
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Adaptive Model Verification for
Modularised Industry 4.0 Applications
XIN XIN1,2, SYE LOONG KEOH1, MICHELE SEVEGNANI1, MARTIN SAERBECK2, TECK PING
KHOO.2
1School of Computing Science, University of Glasgow, Glasgow, United Kingdom (e-mail: {SyeLoong.Keoh, Michele.Sevegnani}@glasgow.ac.uk)
2Digital Service, TÜV SÜD Asia Pacific, Singapore (e-mail: {Xin.Xin, Martin.Saerbeck, Teck-Ping.Khoo}@tuvsud.com)

Corresponding author: X. Xin (e-mail: x.xin.2@research.gla.ac.uk).

X. Xin is partially funded by the Singapore Economic Development Board (EDB) through the Industrial Postgraduate Programme (IPP)
Grant.
M. Sevegnani is supported by the EPSRC under PETRAS grants MAGIC and FARM (EP/S035362/1) and an Amazon Research Award.

ABSTRACT Cyber-Physical Systems (CPSs) are the core of Industry 4.0 applications, integrating
advanced technologies such as sensing, data analytics, and artificial intelligence. This kind of combination
typically consists of networked sensors and decision-making processes in which sensor-generated data drive
the control decisions. Hence, the trustworthiness of the sensors is essential to guarantee performance, safety
and quality during operation. Formal model verification techniques are a valuable tool allowing strong
reasoning about the high-level design of CPSs. However, the uncertainty exhibited by the underlying
sensor networks is often ignored. Manufacturing processes typically involve composition of various
modular CPSs that work as a whole, such as multiple Collaborative Robots (cobots) working together
as a production line, which improves the flexibility and resilience of the production process. It is still
challenging to verify this class of compositional process while also considering uncertainty. We propose
a novel verification framework for modular CPSs that combines sensor-level data-driven fault detection and
system-level model-driven probabilistic model checking. The resulting framework can rigorously quantify
sensor readings’ trustworthiness, enabling formal reasoning for system failure prediction and reliability
analysis. We validated our approach on a cobots-based manufacturing process.

INDEX TERMS Probabilistic Model Checking, Sensor Networks, Trustworthiness, Cyber-Physical
System, Collaborative Robot, Industry 4.0

I. INTRODUCTION

Cyber-Physical Systems (CPSs) connecting physical devices
into a cyber-network are emerging as an efficient Industry
4.0 paradigm to enable many industrial manufacturing use
cases [1]–[3]. Industry 4.0 aims to integrate operational tech-
nologies (OT) and information technologies (IT) to connect
industrial assets, including machines and control systems,
with the information systems and business processes to
quickly and dynamically respond to demand changes [4]–
[6]. This has accelerated the adoption of collaborative robots
(cobots) working together on production lines. CPSs provide
the capability of decentralisation, modularity and interoper-
ability to enable advanced industrial automation.

With the utilisation of Artificial Intelligence (AI), ma-
chine learning and data analytics, operators are now able to
collect large volumes of data from operational systems and
equipment at run time. Subsequently, computers can simulate

human decisions with complex algorithms to derive insights
and enable self-control actions. Such an integration signifi-
cantly accelerates the automation processes to improve the
operation quality, ensure process safety and predict potential
failures. Although all of these technologies are connected,
there are still challenges that have not been addressed in
real-world deployments. Firstly, the system model used to
define the operational behaviour of the system is typically
static and does not accurately reflect the actual behaviour
of the equipment or sensors forming the CPS over time.
It is thus important to identify any deviation from the ex-
pected behaviour to reduce equipment down time and to
effectively plan for component replacement as well as to
ensure compliance with safety regulations. Secondly, there
is a strong dependency between the accurate prediction of
an equipment’s behaviour and the data collected from the
sensors instrumenting the equipment. This means that it is

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

extremely important to acquire trustworthy sensor readings
to ensure the accurate prediction of the system behaviour.
Most of the systems deployed on the field currently assume
that the acquired sensor readings are accurate, which may
lead to inaccuracy in their predictive algorithms. However,
the uncertainty exhibited by the underlying sensor networks
is difficult to determine while the sensor network is deployed.
For instance, unreliable connectivity or hardware failures is
one of the most common issues, which results in intermittent
readings. Another common issue is the environment being
out of range of the transducer due to manufacturing process
changes, e.g., the environment light is too bright for the cam-
era sensor compared to the initial deployment condition. We
advocate the idea that all decisions made are only as good as
the sensor data that they are based on. Lastly, CPSs typically
involve composition of various sensor networks, e.g., cobots
and Automated Guided Vehicles (AGVs) working together.
This means that the system can be flexibly formed with
multiple independent functional components, thus achieving
modularity. Although each component’s behaviour can be
verified independently through formal verification, it is chal-
lenging to reflect on their behaviour when plugged in as a
modular component at the system level.

In this paper, we propose a component-based run-time
model verification approach for Industry 4.0 applications.
Two different model cobots are used to evaluate this ap-
proach. Firstly, these two cobots are verified independently
based on our previous work [7]. Subsequently, the verified
two cobot models can be dynamically composed into a man-
ufacturing process. Afterwards, this manufacturing process
is abstracted as a system-level model that can be verified at
run time using probabilistic model checking techniques. We
built on our previous work on an approach to determine the
trustworthiness of sensor readings at run time. Subsequently,
this quantified trustworthiness value is fed back as sensor
networks’ confidence score to reflect the impact at model
level though probabilistic model checking, this allows for
the accurate prediction of failures. The contributions of this
paper are as follows:

• A new method to create a component-based system
probabilistic model including interacting sub-modules
as child models and higher level system abstraction.
This method allows independently verified child models
(e.g., individual cobots) to form a system-level proba-
bilistic model according to the changing requirements of
Industry 4.0 applications that can be verified at a higher
level.

• Integrating data-driven models that are based on quan-
tified trustworthiness of the sensor readings with a
probabilistic model to enable run-time verification of the
system behaviour. With this, a more accurate reflection
of the system behaviour at run-time can be achieved,
therefore enabling the prediction of failures more accu-
rately.

This paper is organised as follows: Section II provides the

background of this research and related work. Section III
describes the proposed run-time compositional probabilistic
model checking design, with the ability to verify a CPS con-
sisting of multiple cobots at run time. Section IV presents an
implementation to predict the failure probability of a painting
system using two cobots. The experiment and results are
presented in Section V. Section VI provides further insights
on the experiment results. Finally, we conclude the paper
with future work in Section VII.

