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Abstract

Belief-Desire-Intention (BDI) agents are a popular agent architecture. We extend Conceptual
Agent Notation (Can)—a BDI programming language with advanced features such as failure
recovery and declarative goals—to include probabilistic action outcomes, e.g. to reflect failed
actuators, and probabilistic policies, e.g. for probabilistic plan and intention selection. The ex-
tension is encoded in Milner’s bigraphs. Through application of our BigraphER tool and the
PRISM model checker, the probability of success (intention completion) under different proba-
bilistic outcomes and plan/event/intention selection strategies can be investigated and compared.
We present a smart manufacturing use case. A significant result is that plan selection has lim-
ited effect compared with intention selection. We also see that the impact of action failures can
be marginal—even when failure probabilities are large—due to the agent making smarter choices.
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1 Introduction

A well-studied and popular architecture for de-
veloping rational agents is the Belief-Desire-
Intention (BDI) paradigm. BDI agents build on
a sound theoretical foundation to model an agent
where (B)eliefs represent what the agent knows,
(D)esires what the agent wants to bring about,
and (I)ntentions the desires the agent is cur-
rently acting upon. BDI agents have inspired
many agent-oriented programming languages in-
cluding AgentSpeak [1], Can [2], CanPlan [3],
3APL [4], and 2APL [5] along with a collection
of mature software toolkits and platforms includ-
ing JACK [6], Jason [7], and Jadex [8]. BDI
agents have been recognised for their efficiency
and scalability in areas such as business [9] and
healthcare [10].

In BDI languages, desires and intentions are
often represented using a plan library. Each plan
describes a course of actions which an agent can
perform to address an adopted event (often rep-
resenting a task from the external environment)
given some beliefs hold, while the set of intentions
are the plans currently being executed. Typically
BDI languages: (1) assume that action outcomes
(i.e. the effects on external environment) are de-
terministic, (2) remain agnostic internally to the
choice of an applicable plan to address an adopted
event, (3) remain agnostic internally to the choice
of a pending event to adopt from the external
environment, (4) remain agnostic internally to
the order that intentions are progressed. These
assumptions facilitate the formal verification of
agent behaviour through a non-deterministic un-
derlying transition system (depicted in Fig. 3) in
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work such as [11, 12]), where plan, event, and in-
tention selection denotes branching choices and
actions have a single outcome. As such, most ver-
ification approaches are limited to analysing qual-
itative properties, querying whether an intention
completes or not.

Though useful to have qualitative assurance,
unfortunately, this often does not adequately rep-
resent agent behaviours in realistic setting such
as cyber-physical robotics systems [13]. For exam-
ple, the outcome of an action may be probabilistic
due to imprecise actuation, e.g. the robot tries
to open a door, but might fail. Plans, event, and
intentions are not created equal and likely have
different (domain-specific) characteristics such as
preference and urgency, which may require differ-
ent certain selection strategies (e.g. ordered, fixed
schedules, or sampled from a probabilistic distri-
bution). As a result, there is a growing need for
formal techniques that can provide support for au-
tomated analysis of quantitative properties such
as “what is the probability of eventually complet-
ing an intention?” and “what is the worst-case
probability of eventually completing an intention
over all possible selection strategies?”.

To illustrate the problem, we use a robot pack-
aging task in a smart manufacturing scenario as
an example (detailed quantitative analysis is given
in Section 4). The overall goal is to pack products
automatically for shipping. The robot insulates
products with suitable wrapping bags, to prevent
temperature rise and consequent spoilage, and
then transfers the wrapped products to a stor-
age location. There are two types of wrapping
bags: premium and standard. The standard wrap-
ping is preferred as the cheaper option, however it
may not be effective if the product temperature is
already too high, and/or the packaging can occa-
sionally break, which results in damaged product
(i.e. a negative action outcome with some prob-
ability). Before wrapping the products, the robot
also has to decide which product to handle first (as
there may be multiple products waiting), mean-
ing handling a product before it spoils requires a
notion of urgency. While it is important to priori-
tise the more urgent products, it is also sensible
to progress less urgent ones from time-to-time, be-
fore they also become urgent and spoiled. So we
need to model and quantify agent behaviour when
there are a range of choices, inherent uncertainty,
and characteristics of preference and urgency. For

example, we may wish to know the probability
the robot can complete packaging under different
schedules, negative outcomes, and decisions.

In the BDI community, probabilistic action
outcomes are usually implicit—requiring the agent
to sense failures and revise the beliefs (i.e. to en-
able new plans)—and are often disregarded when
modelling. Although most agent language seman-
tics specify non-deterministic plan selection, e.g.
in [2], it is typical in practice for plans to be
ordered—either statically [7] or at run-time [14]—
to enforce deterministic branching. While desir-
able to exploit the highest priority plan, it may
be worthwhile exploring other plans every now
and then to avoid being stuck in a local maxi-
mum. Similarly, event/intention selection are also
not implemented in a non-deterministic fashion
either, but in a fixed schedule including Round-
Robin (executing a step of each intention in turn)
or First-In-First-Out. Interestingly, customised se-
lection implementations change the semantics of
agent languages implicitly, and is often a point
where implementations and semantics diverge.

