
Finding Maximum k-Cliques Faster
Using Lazy Global Domination

Ciaran McCreesh and Patrick Prosser

Maximum Clique

1 2

3

4

56

7

8

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 1 / 16

Maximum k-Clique

1 2

3

4

56

7

8

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 2 / 16

Maximum k-Club

1 2

3

4

56

7

8

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 3 / 16

Existing Work

Many computational papers on the k-club problem.

Not a hereditary property, and modelling it is hard, so lots of
scope for being clever.

“Unlike the maximum clique problem, the maximum k-clique
problem has not been the subject of extensive research and we
are not aware of any computational results for this problem to
date.” (Shahinpour and Butenko, 2013)

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 4 / 16

Reducing k-Clique to Clique

1 2

3

4

56

7

8

1 2

3

4

56

7

8

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 5 / 16

But Is This Practical?

We probably want to work with large sparse graphs as inputs.

There are many good maximum clique algorithms for large
sparse graphs.

But G k is large and dense!

There are also good maximum clique algorithms for small
dense graphs, but small dense graphs can be very hard.

ω(G(500, 0.9)) can’t be solved in a CPU-decade.

It’s well known in the CP community that reduction to clique is
a bad way of solving things.

(This is not necessarily true, but it’s well known. . .)

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 6 / 16

The Good News

Start with a state-of-the-art maximum clique algorithm for
small dense graphs.

Replace cubic preprocessing and inference with cheaper
quadratic algorithms.

Spend some time making the G k reduction fast.

Buy a hefty amount of RAM.

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 7 / 16

The Results (k ∈ {2, 3, 4})

Erdős collaboration graphs:

|V | ≤ 6, 927, |E | ≤ 11, 850, D(G k) ≤ 0.57 (or = 1).
16 take < 1s, 2 take < 12s, 3 > 1h.

DIMACS 2 Clique Graphs with diameter > 2:

|V | ≤ 500, |E | ≤ 46, 627, D(G k) ≤ 0.87 (or = 1)
22 take < 1s, 2 take > 1h.

DIMACS 10 Partitioning Graphs (smallest 20):

|V | ≤ 36, 519, |E | ≤ 1, 007, 284, D(G k) ≤ 0.67.
2 take > 1h, most take well under a minute.

DIMACS 10 Clustering Graphs (smallest 20):

|V | ≤ 40, 421, |E | ≤ 175, 691, D(G k) ≤ 0.99.
7 take > 1h, most take well under a minute.

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 8 / 16

But We Can Do Better

a b

1

2

3

4

5

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 9 / 16

Better Results!

Erdős collaboration graphs:

The three open instances now take 3.8s, 69.4s, 207.3s.

DIMACS 2 Clique Graphs:

The two open instances now take 0.1s.

DIMACS 10 Partitioning Graphs:

One open instance now takes 16.9s, the other still takes > 1h.

DIMACS 10 Clustering Graphs:

Two open instances closed.

Not a universal success, though:

Factor of 10 slowdown on a few fairly easy instances.
Without laziness, the results are terrible. . .

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 10 / 16

What About Parallel Search?

Active research topic for maximum clique.

Work stealing strategies really make a huge difference (often
more so than load balance)!

In this paper:

Dynamic work splitting, starting at the top, and working
downwards.
Use parallelism to steal early, where value ordering heuristics are
weakest—a bit like discrepancy search or restarts.

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 11 / 16

Even Betterer Results!

Two open instances closed.

Improved bounds on four remaining instances.

Also super-linear speedups in (at least) two cases.

But only if we get it right:

Again, work stealing strategies matter.
Load balancing is harder: must use a much deeper splitting
limit than for typical maximum clique graphs.

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 12 / 16

Slide of Blatant Propaganda

This technique is the only known practical way of getting:

Reproducible runtimes.
Guarantees of no (exponential) slowdown over sequential, or
when adding cores.
Decent work distribution.
Respectable speedups in practice.

I personally think these properties are all critical for practical
multi-core parallel search.

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 13 / 16

What About Random Graphs?

100

101

102

103

104

105

106

107

108

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
g
e
S
ea
rc
h
N
o
d
es

Edge Probability

k = 1
k = 2
k = 3
k = 4

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 14 / 16

Conspicuously Missing From This Paper

Parallel G k construction.

Predicting G (n, p)k on random graphs.

So just why are G k graphs so easy to solve, anyway?

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 15 / 16

Conclusion

There are many clique relaxations (density-based, degree-based,
distance-based, . . .). It’s often not clear which you’d want in
practice.

k-Clique tends to be easy to calculate, at least.

Usually the k-Clique and k-Club numbers are the same, too.

The domination rule is probably useful in other settings.

Work-stealing strategies matter when doing parallel search.

Ciaran McCreesh and Patrick Prosser

Finding Maximum k-Cliques Faster Using Lazy Global Domination 16 / 16

http://www.dcs.gla.ac.uk/~ciaran

c.mccreesh.1@research.gla.ac.uk

http://www.dcs.gla.ac.uk/~ciaran
mailto:c.mccreesh.1@research.gla.ac.uk