II. RELATED WORK
A. CPS VERIFICATION
Model checking is widely used to verify modern system
behaviour and analyse system reliability. Calder et al. [8]
introduced a stochastic probabilistic model checking frame-
work for failure prediction of a critical communication sys-
tem. This framework is based on a discrete space model and
temporal logic to predict likelihood of service failure within
a given time bounds, and quantify the impact of lower level
components on service availability. However, the proposed
framework is difficult to model run time behaviours due
to the unreliable readings from sensors. Filieri et al. [9]
introduced a run-time probabilistic model checking approach
to evaluate the satisfaction of reliability requirements at run
time. The authors defined two phases, namely design-time
phase and run-time phase. At design-time, a Discrete-Time
Markov Chain (DTMC) model is pre-computed, and a set
of symbolic expressions is defined to represent satisfaction
of the requirements. As this model transition values are
known only at run time and may change over time, a set of
variables are used to represent the transition probabilities.
Subsequently, the verification is performed at run time by
replacing the transition variables with the real values gath-
ered by a monitoring system. However, the performance of
this approach is not only the DTMC model itself, but also
depends on the monitoring system inputs which is hard to
apply to more general scenarios. Li et al. [10] presented a
dynamic adaptation probabilistic model checker approach to
improve self-adaptive systems’ utility. They define a Markov
Decision Process (MDP) [11] model as the system abstrac-
tion and operator provides initial transition parameters ac-
cording to experiment results and experience. Subsequently,
the transition parameters are updated onto the MDP model
according to the operation parameters at run time. Over
time, the MDP model adapts itself with the self-adaptive
system’s behaviour. This approach relies on the operator’s
actions and the effect to the system model can be accurately
measured. Epifani et al. [12] proposed another novel dynamic
probabilistic model checking framework based on KAMI
(Keep Alive Models with Implementations). This framework
is based on the Bayesian Estimation Theory (BET) to esti-
mate the transition matrix according to the run-time system.
Subsequently, the estimated transition matrix is applied to
a DTMC model to increase the failure prediction accuracy.
Even so, to quantify the run-time variables is still a challenge,
e.g., system embedded sensors’ trustworthiness.

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

Considering the complexity and tight interactions of CPSs,
Statistical Model Checker (SMC) is proposed [13] [14]
to tackle two obstacles [15] of modern CPSs. SMC is a
simulation-based approach to sample the behaviours and
check conformance to the temporal formula. Younes et
al. [16] compared two probabilistic model checking tech-
niques, Numerical- and Statistical-probabilistic model check-
ing. The result showed that both techniques have similar
performance, but the statistical approach scales better with
the size of the state space and requires less memory. Zarei et
al. [17] proposed another SMC approach to verify learning-
based CPSs. This kind of CPSs employs machine learning
algorithm-based controllers, e.g., Neural Network, that in-
creases complexity and non-linearity. Traditional verification
techniques face state-space search and scalability challenges.
Thus, they built the SMC based on the Clopper-Pearson
confidence levels and defined specifications using Signal
Temporal Logic (STL) to verify the reachability, safety and
performance. The results showed that it is feasible to use sta-
tistical verification for learning-based CPSs. Even so, deter-
mining the CPS’s run-time characteristics is still a challenge
as the sensor readings are unreliable which will significantly
affect the reliability of the verification.

Apart from the SMC approach, ModelPlex [18] provides
correctness guarantees for CPSs at run time. It combines
Model Monitor to check the previous state and current state
for compliance with the model, Controller Monitor checks
the output of a controller implementation against the con-
troller model, while Prediction Monitor checks the impact
of deviation from the model to predict the eventual state
that might cause failures. ModelPlex is based on differen-
tial dynamic logic dL [19] and has been applied in robotic
applications [20] [21] [22] using the tool KeYmaera X [23]
[24]. However, the run-time trustworthiness of the sensors’
readings are not reflected through the Controller monitor and
Prediction monitor.

Together with model checking, temporal logic is a pop-
ular formalism language for specifying reactive system be-
haviours. Traditionally, temporal logic language has been
used for formal verification, such as LTL to capture safety
and reachability requirements over Boolean predicates de-
fined over the state space. Computation Tree Logic (CTL)
allows the expression of requirements over all computations
branching from a given state [25]. Kamide et al. [26] intro-
duced a sequential Linear Temporal Logic (sLTL) and a se-
quential Computation Tree Logic (sCTL) by extending LTL
and CTL to represent hierarchical information and structures.
This research work defined the translations from sLTL and
sCTL into LTL and CTL to verify hierarchical systems by
reusing the standard LTL- and CTL-based model checking
algorithms.

Over the last few years, the Robot Operating System
(ROS) has become a popular software framework for dis-
tributed robotics and CPSs. A ROS-based Run-time Verifi-
cation (ROSRV) framework is an approach that incorporates
a middle layer to intercept messages in order to verify the

run-time system behaviour [27] [28]. The ROSRV provides a
functional layer to intercept all messages between the slave
layers to master layers, and by understanding the communi-
cation between them, the system is able to enforce the desired
system behaviour based on the safety policies. However, such
verification systems only results in the system conforming
to the behaviour and safety policies, but it has no ability to
predict failures in advance. Furthermore, the middle layer is
actually incurring overheads and it can become a bottleneck
when there are large number of messages being exchanged in
a large scale deployment.

Ferrando et al. [29] introduced another ROS-based run-
time verification framework, ROSMonitoring. This frame-
work automatically verifies messages against formally spec-
ified properties by adding a monitor through ROS node
instrumentation instead of creating a middle layer. It provides
the flexibility to scale up and to choose the specification
formalism, such as Linear Temporal Logic (LTL) or Signal
Temporal Logic (STL). However, the ROSMonitoring ap-
proach can only be applied to ROS-based CPSs.

To describe and analyse distributed systems rigorously,
Paul et al. [30] presented a Dynamic Input/Output Automata
(DIOA) that allows create and destroy components dynam-
ically. Civit et al. [31] extended DIOA to a probabilistic
framework to model a dynamic probabilistic systems, for
instance an industry 4.0 application using multiple CPSs to
work on one manufacturing process. However, the DIOA
models analyse a system only. It lacks an approach to verify
such dynamic systems.

B. SENSOR FAULT DETECTION
The current research works tend to assume that the sen-
sor readings are accurate and reliable of modern CPSs.
However, a sensor might behave with uncertainties in real-
world deployments due to complex environmental conditions
or incidentally placement, such as unreliable connectivity,
irregular power supplies or calibration errors. In order to
analyse sensor reliability, three sensor fault categories are
systematically classified by Ni et al. [32]. This classification
is defined according to the nature of sensor attributes, which
are environment features, system features or specifications,
and data features. Furthermore, these categories are widely
employed in sensor fault detection algorithms. Sharma et
al. [33] proposed four methods to detect the above sen-
sor faults, which are rule-based, time-series analysis-based,
learning-based and estimation methods. Apart from statisti-
cal approaches, Donghyun Park et al. [34] proposed a data-
driven light-weight real-time sensor fault detection system.
This system employs a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN) deep learning model to
detect sensor faults. It overcomes the limitation of a pure
mathematical approach, which is sensitive to noise and sys-
tem complexity. However, the quality of machine learning-
based techniques depends on the dataset that covers a wide
variety of use cases. To get high-quality training data sets is
always the challenge in sensor network-based applications.