We argue that the highest ordering (i.e. lo-
cal maximum) and fixed schedules (e.g. Round-
Robin) are not always the best approach to plan,
event, and intention selection and suggest agents
should support probabilistic selection strategies
together with the need to evaluate the undesired
outcomes of actions. We present a formal approach
(in contrast with the informal customisation of im-
plementations mentioned above) to specify, model,
and quantitatively analyse BDI agents with prob-
abilistic action outcomes and plan, event, and
intention selections drawn from a probability dis-
tribution. Quantitative verification, e.g. asking
the probability some intention completes, aids
the design of agents by enabling plan, event,
and intention selection strategies to be explored
and compared, and mitigates the risk of nega-
tive action outcomes by providing much-needed
quantitative assurance.

1.1 Approach

We have chosen to work with Can [2] as it
captures the essence of BDI concepts without
describing implementation details such as data
structures. As a superset of AgentSpeak [1], Can
includes declarative goals, concurrency, and failure
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Figure 1: Analysis of intention success for probabilistic CAN programs with different selection strategies.

recovery. Here, we extend the operational seman-
tics to a probabilistic setting. Although we focus
on Can, its features are similar to other BDI lan-
guages and our approach would apply equally well
to them.

Our approach is depicted in Fig. 1. On the
left, we have the inputs: (above) CAN seman-
tics and selection strategies and (below) the agent
program. In the middle, we have the abstract ma-
chine: (above) the CAN semantics are encoded by
probabilistic bigraph reaction rules and (below)
the agent program is encoded by bigraph entities.
On the right we have the execution engines Bigra-
phER [15] and PRISM [16]. We use BigraphER to
generate a transition system (a DTMC—Discrete
Time Markov Chain) of all possible agent be-
haviours, for each given combination of selection
strategies and initial states. We express successful
(or failure) completion of intentions as a Prob-
abilistic Computation Tree Logic (PCTL) [17]
formula (e.g.eventually the intention(s) complete
successfully). The transition system and formula
are the inputs to the PRISM model checker, which
returns a likelihood. Put more simply, the user
simply “runs” their PCTL formula and agent
model with different plan/intention/event selec-
tion strategies, as required.

We employ probabilistic bigraphs [18] as
the intermediate language, building on our pre-
vious work on (non-probabilistic) bigraphs as
an executable semantics for (non-probabilistic)
Can [19]. We choose bigraphs, over any other
formalism, for several reasons. First, its entity
and type system allow a natural encoding of
beliefs, desires, intentions, and plans as parallel
regions. Second, its matching and rewriting na-
ture closely mirrors Can operational semantics,
allowing us flexibility to trial different underly-
ing semantics by changing a few bigraph rules.
Third, the priority and conditional rule features

provided in BigraphER support straightforward
expression of selection strategies (e.g. ordered
and fixed schedules). Fourth, there is an intuitive
diagrammatic representation. The overall result
is a user-friendly, direct and smooth translation
that supports both probabilistic modelling and
predicate-labelled transition systems that can be
exported to model checkers like PRISM.

Parts of this study and preliminary results
were presented in [20]. We make the following
additional research contributions:

• a probabilistic extension of the full structural
operational semantics of Can;

• an extended executable semantics of Can
based on probabilistic bigraphs;

• a presentation of how different selection
strategies are encoded in bigraphs;

• an extended evaluation and analysis use
case, comparing various plan, event, and in-
tention selection under probabilistic action
outcomes, e.g. ordered and Round-Robin;

• a reflection on insights gained from creat-
ing a probabilistic extension of Can, and the
practical value of probabilistic agents for e.g.
agent-designers.

The paper is organised as follows. In Section 2
we provide a brief overview of BDI agents and
bigraphs. In Section 3 we propose the probabilis-
tic extension of Can semantics. In Section 4 we
evaluate our approach on a smart manufacturing
example. In Section 5, we reflect on the general-
ity and limits of our approach. We discuss related
work in Section 6, future work in Section 7, and
conclude in Section 8.
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2 Background

2.1 BDI Agents

A BDI agent has an explicit representation of
beliefs, desires, and intentions. The beliefs cor-
respond to what the agent believes about the
environment, while the desires are a set of external
events that the agent can respond to. To respond
to those events, the agent selects a plan (given its
beliefs) from the pre-defined plan library and com-
mits to the selected plan by turning it into a new
intention.

