
Optimising Multicore JVMs

Khaled Alnowaiser

Outline

• JVM structure and overhead analysis

• Multithreaded JVM services

• JVM on multicore

• An observational study

• Potential JVM optimisations

Basic JVM Services

Source: [1]

Overhead of JVM services

• On average 40% of Application execution time is

devoted to JVM services

Source: [1]

Multithreaded JVM Services

• Most of modern production JVMs implement
multithreaded garbage collection and JIT
compilation services.

• How the Hotspot JVM sets the number of a
JVM service?

Threads = 8 + 5/8 * processors

• Benefits of employing multiple threads
depend on several factors e.g. the amount of
work and the number of threads.

JIT Performance

• Increasing the number of JIT opt. compiler

threads increases the application performance as

long as there is work to do.

Source: [2]

Better

GC Performance

• GC performance with multiple threads

seems to have issues

Source: [3]

JVM on Multicore

• Issues of running JVM on multicore

systems

– How many threads yield optimum performance?

– How could we distribute JVM services across multi-

socket multicore systems?

JVM on Multicore

• Summary of Sartor [4] empirical study:

1.On a single socket, App threads = GC threads =

no. of cores, on multiple sockets, fewer collector
threads is better.

2.Offloading JVM services to another socket costs
20% performance degradation.

3.Scaling down the frequency of JVM threads has
less impact than application threads.

JVM Services Scalability

• Adding more threads creates two problems:

1. Inefficiency

Threads saturate beyond certain number of cores.

2. Performance degradation

There is a problem !

An Observational Study

• Objective:

 To study the Parallel GC behaviour with different

number of GC threads.

 Reproduce and confirm results from other studies.

 Analyze multicore architecture overhead on parallel

 GC performance

Experimental Setup

• Platform:

– Linux machine with 2 x 6-core Intel Xeon processors, HT enabled,

– 12MB shared L3 cache.

• Experimental Method:

– OpenJDK Hotspot JVM.

– Dacapo-9.12 Benchmark programs.

– The experiment is repeated 5 times and the mean is reported.

– HW measurements is done with PAPI v5.

– Heap Size is 3 x minimum size

Performance Profiling Tools

• LIKWID

 A set of tools to support developing high performance

multithreaded applications

• PAPI

An API for accessing hardware performance counters.

• Architectural metrics:

– L3 cache misses

– Total instructions

– Total Cycles

• GC Parallel processing time

Performance Metrics

Results (Young Generation)

Figure1: Parallel GC time of minor collection. as the number of GC threads increases

Results (Young Generation)

Figure2: L3 Cache misses per the number of GC threads

Results (Young Generation)

Figure3: Total Cycles consumed during the parallel part as number of threads increases

Results (Young Generation)

Figure4: Total Instructions executed per the number of threads

Results (Old Generation)

Figure5: Parallel GC time of major collection. as the number of GC threads increases

Results (Old Generation)

Figure6: Total Cycles consumed during the parallel part as number of threads increases

Results (Old Generation)

Figure7: L3 Cache misses per the number of threads

Results (Old Generation)

Figure8: Total Instructions executed per the number of threads

Potential Optimisations

1. A scalability model for predicting the optimal number

of threads of a JVM service.

2. Utilising the remaining threads as helper threads e.g.

Cache prefetching

3. Thread management in the case of multiple JVM

instances

An adaptive policy for efficient multithreaded JVM

services

References

• [1] Ting Cao et. al., The yin and yang of power and performance for asymmetric hardware and managed

software, Proceedings of the 39th Annual International Symposium on Computer Architecture, p.225-236, June 09-

13, 2012

• [2] Prasad A. Kulkarni., JIT compilation policy for modern machines. In Proceedings of the ACM international

conference on Object oriented programming systems languages and applications (OOPSLA '11)

• [3] Lokesh Gidra, et. al. Assessing the scalability of garbage collectors on many cores. In Proceedings of the

6th Workshop on Programming Languages and Operating Systems (PLOS '11).

• [4] Jennifer B. Sartor et. al., Exploring multi-threaded Java application performance on multicore hardware.

Proceedings of the ACM international conference on Object oriented programming systems languages and

applications (OOPSLA '12)