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

Sensor readings

Bootstrap

Speci�cation Experiment

Expertise System knowledge

Sensor Fault Detection

Learning-based

State of Run-time

System behaviour

Sensor

(static abstraction)

System Model

System Under Test

(Cyber-Physical System)

sensor model

data

abnormality

trustworthiness

veri�cation

run-time system

Run-time System Model

(w. run-time sensor conf)

Data
Historical

FIGURE 1. Architecture of run-time model verification.

Li et al. [35] summarised recent advances in sensor fault
diagnosis. The authors classified sensor faults into two cat-
egories: incipient failure and abrupt failure. Together with
three fault diagnosis techniques: model-based approaches,
knowledge-based approaches and data-driven approaches,
the sensor reliability can be verified and quantified.

In this research, we extend the existing research works to
embed quantified sensor trustworthiness into a system-level
model to analyse the reliability of the CPS. Moreover, our
approach provides a practical methodology to quantify the
sensor reading’s trustworthiness to enable accurate system
impact analysis at run time. In addition, a real test-bed
environment consisting of painting operation by cobots was
set up to validate our approach.

III. RUN-TIME COMPOSITIONAL MODEL VERIFICATION
We present a run-time compositional verification framework
that combines data- and model-driven approaches to analyse
the reliability of CPSs. Fig. 1 illustrates the architecture of
the proposed framework.

First, a formal system model is defined according to the
specification of the CPS, expert knowledge and experiment
data. This system model represents a static system-level
abstraction that is required to bootstrap the model verification
at run time. It also specifies the initial state transition prob-
ability matrix of the system to reflect the overall system be-
haviour. The sensor fault detection module then continuously
learns about the sensor behaviour and quantifies the sensor’s
trustworthiness against expectation. A set of sensor data is
first collected under the operator supervision to ensure the
system works as expected. Subsequently, this dataset is used
to profile the sensor as its normal behaviour using time series
analysis, estimation and rule-based methods following data-
driven approach. If any deviation from the normal behaviour
profile is detected, the quantified sensor trustworthiness will
be updated at run time, this is termed as the sensor con-

fidence. Subsequently, the confidence score is fed into the
system model to update the transition probabilistic matrix to
form a run-time system model to reflect the dynamic nature
of a CPS. For instance, if a sensor fault is detected, the
transition probability matrix of the system model is updated
with lower confidence in the trustworthiness of the sensor
data, which will in turn increase the probability of transition
from a working state to an error state, thus leading to a
system failure. With this, the system model evolves over time
through this process continuously, taking into consideration
the trustworthiness of run-time sensor readings to derive the
appropriate probability of state transitions.

The proposed framework also supports modularity in that
the top-level system model can be decomposed into lower-
level child models to provide flexibility to verify the system
at different levels of abstraction. Each child model can be
verified independently through traditional model checking
during the design phase. Subsequently, the proposed ap-
proach updates the transition probability matrix at run time.
With this, it is now feasible for the verified child model
to be reused and composed dynamically to form a higher
level CPS. Fig. 2 shows how the child model is defined
with interfaces of input and output states such that they can
be integrated with each other or with a higher level system
model easily.

A. RUN-TIME PROBABILISTIC SYSTEM MODEL
In line with a traditional formal model, the system states and
transitions are defined according to the system specification,
which means that they will not change during the operation
phase. In a real-life scenario, the transition probability matrix
will change over time due to sensor wear-and-tear and drift.
In our run-time probabilistic model, we take into account the
accuracy of the sensor reading, hence termed trustworthiness
(a.k.a. sensor confidence), which will then be used to update
the transition matrix of the system model dynamically.

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

FIGURE 2. Structure of compositional model verification.

In order to quantify the sensor’s trustworthiness, our ap-
proach [7] builds a Sensor Normal Behaviour profile based
on the historical data extracted from the sensors. This in-
cludes sensors’ run-time statistical characteristics, estimated
reading range and drift trend. In essence, the profile is based
on the number of readings received, the mean value and the
standard deviation of each working state. In the operational
phase, the sensor’s run-time readings are then compared
against the Sensor Normal Behaviour using a rule-based
engine, subsequently deriving a Sensor Confidence Score
to be fed into the probabilistic model to update the transi-
tion probability matrix dynamically. A run-time probabilistic
model, Mrt is defined as follows:

Mrt = (S, sinit, Pruntime, L) (1)

where S is a finite set of machine states of the system,
sinit ∈ S is the initial state, Pruntime : S × S × T → [0, 1]
is the run-time transition probability matrix that the transition
keeps updating over the finite time period T ⊂ {0, ..., n},
where

∑
s′∈S P (s, s′, t) = 1 for all s ∈ S, t ∈ T , and

L : S → 2AP are function-labelling states with atomic
propositions.

B. CHILD MODEL
A child model is an abstraction of a minimum fully functional
system in a production process, e.g., a turn-mill machine, a
reaction vessel, or a cobot. Normally, it is defined during the
design phase to verify all system behaviours that satisfy the
specification. In this paper, we define a child model, Mchild

by extending the run-time probabilistic model as a six-tuple
to provide the capability to be integrated with other models
to form a larger system model.

Mchild = (S, sinit, Pchild, L, Sin, Sout) (2)

where S, sinit, Pchild and L are defined as the run-time
probabilistic model Mrt and two new elements, Sin and Sout

are added. Sin ⊂ S is the entry state of the model, while
Sout ⊂ S is the exit state of the model.

C. SYSTEM-LEVEL MODEL
Multiple child models can be added to form a system-level
model at run time and this fits well with Industry 4.0 appli-
cations as the manufacturing process is formed dynamically

by multiple fully functional sub-systems with a centralised
control system. For instance, two collaborative robots form a
sequential painting process in a production line in which one
cobot moves the workpiece to the designated zone, while the
other cobot performs the painting task. In this context, the
cobot is defined as a child model and it is used as part of the
system-level manufacturing process defined as:

Msystem = (S, sinit, Psystem, L,Mchild1
||...||Mchildk

)
(3)

where Msystem is the top level system model, S,
sinit, Psystem and L are defined as in Mrt, while
Mchild1

||...||Mchildk
is a set of the child models (Eq. 2)

representing the sub-system of the top level system.
Consider the relationship between the child model and the

system model, the following constraints should be satisfied:
1) Ssystem ∩ Schildi

= Sini
∪ Souti ∀ i ∈ {1, ..., k}

2) Sini
∩ Souti = ∅ ∀ i ∈ {1, ..., k}

3) Schildi ∩ Schildj = ∅ ∀i ̸= j
4) Psystem(s, s′, t) = 0

∀ s ∈ Sini
, s′ ∈ Ssystem, t ∈ T and i ∈ {1, ..., k}

5) Psystem(s, s′, t) = 0
∀ s ∈ Ssystem, s′ ∈ Souti , t ∈ T and i ∈ {1, ..., k}

The conjunction of system model Ssystem and child mod-
els Schildi

must only contain interface-states Sini
and Souti

as illustrated in constraint 1. Secondly, there cannot be any
overlap states between Sini and Souti (constraint 2). Sim-
ilarly for all the child models, there cannot be any overlap
states between them (constraint 3). Lastly, constraint 4 and
5 do not allow Ssystem transition, that is from Sini

states,
and to Souti states at any time t ∈ T , and i ∈ {1, ..., k},
respectively.