2.1.1 BDI Syntax

The Can language formalises a classical BDI
agent consisting of a belief base B and a plan li-
brary Π. The belief base B is a set of formulas
encoding the current beliefs and has belief opera-
tors for entailment (i.e. B |= φ), and belief atom
addition (resp. deletion) B∪{b} (resp. B\{b}). In
general, any logic is allowed providing entailment
is supported for a belief base. A propositional logic
with natural number comparisons is used in this
work. A plan library Π is a collection of plans of
the form e : φ← P with e the triggering event, φ
the context condition, and P the plan-body. The
triggering event e specifies why the plan is trig-
gered, while the context condition φ determines
when the plan-body P is able to handle the event.
Events can be either be external (i.e. from the
environment in which the agent is operating) or
internal (i.e. sub-goals that the agent itself tries
to accomplish). A (partially executed) plan-body
P for a selected plan e : φ ← P is the inten-
tion that is addressing e. The language used in the
plan-body is defined by the following grammar:

P ::= nil | +b | −b | act |?φ | e | P1; P2 | P1 ▷ P2 |
P1 ∥ P2 | e : (| φ1 : P1, · · · , φn : Pn |) |
goal(φs,P , φf )

where nil is an empty program, +b and −b belief
addition and deletion, act a primitive action, ?φ
a test for φ in the belief base, and e is a sub-
event (i.e. internal event). Actions act take the
form act = φ ← ⟨ϕ−, ϕ+⟩, where φ is the pre-
condition, and ϕ− and ϕ+ are the deletion and
addition sets (resp.) of belief atoms, i.e. a belief

base B is revised to be (B \ ϕ−) ∪ ϕ+ when the
action executes. We also denote the set of actions
in the plan library as Λ. To execute a sub-event,
a plan (corresponding to that event) is selected
and the plan-body added in place of the event. In
this way we allow plans to be nested (similar to
sub-routine calls in other languages). In addition,
there are composite programs P1; P2 for sequence,
P1▷P2 that executes P2 in the case that P1 fails,
and P1 ∥ P2 for interleaved concurrency. A set
of relevant plans (those that respond to the same
event) is denoted by e : (| ψ1 : P1, · · · , ψn : Pn |).
Finally, a declarative goal program goal(φs,P , φf )
expresses that the declarative goal φs should be
achieved through program P , failing if φf becomes
true, and retrying as long as neither φs nor φf is
true (see in [3] for details).

2.1.2 BDI Semantics

Can semantics is specified by two types of transi-
tions. The first type, denoted ⇒, specifies agent-
level evolution over ⟨Ee,B,Γ⟩, detailing how to
execute a complete agent where Ee is the set of
pending external events to address (the desires),
B the belief base, and Γ a set of partially executed
plan-bodies (intentions). The second, denoted →,
specifies intention-level evolution on configura-
tions ⟨B, P ⟩ where B is the belief base, and P the
plan-body currently being executed.

The agent-level semantics are given in Fig. 2a.
Rule Aevent handles external events, that originate
from the environment, by adopting them as in-
tentions. Rule Astep selects an intention from the
intention base, and evolves a single step w.r.t. the
intention-level transition, while Aupdate discards
any intentions that cannot make progress (either
because they have already succeeded, or failed).

Fig. 2b gives intention-level rules for evolv-
ing any single intention. For example, the rule
act handles the execution of an action, when the
pre-condition ψ is met, resulting in a belief state
update. Rule event replaces an event with the
set of relevant plans, while rule select chooses
an applicable plan from a set of relevant plans
while retaining un-selected plans as backups. With
these backup plans, rules for failure recovery ▷; ,
▷⊤, and ▷⊥ enable new plans to be selected if
the current plan fails (e.g. due to environment
changes). Rules ; and ; ⊤ allow executing plan-
bodies in sequence, while rules ∥1, ∥2, and ∥⊤
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Aevent
e ∈ Ee

⟨Ee,B,Γ⟩ ⇒ ⟨Ee \ {e},B,Γ ∪ {e}⟩
Astep

P ∈ Γ ⟨B, P ⟩ → ⟨B′, P ′⟩
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B′, (Γ \ {P}) ∪ {P ′}⟩

Aupdate

P ∈ Γ ⟨B, P ⟩↛
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B,Γ \ {P}⟩

(a) Agent-level Can semantics.

act
act : ψ ← ⟨ϕ−, ϕ+⟩ B ⊨ ψ

⟨B, act⟩ → ⟨(B \ ϕ− ∪ ϕ+), nil⟩
event

∆ = {φ : P | (e′ = φ← P ) ∈ Π ∧ e′ = e}
⟨B, e⟩ → ⟨B, e : (| ∆ |)⟩

select
φ : P ∈ ∆ B |= φ

⟨B, e : (| ∆ |)⟩ → ⟨B, P ▷ e : (| ∆ \ {φ : P} |)⟩
▷;

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, P1 ▷ P2⟩ → ⟨B′, P ′
1 ▷ P2)⟩

▷⊤
⟨B, nil▷ P2⟩ → ⟨B′, nil⟩

▷⊥
P1 ̸= nil ⟨B, P1⟩↛ ⟨B, P2⟩ → ⟨B′, P ′

2⟩
⟨B, P1 ▷ P2⟩ → ⟨B′, P ′

2⟩
;

