so than load balance)!

In this paper:

Dynamic work splitting, starting at the top, and working
downwards.
Use parallelism to steal early, where value ordering heuristics are
weakest—a bit like discrepancy search or restarts.
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Even Betterer Results!

Two open instances closed.

Improved bounds on four remaining instances.

Also super-linear speedups in (at least) two cases.

But only if we get it right:

Again, work stealing strategies matter.
Load balancing is harder: must use a much deeper splitting
limit than for typical maximum clique graphs.
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Slide of Blatant Propaganda

This technique is the only known practical way of getting:

Reproducible runtimes.
Guarantees of no (exponential) slowdown over sequential, or
when adding cores.
Decent work distribution.
Respectable speedups in practice.

I personally think these properties are all critical for practical
multi-core parallel search.
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What About Random Graphs?
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Conspicuously Missing From This Paper

Parallel G k construction.

Predicting G (n, p)k on random graphs.

So just why are G k graphs so easy to solve, anyway?
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Conclusion

There are many clique relaxations (density-based, degree-based,
distance-based, . . . ). It’s often not clear which you’d want in
practice.

k-Clique tends to be easy to calculate, at least.

Usually the k-Clique and k-Club numbers are the same, too.

The domination rule is probably useful in other settings.

Work-stealing strategies matter when doing parallel search.
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