At the top level of the system model, there should not have
input state(s) and output state(s) to ensure finite states of the
system.

Semantics of the proposed approach are stated as follows:
1) S = Ssystem ∪ Schildi

∀ i ∈ {1, ..., k}
2) P = [Psystem Pchild1

||...||Pchildk
]

3) P (s, s′, t) = Psystem(s, s′, t)
∀s ∈ (Ssystem/Sini), s

′ ∈ S, t ∈ T, and i ∈ {1, ..., k}
4) P (s, s′, t) = Pchildi

(s, s′, t)
∀s ∈ (Schildi

/Souti), s
′ ∈ S, t ∈ T, and i ∈

{1, ..., k}
In order to verify the system as a whole, the global state
space is represented as S, which is the union set of all the
system model’s states Ssystem and all child models’ states
Schildi (semantic 1). Similarly, the global transition matrix P
concatenates the transitions of both the system model and the
child models (semantic 2). If the run-time state is a system-
level state Ssystem and is not an interface Sini

state, the
system transition Psystem is applied (semantic 3). If the run-
time state is a child state Schild and is not an interface Souti

state, the system transition Pchild is applied (semantic 4).
With the semantics of the proposed approach and the five

constraints above, the design guarantees that there are no
overlapped states between the system-level model and the

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

child models except the interface-states. Therefore, this al-
lows the high-level system and child modules to be modelled
separately and verified as a whole system sequentially at run
time.

D. TEMPORAL LOGIC PROPERTY QUERY

Once the system level model has been defined, it can be
verified and then queried to predict the system’s potential
failure at run time. Computation Tree Logic (CTL) is used
to evaluate the failure probability. The probability of system
failure is expressed by the following Probabilistic Computa-
tion Tree Logic (PCTL) [36] formula:

Pfailure =? [F
≤t (Sfailure)]

where Pfailure is the system failure in the next t time. The
failure state Sfailure is defined in the system model in Fig. 5.

IV. EXPERIMENT DESIGN
We designed an experiment using two cobot arms as a testbed
to evaluate the proposed run-time compositional verification
framework. These two cobots synchronise their actions auto-
matically to complete the painting task of one workpiece.

FIGURE 3. The collaborative workspace.

Fig. 3 illustrates three working zones in the collaborative
workspace. Cobot I is in charge of moving the workpiece
from the pending zone to the painting zone, while Cobot II
executes the painting work at the painting zone. When the
painting work is completed, Cobot I must then move the
workpiece to the ready zone. During the painting process,
one cobot must be in the standby zone with standby position
when another cobot is working. Each cobot is equipped with
a depth-camera to detect the working zone and workpiece
using image processing techniques.

The electrical current in Amperes (A) of the cobots is the
key indicator to determine the machine’s working condition.
For instance, if the cobot is obstructed, the current reading
will be out of the normal reading range. We monitored the
current reading of the base joint, shoulder joint, elbow joint
and wrist joint in this experiment first to build the cobot’s
Sensor Normal Behaviour profile and determine the Sensor
Confidence Score in order to evaluate the proposed approach.

A. ASSUMPTIONS

In order to focus on the main actions and to simplify the
painting process model, the following assumptions are de-
fined according to the expertise:

• All cobots are working in the collaborative workspace,
including pending zone, ready zone, painting zone and
standby location.

• There is no shared space between pending zone, ready
zone, painting zone and standby location.

• The three critical parameters, zone detection accuracy,
workpiece detection accuracy and current readings of
cobot’s joints, can be queried through the painting
system and cobot-system’s Application Programming
Interfaces (APIs).

• Five sensor fault types were used to compute the Sensor
Confidence Score at run time. In addition, we assigned
the following weight for each fault type based on the
occurrence and severity.
-- Intermittent fault: 0.1
-- Stuck-at fault: 0.1
-- Spike fault: 0.1
-- Follow estimated reading range: 0.1
-- Sensor data pattern match: 0.6

• The servicing cycle is twenty days.
• The cobot’s safe working range is defined according to

ISO/TS 15066:2016. The pressure should be within 160
N/cm2 of quasi-static contact and 2 N/cm2 of transient
contact. Additionally, the force should be within 210 N
of quasi-static contact and 2 N of transient contact [37].

B. CHILD MODEL – COBOT ARM

As shown in Fig. 4, an operating cobot can be represented by
eleven states to illustrate its working status.

S1 Standby is the entry state in which a cobot is ready for
the duty. In this state, the force and pressure should be in
the safe working range.

S2 Idle is the state that cobot prepares to move its arm from
standby location to working zone, e.g., painting zone,
pending zone. In this state, the force and pressure are kept
in safe range. The cobot turns on the camera and triggers
its image processing engine to determine the position of
the workpiece.

S3 Zone detection detects and confirms the target zone loca-
tion. The cobot should move the gripper to a more precise
position.

S4 Workpiece detection detects and calculates the precise
location and the size of workpiece. The cobot operates
its gripper to grip and pick up the workpiece accordingly.

S5 Execute mission means that the cobot performs the task
as instructed.

S6 Controlled parking is the state that the cobot reduces the
Tool Centre Point (TCP) [38] speed safely, stop working
and moves as commanded by the controller. In this state,
the force and pressure are kept in the safe range.

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

FIGURE 4. The cobot child model Mcobot.

S7 Stop is an exit state in which the cobot is stationary and
does not work for any purpose. In addition, the force and
pressure are in safe range.

S8 Out of safety barrier is the state that one or both force and
pressure is out of the safe range. In this state, the cobot
must stop working immediately.

S9 Low-level e-stop means the cobot triggers the emergency-
stop function.

S10 Error is a state indicating that there is a zone or work-
piece detection error.

S11 Collision is a state that cobot stopped and one or both
force and pressure is still out of the safe range.

In order to abstract the cobot system as a child model, we
extend the DTMC as a 6-tuple as described in Section III. In
this experiment, we use Mcobot to represents the child model
Mchild.

Mcobot = (S, sinit, Pcobot, L, Sin, Sout)

where Mcobot is a DTMC model of the cobot system, S is
the set of eleven cobot states, sinit is the initial state S1.
The initial transition matrix is defined according to the
specification in the design phase. Subsequently, during the
operation phase, the state transition matrix Pcobot (c.f. Eq. 4)
will be updated based on three factors according to the run-
time condition, namely zone detection accuracy, workpiece
detection accuracy and sensor confidence score.

Pcobot =

0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 zoneacu 0 0 0 0 0 1− zoneacu 0
0 0 0 0 wpacu 0 0 0 0 1− wpacu 0
0 0 0 0 0 snconf 0 0 1− snconf 0 0
0 0 0 0 0 0 snconf 0 1− snconf 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 snconf 0 0 0 0 1− snconf

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

(4)

The resulting model is used to verify the cobot system
behaviour individually. With the sensor confidence score
derived at run time to update the transition matrix, Pcobot,
it will accurately reflect the behaviour of the cobot at the
operational phase.