⟨B, P ⟩ → ⟨B′, P ′⟩
⟨B, P1; P2⟩ → ⟨B′, P ′

1; P2⟩

∥1
⟨B, P1⟩ → ⟨B′, P ′

1⟩
⟨B, P1∥P2⟩ → ⟨B′, P ′

1∥P2⟩
∥2

⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, P1∥P2⟩ → ⟨B′, P1∥P ′
2⟩

∥⊤ ⟨B, nil∥nil⟩ → ⟨B, nil⟩

Gs

B |= φs

⟨B, goal(φs,P, φf )⟩ → ⟨B, nil⟩
Gf

B |= φf

⟨B, goal(φs,P, φf )⟩ → ⟨B, ?false⟩

Ginit

P ̸= P1 ▷ P2 B ⊭ φs B ⊭ φf

⟨B, goal(φs,P, φf )⟩ → ⟨B, goal(φs,P ▷ P, φf )⟩
G;

B ⊭ φs B ⊭ φf ⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, goal(φs, P1 ▷ P2, φf )⟩ → ⟨B′, goal(φs, P
′
1 ▷ P2, φf )⟩

G▷
B ⊭ φs B ⊭ φf ⟨B, P1⟩↛

⟨B, goal(φs, P1 ▷ P2, φf )⟩ → ⟨B, goal(φs, P2 ▷ P2, φf )⟩

(b) Intention-level Can semantics.

Figure 2: Can semantics from [3].

specify how to execute (interleaved) concurrent
programs. Rules Gs and Gf deal with declarative
goals when either the success condition φs or the
failure condition φf become true. Rule Ginit ini-
tialises persistence by setting the program in the
declarative goal to be P ▷ P , i.e. if P fails try
P again. This ensures P runs indefinitely unless
either the success condition φs or failure condi-
tion φf holds. Rule G; takes care of performing a
single step on an already initialised program. Fi-
nally, the derivation rule G▷ re-starts the original
program if the current (partially-executed) pro-
gram has finished or got blocked (when neither φs
nor φf becomes true).

2.1.3 Agent Example

For illustration, we give a classic example [19]: ar-
ranging a conference trip. The agent program is
shown in Listing 1, and commentary follows.

An agent desires to arrange a confer-
ence trip, denoted by an external event
e conference travelling (line 6). We assume
there are only two ways to travel to the confer-
ence. The first is by car, given by the plan in
line 2, which expresses that if the agent believes it
owns a car (i.e. own car) and the venue is in the

driving distance (i.e. driving distance), it can
start the car (start car) and drive (driving) all
the way to the venue. To specify the actions, for
example, the action start car (line 8) expresses
that if the car is functional (i.e. car functional)
and after executing it, the belief of the engine
being on (i.e. engine on) will be added while
deleting nothing from the belief base.

The second way to travel is by air, given by the
plans in lines 3 to 4. This plan expresses that if the
budget allows and there is a flight, the agent can
book the ticket first, then post internally a sub-
event to actually travelling by plane, and go to
the venue after landing. To address the sub-event
e get on board, we have plan in line 4, which ex-
presses that if the agent believes the flight has
been booked, it can go to the airport and fly by
plane.

3 Probabilistic CAN
Semantics

The semantics of Can are specified by two types
of transitions. The first is the agent-level transi-
tion ⇒ in Fig. 2a that specifies how to execute a
complete agent. The second is the intention-level
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Listing 1: Agent design of an conference trip arrangement.

1 // Plans
2 e_conference_travelling : own_car ∧ driving_distance ← start_car; driving
3 e_conference_travelling : budget_allowed ∧ flight_available
4 e_get_on\board : flight_booked ← go_to_airport; flying
5 // External events
6 e_conference_travelling
7 // Action descriptions

8 start_car = car_functional ← ⟨ϕ− = ∅, ϕ+ = {engine on}⟩
9 driving = engine_on ← ⟨ϕ− = ∅, ϕ+ = {at venue}⟩

10 book_flight = true ← ⟨ϕ− = ∅, ϕ+ = {flight booked}⟩
11 go_to_venue = flight_landed ← ⟨ϕ− = ∅, ϕ+ = {at venue}⟩
12 flying = flight_landed ← ⟨ϕ− = {flight booked,at airport}, ϕ+ = {flight landed}⟩
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Figure 3: Non-deterministic (standard Can) and new probabilistic transitions highlighting plan, event,
and intention selection, and action execution. Solid lines are agent-level transitions, while dashed lines
are intention-level.

transition→ in Fig. 2b that specifies how to evolve
a given single intention.

Can semantics feature non-deterministic tran-
sitions, e.g. for plan selection. To allow for prob-
abilistic selection and action outcomes, we must
extend this to support probabilistic transitions.
Figure 3 provides a high level comparison of the
standard non-deterministic, and our new proba-
bilistic semantics for Can.

Choices appear throughout both the agent and
intention level semantics. An agent with multiple
external events to respond and a set of inten-
tions to pursue is faced with three operations
to choose from, namely agent-level operation se-
lection. The agent can incorporate any pending
external events specified by semantic rule Aevent,
it can select an intention and execute a step (ac-
cording to the intention-level semantics) using
Astep, or it can manage the intention set by remov-
ing an unprogressable intentions using Aupdate.