C. SYSTEM MODEL - PAINTING SYSTEM

The system model is an abstraction of the painting process
that includes five machine states, and is composed of two in-
stances of the cobot model as the child models. In particular,
Cobot I is responsible for moving the workpiece between the
pending zone, painting zone, and ready zone; while Cobot II
paints the workpiece in the painting zone only. In this system,
both cobots should not execute their tasks concurrently, in
order to avoid a potential collision. For example, while Cobot
I is moving a workpiece to the painting zone, Cobot II should
be stationary at the standby location with a safe standby pose.

Fig. 5 illustrates the system model that defines the five
system states and two child cobot models,

S1 Idle is the initial state of the painting process, the system
checks all the modules’ status and waits for the task to be
executed.

S2 Plan is the state that the system retrieves the task details,
plans the steps and adjusts running parameters.

S3 Waiting workpiece is a state that keeps detecting the
workpiece in the pending zone. If there is a workpiece
detected, the system should trigger the planned action.

S4 Confirm status is a state that ensures all modules are
ready to move to the next step. We assume that there may
be a random error with this state leading to the transition
to S5 Failure state, since the painting system checks with
cobot systems and process control modules at this stage.
According to the empirical rule and statistical studies
of industrial processes [39], we assume it is a quarterly
failure event, which approximates to 0.9875 (µ± 2.5σ).

S5 Failure means the painting system is working with an
unexpected behaviour that may cause subsequent hazard
or injury.

C1 C1in and C1out are the input and output states of a sub-
task assigned to a dedicated cobot to shift the workpiece
to the working zone.

C2 C2in and C2out is the action to paint the workpiece. This
task is allocated to the second cobot in the system.

The painting process is abstracted using an extended MDP.
The symbol Mpainting represents the system-level model as

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

C1_in C2_in

init

Cobot 1

Cobot 2

C1_out C2_out

Painting Controller

S1
{Idle}

S2
{Plan}

S3
{Waiting

work-piece}

S5

{Failure}

S4
{Con�rm

status}

FIGURE 5. The painting system model.

follows:

Mpainting = (S, sinit, P, L,Mc1||Mc2)

where Mpainting is the compositional system model, S is a
five-state set of the system, sinit ∈ S is the initial state S1,
P : S × S × T → [0, 1] is the transition matrix where∑

s′∈S P (s, s′, t) = 1 for all s ∈ S, t ∈ T and L : S →
2AP are function-labelling states with atomic propositions.
Mc1||Mc2 are two cobot models. In this model, the cobot
model is considered as a special state machine, in which the
Sin and Sout of cobot model are the interfaces to integrate
with the other four normal machine states S1, S2, S3, S4 and
the Failure state S5.

The initial transition matrix is defined below where the
probability of Cobot I and II completing the task are c1comp

and c2comp respectively. We use notation "/" to indicate
nondeterministic choices in the state transition.

Ppainting =

S1 S2 S3 C1 S4 C2 S5

0 1 0 0 0 0 0 S1

0 0 1 0 0 0 0 S2

0 0 1/0 0/1 0 0 0 S3

0 0 0 0 0 c1comp 1− c1comp C1

0/0.9875 0 0 0 0 0.9875/0 0.0125 S4

0 0 0 0 c2comp 0 1− c2comp C2

0 0 0 0 0 0 1 S5

(5)

Similar to the cobot child model, the initial transition
matrix of the system model is defined according to the system
specification and updated at run time based on the sensor
confidence score.

D. EVALUATION OF SYSTEM FAILURE
Experiments were conducted to verify the safety and relia-
bility of the painting process at run time using real sensor
readings and working conditions. The probability of system
failure is expressed by PCTL as below,

Pfailure =? [F
≤20 (S5)]

where Pfailure is the probability of eventual system failure
state, S5, in the next 20 days, i.e., the service cycle of the
cobot.

V. IMPLEMENTATION AND RESULTS
Two cobots were used to evaluate and validate the proposed
compositional model verification framework. One was a
UR10e [40] that worked as workpiece moving cobot C1.
The other was a Franka Emika [41], which was used for
workpiece painting cobot C2. The sensor readings and cobot
states were retrieved through Modbus protocol for the UR10e
and a low level C++ interface, libfranka, for the Franka. The
child model and painting system model were evaluated using
a probabilistic model checker tool, PRISM [42].

In order to cover common and corner scenarios, six test
cases were developed to evaluate the proposed approach.

TC1 The common industry method that assumes the sen-
sor’s readings are 100% trusted.

TC2 Using the proposed method that utilises run-time sen-
sor confidence score to predict probability of failure of
the painting system dynamically.

TC3 Increasing the reading value by 10% over time to
simulate drift event over time to validate the ability of
the proposed framework to predict failure.

TC4 Simulating another drift scenario that decreases the
reading value by 10% over time to evaluate the algo-
rithm.

TC5 Manual intervention to disrupt the cobot movement
and capture the sensor readings to evaluate the impact
at system-level.

TC6 Using a development firmware that returns only un-
signed integer, which resulted in incorrect decoding of
sensor reading of type signed integers. In most of the
cases, this firmware worked well, however, when the
reading exceeded 32,768, it caused overflow error and
the control system made wrong decision according to
the wrong readings.

We ran test case TC1, TC5 and TC6 once, while TC2,
TC3, TC4 were executed in nine cycles of the painting
process. Each cycle took about three minutes to complete the
painting process.

At the beginning, we captured a dataset of machine states
and sensor readings under the operator supervision to ensure
the painting system works as expected. Subsequently, this

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

dataset was processed to derive the sensor normal behaviour
profile of the cobots to validate the test cases.

As the first test case (TC1) assumed that the sensor read-
ings are 100% trusted, we obtained a system failure prob-
ability of 0.0125 at all times, which is not realistic as it is
so close to perfect operation with zero failure. In (TC2), we
monitored the run-time sensor readings and then computed
the sensor confidence score of 0.88 – 0.90, thus resulting in
a system failure probability of 0.09 – 0.11. This effectively
reflects the real situation of the painting system that it was
not always working in the perfect condition. As for (TC3)
and (TC4), we simulated the drift events of ±10% of the real
data that was captured in (TC2), it is observed that the sensor
confidence score dropped about 10% to 0.80, thus causing
an increase in the failure probability to 0.15 and 0.18. Fig 6
summarises the comparison of test results of (TC2), (TC3)
and (TC4), comparing the real sensor values and the drift
simulation results to evaluate their impacts on the failure
probability with respect to the sensor confidence score. The
horizontal axis indicates the cycle of the test cases and the
vertical axis represents the sensor confidence score and the
failure probability.

FIGURE 6. Comparison of real sensor readings and drift simulation.

Test case (TC5) was executed by blocking the cobot’s
action under safe guidance. In this case, we observed that the
resulting sensor confidence score dropped to 0.6735 which
is about 25% lower from the normal situation. With this,
the 20-days failure probability had thus increased to 0.3635.
Lastly, a defective firmware was used to evaluate the impact
on the system failure probability, as such an error could
result in the retrieval of incorrect sensor readings. Due to the
incorrect decoding of signed integers, the sensor confidence
score dropped to its lowest, 0.3814 and resulted in a high
failure probability of 0.7905, as shown in Table 1. The full
results are listed in Appendix A, Table 2.

TABLE 1. Sensor confidence score and failure probability.

Test Case Sensor Confidence Score Failure Probability

TC1 1.000 0.0125
TC5 0.6735 0.3635
TC6 0.3814 0.7905

VI. DISCUSSION
We have constructed a novel sensor network verification
framework for compositional sensor network-based cyber-
physical systems using two cobots as an evaluation use
case. While the proposed framework can be used to predict
potential system failure probability dynamically, model the
sensor network’s behaviour, and quantify the trustworthiness
of a sensor network at the operation phase, we would also
like to highlight several observations and insightful findings
while evaluating the painting system use case. We provide
further analysis and discussion of the experiment results and
findings below:

1) The system failure probability is in inverse proportion
to the sensor’s confidence score. When the sensor’s
confidence score is low, this implies that there exhibits
anomalies and inaccuracy in the sensor readings ob-
tained, and hence the readings are less trustworthy.
Consequently, this has resulted in a higher probability
of system failure than normal. In the case of the painting
system, a linear function was applied to compute the
sensor-network confidence score and then update the
transition probability matrix. The choice of function
very much depends on the logical relationship between
the sensors and the system. This relationship can be
configured and customised accordingly. For instance,
machine learning techniques can be applied if the nec-
essary dataset is available to determine the confidence
score.

2) As the sensor is dynamic in nature, a transient fault in
the sensor leading to the system failure will typically
recover automatically. We observed that during one of
the painting operations, the sensor confidence score
unexpectedly dropped to 0.6808, thus increasing the
potential failure probability to 0.3524. Nonetheless, the
painting process was still completed as usual without
any warning. However, we noticed that in the following
operation cycle, the cobot indeed stopped working and
reported a collision failure. This shows that our veri-
fication framework is able to predict the failure in a
timely manner, thus warning the operators to pay more
attention to such an event at run time in the future. As
the failure could be due to the transient fault in the
sensor, once the cobot was restarted, the painting system
resumed to work smoothly.

3) In Industry 4.0, the manufacturing process should be
flexible and formed by multiple components with mini-
mal cost. With the proposed approach, the system-level
verification reuses verified child models as much as
possible to reduce the cost of creating the system model.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

Also, the knowledge of each independent child model
can be explicitly represented and reused.

VII. CONCLUSION

The research we have conducted so far proposes a run-
time compositional verification framework that combines
data- and model-driven approaches. The framework takes
into account sensor trustworthiness of each child model and
the higher level system model can be formed by multiple
child models. Hence, it enables the verification of the system
reliability during the operation phase. We described how
to dynamically update a probabilistic model with sensor
network models that explicitly reflect sensor uncertainty. The
methodology forms a unified run-time model that presents
more accurate prediction results of impending system fail-
ures, even while the system is running. Furthermore, possible
future work includes the following four directions:

1) The rules for deriving sensor network confidence scores
are manually defined according to expertise on the
specific system. This should be generalised so that the
proposed approach can be applied to a wider range of
systems.

2) A context-aware adaptive algorithm is needed to reflect
more general scenarios, e.g., the cobot moves a heavy
workpiece, diverse speed control.

3) This experiment focuses on sequential processes only.
A hierarchical or more complex probabilistic model is
required to model more sophisticated cyber physical
systems. For instance, to verify multiple AGVs that
carry workpieces to serve various processes concur-
rently.

4) ROS has become a popular real-time processing frame-
work for CPSs over the last few years. However, ROS
is not widely used in commercial applications. The
lack of an efficient verification framework to verify
the behaviour of such ROS-based systems could have
hampered the adoption of ROS in the industry. The pro-
posed verification framework could be extended to these
ROS-based CPSs to guarantee performance, safety, and
quality during operation.

The evaluation results highlighted the efficiency of ex-
plicitly modelling sensor trustworthiness, especially because
automatically-collected sensor data might drive all conse-
quential decisions in the domain of sensor network-based
systems. Moreover, it helps the system operators to allocate
and provision resources efficiently and in a more timely
manner.

.

APPENDIX A FULL EXPERIMENT RESULT

The experiment results of six scenarios.

TABLE 2. Sensor confidence score and failure probability.

Test Case Sensor Confidence Score Failure Probability

TC1 1.000 0.0125

TC2 dataset#1 0.883 0.1054
TC2 dataset#2 0.8999 0.093
TC2 dataset#3 0.8776 0.1097
TC2 dataset#4 0.8862 0.1029
TC2 dataset#5 0.9006 0.0925
TC2 dataset#6 0.8796 0.1081
TC2 dataset#7 0.8815 0.1066
TC2 dataset#8 0.8995 0.0933
TC2 dataset#9 0.9029 0.091

TC3 dataset#1 0.8183 0.1671
TC3 dataset#2 0.8311 0.1532
TC3 dataset#3 0.817 0.1685
TC3 dataset#4 0.8183 0.1671
TC3 dataset#5 0.8241 0.1607
TC3 dataset#6 0.8152 0.1706
TC3 dataset#7 0.8253 0.1594
TC3 dataset#8 0.8183 0.1671
TC3 dataset#9 0.8279 0.1567

TC4 dataset#1 0.8055 0.1817
TC4 dataset#2 0.802 0.1858
TC4 dataset#3 0.8106 0.1758
TC4 dataset#4 0.811 0.1754
TC4 dataset#5 0.8059 0.1812
TC4 dataset#6 0.8043 0.1831
TC4 dataset#7 0.7992 0.1891
TC4 dataset#8 0.8122 0.174
TC4 dataset#9 0.8046 0.1828

TC5 0.6735 0.3635

TC6 0.3814 0.7905

REFERENCES
[1] P. A. Lasota and J. A. Shah, “Analyzing the Effects of Human-Aware

Motion Planning on Close-Proximity Human-Robot Collaboration,”
Human Factors: The Journal of the Human Factors and Ergonomics
Society, vol. 57, no. 1, pp. 21–33, Feb. 2015. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0018720814565188

[2] F. Gil-Vilda, A. Sune, J. Yague-Fabra, C. Crespo, and
H. Serrano, “Integration of a collaborative robot in a
U-shaped production line: a real case study,” Procedia
Manufacturing, vol. 13, pp. 109–115, 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2351978917306479

[3] M. Gleirscher, N. Johnson, P. Karachristou, R. Calinescu, J. Law,
and J. Clark, “Challenges in the Safety-Security Co-Assurance of
Collaborative Industrial Robots,” arXiv:2007.11099 [cs], Jul. 2020,
arXiv: 2007.11099. [Online]. Available: http://arxiv.org/abs/2007.11099

[4] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund,
“Industrial Internet of Things: Challenges, Opportunities, and
Directions,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 11, pp. 4724–4734, Nov. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8401919/

[5] F. Tao, Q. Qi, L. Wang, and A. Nee, “Digital Twins
and Cyber-Physical Systems toward Smart Manufacturing and
Industry 4.0: Correlation and Comparison,” Engineering, vol. 5,
no. 4, pp. 653–661, Aug. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S209580991830612X

[6] A. Felsberger and G. Reiner, “Sustainable Industry 4.0 in Production and
Operations Management: A Systematic Literature Review,” p. 39, 2020.