In the original Can semantics, these are cho-
sen non-deterministically, that is, there is no way
to prioritise completing existing intentions over
handling new events.

Once an agent-level operation is chosen, there
are further decisions to make. For example, which
pending external event (there may be multiple)
should be adopted? Similarly, both Astep and
Aupdate must select one intention from a set of
intentions (i.e. intention selection). These choices
are also made non-deterministically, again mean-
ing we cannot prioritise specific events/intentions.

After choosing to step an intention (Astep),
progressing this intention may imply (visualised
as dashed lines in Fig. 3) selecting an applicable
plan, progressing concurrent program, and exe-
cuting an action. Again, plan selection is made
non-deterministic using rule select, the order of
concurrent program progress is non-deterministic
using ∥1 or ∥2, and action has only one single
outcome by act.
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Previous work [19] formally modelled and anal-
ysed non-probabilistic Can (i.e. the left side of
Fig. 3). We extend this to define a probabilistic se-
mantics for Can, and show how this allows quan-
titative analysis. The right side of Fig. 3 shows our
probabilistic extension of Can semantics.

To move from non-deterministic transitions to
probabilistic transitions, we employ probabilis-
tic transitions C →p C′ (i.e. move from C to
C′ with probability p) [21]. To extend the non-
deterministic transition, the key is to assign prob-
ability to each selection choice. In next sections
we detail why and how we extend both agent-
level and intention-level transitions fromCan, and
how suitable distributions can be constructed to
support quantitative analysis.

Notation

We use µ, η to refer to probability distributions
over a set A. We write µ = [x 7→ p1, y 7→ p2]
to denote the probability distribution, over {x, y}
where, for example, x is sampled with probabil-
ity p1, and access the probability of an element
using function notation, e.g. µ(x) = p1. For a
distribution we require

∑
p∈µ = 1. Only probabil-

ities for non-zero elements are given, such that for
[x 7→ 1, y 7→ 0] we instead write [x 7→ 1]. We use
Dist(A) to refer to the set of discrete probabil-
ity distributions over A, i.e. a set with probability
distributions as elements.

We denote the set of all possible belief atoms,
external events and intentions—for a specific pro-
gram—as B, Ee, and Γ respectively. At each agent
step, the belief base (resp. events, intentions) is
given as B ⊆ B.

3.1 Probabilistic Agent-Level
Semantics

The agent-level semantics of Can characterise the
evolution of an agent which has multiple exter-
nal events to respond and is currently pursuing
a set of intentions While the agent-level seman-
tics allow the agent to respond to new events even
while already dealing with other events, only one
agent-level operation can be performed at each
step. Such non-deterministic choice of agent-level
operation is implicit in Can semantics. Here we
formalise and express it as a function as follows
where we denote the set of agent-level rules as

A = {Aevent, Astep, Aupdate}:

Sao : 2E
e × 2B × 2Γ → A∪ {⊥}

which returns a choice of agent-level operation
given any agent-level configuration ⟨Ee,B,Γ⟩ and
⊥ stands for no applicable rules available.

In practice, a common approach of selecting an
agent-level operation is often done in determinis-
tic fashion such as incorporating an external event
if any before selecting any intention to execute a
step if possible. However, we may need to choose
an agent-level operation from a distribution. For
example, it may be better for the agent to mainly
incorporate external events as intentions at the
early operation stage and to mainly progress ex-
isting intentions at later stage. To allow this we
sample agent-level operations based on a proba-
bility distribution, i.e. with the following selection
function:

Spao : 2E
e × 2B × 2Γ → Dist(A ∪ {⊥})

The probability of ⊥ of any distribution µ ∈
Dist(A ∪ {⊥}) is either µ(⊥) = 0 (agent-level
operation(s) available.) or µ(⊥) = 1 (no agent-
level operation(s) available). Using Spao, we will
define probabilistic rules for actual execution of
agent-level operations in the next sections.

We will next detail how an agent decides which
event or intention should be selected when a given
agent-level operation is selected (according to the
distribution from selection function Spao). The de-
tails of how these functions are implemented are
given later on in Section 4.4.

3.1.1 Probabilistic Event Adoption

BDI agents operate by continuously handling ex-
ternal events that represent tasks originating from
the external environment.

To respond to these events, an agent selects
an external event (e ∈ Ee) and adopts it in the
intention set (Γ ∪ {e}), using rule Aevent

Aevent
e ∈ Ee

⟨Ee,B,Γ⟩ ⇒ ⟨Ee \ {e},B,Γ ∪ {e}⟩

There may be multiple pending external events,
due to different requests from the environment,
and it is not clear which event should be selected:
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the rule above picking any waiting event. In prac-
tice, we want more control over the event that is
selected as different events may be more or less ur-
gent. Many agent implementations, going against
the semantics, choose events using an event selec-
tion function Se that is customised to account for
priorities and is formalised in the following form:

Se : 2B × 2E
e → Ee ∪ {⊥}

Given a belief base and a set of external events
it returns an event or ⊥, i.e. no requested event
present. In other words, the agent always takes an
event if one exists the agent. We also note that
the belief base is needed to provide relevant infor-
mation (e.g. priority) for the agent to make more
informed event selection decisions.