[7] X. Xin, S. L. Keoh, M. Sevegnani, and M. Saerbeck, “Dynamic
Probabilistic Model Checking for Sensor Validation in Industry 4.0
Applications,” in 2020 IEEE International Conference on Smart Internet
of Things (SmartIoT). Beijing, China: IEEE, Aug. 2020, pp. 43–50.
[Online]. Available: https://ieeexplore.ieee.org/document/9191985/

[8] M. Calder and M. Sevegnani, “Stochastic Model Checking for Predicting
Component Failures and Service Availability,” IEEE Transactions on

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

Dependable and Secure Computing, vol. 16, no. 1, pp. 174–187, Jan.
2019. [Online]. Available: https://ieeexplore.ieee.org/document/7812626/

[9] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” in Proceedings of the 33rd
International Conference on Software Engineering. Waikiki, Honolulu
HI USA: ACM, May 2011, pp. 341–350. [Online]. Available:
https://dl.acm.org/doi/10.1145/1985793.1985840

[10] N. Li, S. Adepu, E. Kang, and D. Garlan, “Explanations for Human-on-
the-loop: A Probabilistic Model Checking Approach,” p. 7, 2020.

[11] R. Bellman, “A markovian decision process,” Indiana University Mathe-
matics Journal, vol. 6, pp. 679–684, 1957.

[12] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” in 2009 IEEE 31st
International Conference on Software Engineering. Vancouver,
BC, Canada: IEEE, 2009, pp. 111–121. [Online]. Available:
http://ieeexplore.ieee.org/document/5070513/

[13] H. L. S. Younes and R. G. Simmons, “Probabilistic Verification of
Discrete Event Systems Using Acceptance Sampling,” in Computer Aided
Verification, G. Goos, J. Hartmanis, J. van Leeuwen, E. Brinksma, and
K. G. Larsen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
vol. 2404, pp. 223–235, series Title: Lecture Notes in Computer Science.
[Online]. Available: http://link.springer.com/10.1007/3-540-45657-0_17

[14] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi, “A Model-
driven Approach for the Formal Analysis of Human-Robot Interaction
Scenarios,” in 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). Toronto, ON, Canada: IEEE, Oct. 2020, pp. 1907–
1914. [Online]. Available: https://ieeexplore.ieee.org/document/9283204/

[15] E. M. Clarke and P. Zuliani, “Statistical Model Checking for Cyber-
Physical Systems,” in Automated Technology for Verification and Analysis,
T. Bultan and P.-A. Hsiung, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 6996, pp. 1–12.

[16] H. L. S. Younes, M. Kwiatkowska, G. Norman, and D. Parker, “Numerical
vs. statistical probabilistic model checking,” International Journal on
Software Tools for Technology Transfer, vol. 8, no. 3, pp. 216–228, Jun.
2006. [Online]. Available: http://link.springer.com/10.1007/s10009-005-
0187-8

[17] M. Zarei, Y. Wang, and M. Pajic, “Statistical verification of learning-
based cyber-physical systems,” in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control. Sydney New
South Wales Australia: ACM, Apr. 2020, pp. 1–7. [Online]. Available:
https://dl.acm.org/doi/10.1145/3365365.3382209

[18] S. Mitsch and A. Platzer, “ModelPlex: verified runtime validation of
verified cyber-physical system models,” Formal Methods in System
Design, vol. 49, no. 1-2, pp. 33–74, Oct. 2016. [Online]. Available:
http://link.springer.com/10.1007/s10703-016-0241-z

[19] A. Platzer, “Differential Dynamic Logics: Automated Theorem
Proving for Hybrid Systems,” KI - KÃijnstliche Intelligenz,
vol. 24, no. 1, pp. 75–77, Apr. 2010. [Online]. Available:
http://link.springer.com/10.1007/s13218-010-0014-6

[20] R. Bohrer, Y. K. Tan, S. Mitsch, A. Sogokon, and A. Platzer, “A Formal
Safety Net for Waypoint-Following in Ground Robots,” IEEE Robotics
and Automation Letters, vol. 4, no. 3, pp. 2910–2917, Jul. 2019, confer-
ence Name: IEEE Robotics and Automation Letters.

[21] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer,
“Formal verification of obstacle avoidance and navigation of
ground robots,” The International Journal of Robotics Research,
vol. 36, no. 12, pp. 1312–1340, Oct. 2017. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364917733549

[22] B. Bohrer, A. Luo, X. A. Chuang, and A. Platzer, “CoasterX: A
Case Study in Component-Driven Hybrid Systems Proof Automation,”
IFAC-PapersOnLine, vol. 51, no. 16, pp. 55–60, 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2405896318311236

[23] N. Fulton, S. Mitsch, J.-D. Quesel, M. VÃűlp, and A. Platzer, “KeYmaera
X: An Axiomatic Tactical Theorem Prover for Hybrid Systems,” in
Automated Deduction - CADE-25, A. P. Felty and A. Middeldorp, Eds.
Cham: Springer International Publishing, 2015, vol. 9195, pp. 527–538,
series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-21401-6_36

[24] J.-D. Quesel, S. Mitsch, S. Loos, N. ArÃl’chiga, and A. Platzer,
“How to model and prove hybrid systems with KeYmaera: a tutorial
on safety,” International Journal on Software Tools for Technology
Transfer, vol. 18, no. 1, pp. 67–91, Feb. 2016. [Online]. Available:
https://link.springer.com/10.1007/s10009-015-0367-0

[25] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook
of Model Checking. Cham: Springer International Publishing, 2018.
[Online]. Available: http://link.springer.com/10.1007/978-3-319-10575-8

[26] N. Kamide and R. Yano, “Logics and translations
for hierarchical model checking,” Procedia Computer Sci-
ence, vol. 112, pp. 31–40, 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1877050917313534

[27] A. Desai, T. Dreossi, and S. A. Seshia, “Combining Model Checking
and Runtime Verification for Safe Robotics,” in Runtime Verification,
S. Lahiri and G. Reger, Eds. Cham: Springer International Publishing,
2017, vol. 10548, pp. 172–189, series Title: Lecture Notes in Computer
Science. [Online]. Available: http://link.springer.com/10.1007/978-3-319-
67531-2_11

[28] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “ROSRV: Runtime Verification for Robots,” in Runtime
Verification, B. Bonakdarpour and S. A. Smolka, Eds. Cham:
Springer International Publishing, 2014, vol. 8734, pp. 247–254,
series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-11164-3_20

[29] A. Ferrando, R. C. Cardoso, M. Fisher, D. Ancona, L. Franceschini,
and V. Mascardi, “ROSMonitoring: A Runtime Verification Framework
for ROS,” in Towards Autonomous Robotic Systems, A. Mohammad,
X. Dong, and M. Russo, Eds. Cham: Springer International Publishing,
2020, vol. 12228, pp. 387–399, series Title: Lecture Notes in Computer
Science. [Online]. Available: http://link.springer.com/10.1007/978-3-030-
63486-5_40

[30] A. Paul C. and L. Nancy A., “Dynamic input/output automata: A formal
and compositional model for dynamic systems,” Mar. 2016.