To allow non-strict orderings we sample events
based on a probability distribution, i.e. with the
probabilistic event selection function:

Spe : 2B × 2E
e → Dist(Ee ∪ {⊥})

Using Spe and Spao (which defines probability of
selecting rule Aevent), we can define a probabilistic
Aevent rule:

Ap
event

Spao(Ee,B,Γ) = η η(Aevent) = p1
Spe (B, Ee) = µ1 e ∈ Ee µ1(e) = p′1
⟨Ee,B,Γ⟩ ⇒p1·p′1 ⟨E

e \ {e},B,Γ ∪ {e}⟩

The rule Apevent says that if the probability of per-
forming event selection at this step is p1 and the
probability of selecting a pending external event is
p′1, then the probability of selecting this event at
this step is p1 ·p′1. When no external event is avail-
able (i.e. Spe (B, Ee) = µ1 and µ1(⊥) = 0), Apevent
is not applicable.

3.1.2 Probabilistic Intention
Progression

Every time an agent adopts an external event a
new intention is created. As agents should adopt
events to stay reactive if one exists, we end up with
a set of intentions competing for the agent’s atten-
tion. As Can agents are single-threaded, at most
one intention can be executed each agent step in
an interleaved manner. If an agent decides to work
on intentions (rather than adopt new events), the

agent must make a choice: out of the set of pro-
gressable intentions, which should be progressed?
In standard Can this is captured by

Astep

P ∈ Γ ⟨B, P ⟩ → ⟨B′, P ′⟩
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B′, (Γ \ {P}) ∪ {P ′}⟩

This rule non-deterministically progresses any in-
tention (that can be progressed) with respect to
the intention level rules in Fig. 2b.

The precondition states that P must be an in-
tention but does not control which. If we want
more control, we can add an intention selection
function as follows:

Si = 2B × 2Γ → Γ ∪ {⊥}

As before, this function returns a fixed inten-
tion, or ⊥ if no intention is present in the intention
set (i.e. Γ = ∅). We note that the function Si, by
definition, includes the set of all possible stages
of each intention as every step of an intention
is itself a different intention. To efficiently con-
struct such an function, however, we often treat
different stages of an intention as the same in-
tention. In fact, we decide to link each intention
with the related external event as intentions ulti-
mately address external events to construct this
function (detailed in Section 4). As such, regard-
less of how an intention evolves, it is treated as the
same intention. Similar to event selection, the key
component of beliefs in the function domain is to
provide domain-specific information of intentions
to aid customised selection.

Due to the need to choose intentions from a
distribution, we provide the following function to
allow intention selection from a distribution:

Spi = 2B × 2Γ → Dist(Γ ∪ {⊥})

The agent-level transitions of Astep depends
on the intention-level transitions and we need
to account for this in the transition probabili-
ties. To have a probabilistic agent-level rule Astep,
we assume, for a chosen progressable intention
P ∈ Γ, ⟨B, P ⟩ →p′ ⟨B′, P ′⟩ holds, for example, if
a plan selection for the given intention P is re-
quired based on selectP . The detailed probabilistic
intention-level semantics will be given Section 3.2.
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The probabilistic rule for intention selection is

Ap
step

Spao(Ee,B,Γ) = η η(Astep) = p2
P ∈ Γ Spi (B,Γ) = µ2 µ2(P ) = p′2

⟨B, P ⟩ →p′′2
⟨B′, P ′⟩

⟨Ee,B,Γ⟩ ⇒p2·p′2·p′′2 ⟨E
e,B′,Γ′⟩

where Γ′ = (Γ \ {P})∪{P ′}. Rule Apstep says that
if the probability of performing intention selec-
tion at this step is p2, the probability of selecting
intention P is p′2, and the probability of progress-
ing it to P ′′2 , then the probability of selecting
and progressing intention P to P ′ at this step is
p2 · p′2 · p′′2 .

3.1.3 Probabilistic Intention Update

The final agent-level rule Aupdate drops any un-
progressable intention from the intention set.

Aupdate

P ∈ Γ ⟨B, P ⟩↛
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B,Γ \ {P}⟩

Same as rule Astep, rule Aupdate also requires
the same distribution Spi to allow intention selec-
tion. Unlike Astep, however, Aupdate depends on
the intention-level transitions which has a default
probability 1, namely ⟨B, P ⟩↛1. To have a prob-
abilistic agent-level rule Aupdate, we present the
following probabilistic rule for intention selection.

Ap
update

Spao(Ee,B,Γ) = η η(Aupdate) = p3
Spi (B,Γ) = µ3 P ∈ Γ
µ(P ) = p′3 ⟨B, P ⟩↛1

⟨Ee,B,Γ⟩ ⇒p3·p′3 ⟨E
e,B,Γ \ {P}⟩

The new rule Apupdate says that if the probability
of updating intention selection at this step is p3,
the probability of selecting an unprogressable in-
tention P is p′3, then the probability of selecting
and removing it from the intention set at this step
is p3 · p′3.