[31] P. Civit and M. Potop-Butucaru, “Probabilistic Dynamic Input Output
Automata (Extended Version),” Tech. Rep., 2021. [Online]. Available:
https://eprint.iacr.org/undefined/undefined

[32] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava,
“Sensor network data fault types,” ACM Transactions on Sensor
Networks, vol. 5, no. 3, pp. 1–29, May 2009. [Online]. Available:
https://dl.acm.org/doi/10.1145/1525856.1525863

[33] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection
methods and prevalence in real-world datasets,” ACM Transactions on
Sensor Networks, vol. 6, no. 3, pp. 1–39, Jun. 2010. [Online]. Available:
https://dl.acm.org/doi/10.1145/1754414.1754419

[34] D. Park, S. Kim, Y. An, and J.-Y. Jung, “LiReD: A Light-Weight
Real-Time Fault Detection System for Edge Computing Using LSTM
Recurrent Neural Networks,” Sensors, vol. 18, no. 7, p. 2110, Jun. 2018.
[Online]. Available: http://www.mdpi.com/1424-8220/18/7/2110

[35] D. Li, Y. Wang, J. Wang, C. Wang, and Y. Duan, “Recent advances
in sensor fault diagnosis: A review,” Sensors and Actuators A:
Physical, vol. 309, p. 111990, Jul. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924424719308635

[36] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535, 1994.

[37] “ISO/TS 15066:2016(en) Robots and robotic devices
- Collaborative robots,” 2016. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en

[38] M. Gurgul, Industrial robots and cobots: Everything you need to know
about your future co-worker. Michał Gurgul, 2018.

[39] J. Buckner, B. L. Chin, and J. Henri, “2. Prometrix RS35e Gauge Study
in Five Two-Level Factors and One Three-Level Factor,” in Statistical
Case Studies for Industrial Process Improvement, pp. 9–17, _eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719765.ch2. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9780898719765.ch2

[40] “UR10e Collaborative industrial robot.” [Online]. Available:
https://www.universal-robots.com/products/ur10-robot/

[41] “Franka Emika.” [Online]. Available: https://www.franka.de/robot-system
[42] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification

of Probabilistic Real-Time Systems,” in Computer Aided Verification,
G. Gopalakrishnan and S. Qadeer, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, vol. 6806, pp. 585–591.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

X.Xin et al.: Adaptive Model Verification for Modularised Industry 4.0 Applications

XIN XIN is a PhD candidate in the School of
Computing Science, University of Glasgow. His
research interests are sensor trustworthiness quan-
tification and impacts analysis for safety-critical
systems. Before he started PhD journey, he was a
research engineer at Institute of High Performance
Computing (IHPC) of Agency for Science, Tech-
nology and Research (A*STAR) Singapore, fo-
cus on distributed computing and social cognition
computing. He currently also works at TÜV SÜD

Digital Service Singapore as a principal engineer and leads the software
development of a run-time verification engine, which takes into account
sensor run-time trustworthiness to verify sensor network-based systems’
behaviour.

SYE LOONG KEOH (M’02) is an Associate
Professor in the School of Computing Science,
University of Glasgow (UofG, Singapore cam-
pus). He is currently the Programme Director of
the SIT-UofG Joint Degree in Computing Science
and the Director of Research Programmes in UofG
Singapore. He holds a Ph.D. in Computing from
Imperial College London. Prior to joining Glas-
gow, he was a Senior Scientist at Philips Research
Eindhoven, The Netherlands (Philips Lighting is

now known as Signify). His areas of expertise include cyber security for
Internet of Things (IoT), lightweight security systems for cyber-physical sys-
tems, and policy-based security management for pervasive and distributed
systems.

He leads the cyber-security research activities in UofG Singapore where
he has designed several lightweight authentication protocols and key man-
agement schemes for IoT, building management and industrial control sys-
tems. More recently, he is researching on new techniques for securing end-
to-end communication and ensuring data provenance in IoT environment.
While working at Philips Research, he was responsible for standardizing
Marlin Digital Rights Management (DRM) technology for content pro-
tection, and lightweight security protocols for Philips’s IoT-based lighting
systems.

MICHELE SEVEGNANI is Senior Lecturer of
Computing Science at the University of Glasgow,
Glasgow, UK. He received a PhD in Computing
Science from the University of Glasgow in 2012
and an MSc in Bioinformatics from the University
of Edinburgh in 2008. He is currently Principal
Investigator of research projects on modelling per-
spectives in autonomous vehicles and resilience
assurance in agritech systems. He was a Visiting
Researcher at the University of California Berke-

ley, modelling autonomous swarm systems. His research interests include
online models, stochastic models for predicting failures and availability,
sensor validation in IoT, and reasoning for autonomous agents.

MARTIN SAERBECK is CTO of Digital Ser-
vice at TÜV SÜD, he leads strategic research
and development initiatives of novel digital testing
solutions in the domains of AI, Robotics, and IoT
technology. Martin holds a degree in Computer
Science and a PhD in Industrial Design. He has
over 15 years of experience in developing techni-
cal solutions for both industry and academia. After
starting his career in Philips Research, he estab-
lished a new research group at A*STAR IHPC and

delivered innovation projects in the sectors of Aerospace, Manufacturing,
and Retail. Martin has a passion for applied research, promoting the trans-
lation of academic results to make today’s connected smart systems safe,
secure, and reliable.

TECK PING KHOO was born in Singapore
in 1980. He received the Bachelor of Engineer-
ing(Electrical) from the National University of
Singapore (NUS) in 2005, the Master of Science
(Digital Media Technology) from the Nanyang
Technological University (NTU) in 2012, and the
PhD (Software Engineering) from the Singapore
University of Technology and Design (SUTD) in
2021. From 2005 to 2013, he was a network
protocol developer at DSO National Laboratories,

Singapore. From 2013 to 2016, he lectured Python programming at Republic
Polytechnic, Singapore. From 2016, he was a software quality engineer
at TÜV SÜD Asia Pacific, Singapore. He is the author of two research
papers, which are about active and passive learning of software. His research
interests include Model Based Testing of Cyber Physical Systems, Software
Quality Assurance (SQA), Robotics and IoT.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225399

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