Finally, when there is no agent-level opera-
tion available, we provide a default idle rule that
transitions the agent to itself. This is required as
DTMCs have must always have an outgoing edge
probabilities that sum to 1. This allows for ver-
ification using probabilistic model checking tools

(in Section 4.5). The self-transition rule is

Ap
idle

Spao(Ee,B,Γ) = η η(⊥) = 1

⟨Ee,B,Γ⟩ ⇒1 ⟨Ee,B,Γ⟩

3.2 Probabilistic Intention-level
Semantics

Figure 2b gives rules for evolving any single in-
tention and each rule is either defined in either
deterministic (e.g. rule act) or non-deterministic
nature (e.g. rule select). Though most of deter-
ministic rules are indeed expected and appropriate
such as progressing a sequence of programs one by
one, the rule for action execution may have uncer-
tain outcomes (i.e. the effects on external environ-
ment), which may need probabilistic treatment.
Similarly, we naturally extend non-deterministic
rules such as plan selection select to probabilistic
setting based on agent-specific information such
as preference.

3.2.1 Probabilistic Action Outcomes

Agents execute actions that both interact with
an external environment (e.g. pick up an object),
and in-turn revise the internal belief base (e.g.
the agent believes it holds the object). Recall that
action execution is specified in Can as follows:

act
act : φ← ⟨ϕ−, ϕ+⟩ B ⊨ φ

⟨B, act⟩ → ⟨(B \ ϕ− ∪ ϕ+), nil⟩

This states that an action applies only if the pre-
condition φ holds, and the outcome is to update
the belief base by adding and removing the be-
lief atoms specified by ϕ− and ϕ+, respectively.
Therefore, the action outcome is implicitly made
deterministically by function

Sa : Λ→ 2B × 2B

Given an action, it returns a product of set of
added and deleted atoms

In practice, we know the outcomes of an action
are uncertain (e.g. due to actuator malfunctions).
For example, an agent may execute an action
to pick up an object but fail to do so because
a robotic arm fails. In this case, updating the
beliefs that an object is held can lead to mis-
alignment between the true environment and the
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agent’s representation of it. To allow uncertain ac-
tion outcomes, we can sample outcomes based on
a probability distribution, i.e. with the following
action outcome function:

Spa : Λ→ Dist(2B × 2B)

A probabilistic action execution is defined by

actp
Spa(act) = µ µ(ϕ−, ϕ+) = p B ⊨ φ

⟨B, act⟩ →p ⟨(B \ ϕ− ∪ ϕ+), nil⟩

Importantly we do not expect programming
language implementations based on these seman-
tics to draw action outcomes probabilistically.
Instead it is used solely for modelling, which allows
us to capture environmental effects in a semantics
where they are usually overlooked or ignored.

3.2.2 Probabilistic Plan Selection

BDI agents employ a user-provided plan library
to respond to events. Each plan has i) a triggering
event defining what event the plan can respond
to, ii) a pre-condition defining what beliefs must
hold for the plan to apply, and iii) a plan-body
defining what steps should be taken to execute
the plan. To address a pending event originating
from the external environment, the agent retrieves
a set of relevant plans, i.e. those with a matching
triggering event, as specified by Can rule

event
∆ = {φ : P | (e′ = φ← P ) ∈ Π ∧ e′ = e}

⟨B, e⟩ → ⟨B, e : (| ∆ |)⟩

Given a set of relevant plans, the agent then selects
an applicable plan (one where the precondition is
true):

select
φ : P ∈ ∆ B |= φ

⟨B, e : (| ∆ |)⟩ → ⟨B, P ▷ e : (| ∆′ |)⟩

where ∆′ = ∆\{φ : P}. If there are no applicable
plans a separate rule such as rule ▷⊥ in Fig. 2b
propagates the failure.

Notice that the preceding select rule does
not specify which plan should be selected in
case of multiple applicable plans, i.e. it is non-
deterministic. However, in many implementations,
the choice is often made deterministically by a

plan selection function of the following form:

Sp : 2B × 2Π → Π ∪ {⊥}

Given a belief base and a set of plans it returns
an applicable plan or no applicable plan (⊥).

While a common heuristic is to select the plan
with the highest order based on some characteris-
tics (e.g. preference), it may not lead to globally
optimal behaviours due to action side-effects. We
argue that it should be possible to prioritise plan
choice based on plan characteristics, but not as-
sume a totally fixed ordering in order to allow
exploration of non-highest order plans that might
have better properties. This is akin to discrepancy
search techniques [22] to go against the heuristic,
and is particularly useful for declarative goals (e.g.
rules Ginit and G▷ in Fig. 2b) to avoid always
repeating the same plan.

To support non-strict orderings, we can sample
the choice of applicable plans based on a prob-
ability distribution, i.e. with the following plan
selection function:

Spp : 2B × 2Π → Dist(Π ∪ {⊥})

Using Spp , a probabilistic select rule is defined
by

selectp

Spp (B,∆) = µ µ(⊥) = 0
φ : P ∈ ∆ µ(φ : P ) = p

⟨B, e : (| ∆ |)⟩ →p ⟨B, P ▷ e : (| ∆′ |)⟩

where ∆′ = ∆ \ {φ : P} and µ is the probability
distribution returned from Spp such that any non-
relevant and non-applicable plans are assigned the
probability 0.

Trialling different distributions is possible by
changing Spp which could, for example, be ex-
tracted from historical data. With our approach,
it allows quantifying exact probabilistic effects of
different Spp choices.

3.2.3 Probabilistic Concurrency

Can also supports the execution of concurrent
programs. To execute a concurrent plan-body
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program, the agent can execute either part non-
deterministically given in following two cases:

∥1
⟨B, P1⟩ → ⟨B′, P ′1⟩

⟨B, P1∥P2⟩ → ⟨B′, P ′1∥P2⟩

∥2
⟨B, P2⟩ → ⟨B′, P ′2⟩

⟨B, P1∥P2⟩ → ⟨B′, P1∥P ′2⟩
To choose the part of concurrent programs to
progress, we may also require flexibility to choose
from a distribution by a selection function for a
concurrent program P1∥P2 as follows:

Spc : 2B × P → Dist(P ∪ {⊥})

where P ⊆ Γ is all possible plan-body programs,
Dist(P ∪ {⊥})) is the set of discrete probability
distributions over all possible plan-body programs
(or a delta distribution to ⊥ if no part of a
concurrent program can be progressed).

We note that both rules ∥1 and ∥2 imply that
the evolution of a concurrent program depends on
another intention-level transition of either part of
concurrent program and we need to account for
this in the transition probabilities. To have a prob-
abilistic intention-level transition for a concurrent
program, we assume, for a chosen progressable in-
tention Pi ∈ P , ⟨B, Pi⟩ →p′i

⟨B′, P ′i ⟩ holds where
i ∈ {1, 2}, for example, if a plan selection for the
given intention Pi is required based on selectP .
Using Spc we can define a probabilistic extension
for rules ∥1 and ∥2:

∥p1

Spc (B, P1∥P2) = µ µ(⊥) = 0
µ(P1) = p1 ⟨B, P1⟩ →p′1

⟨B′, P ′1⟩
⟨B, P1∥P2⟩ →p1·p′1 ⟨B, P

′
1∥P2⟩

∥p2

Spc (B, P1∥P2) = µ µ(⊥) = 0
µ(P2) = p2 ⟨B, P2⟩ →p′2

⟨B′, P ′2⟩
⟨B, P1∥P2⟩ →p2·p′2 ⟨B, P1∥P ′2⟩

where µ is the probability distribution returned
from Spc such that where

∑
i pi · p′i = 1, pi, p

′
i ∈

[0, 1], and i ∈ {1, 2}.
Finally, we reiterate that when there is no ap-

plicable plan available to select or neither of two
concurrent programs is progressable, a separate
rule of failure recovery (▷⊥ in Fig. 2b) will prop-
agate the failure to continue the transition. The
rest of intention-level rules in Fig. 2b are auto-
matically extended with a probability 1. The full

rule set for the probabilistic extension of the Can
semantics is in Fig. 15.

3.3 Constructing Selection
Functions

The probabilistic Can semantic rules either tran-
sition with probability 1 or through probability
distributions. These probability distributions are
abstract, and the rules themselves do not spec-
ify how to construct them in practice. In this
section, we present and extended syntax for Can
programs that allows agent programmers to define
the specific distributions to be used.

3.3.1 Situation Value Functions

We introduce additional syntax for relevant agent
programs (e.g. plans) that, through a process
of normalisation, determines the correct proba-
bilistic distributions. Following [14], we annotate
programs using situation value description func-
tions θ : 2B → R≥0. Intuitively these map the
current situation, as described by the current be-
liefs, to a real valued number. We allow users to
define θ functions as folds/aggregation functions
as follows:

⟨d0, {(φ1, d1), · · · , (φn, dn)}, f⟩

where d0 is a default value and values di are ag-
gregated using function f (e.g. sum) whenever
B |= φi holds.

In general, situation value functions are dy-
namic in that they respond based on the current
set of beliefs representing the current situation the
agent is in. A special case are static values, e.g.
θ = ⟨0, {(true, di)},+⟩ that do not depend on the
current beliefs of the agent. For ease of notation,
we allow users to denote these simply as the value,
e.g. θ = di, rather than giving the full function.

Situation value functions can then be attached
to the following agent programs to determine the
correct probabilistic selection function.

• Plans e : φ← P [θ]
• Concurrency P1[θ1] ∥ P2[θ2]
• Events and Intentions e[θ]
Intuitively, plans with a higher (current) θ

value should be selected more often. Concurrency
annotations determine which branch should be
preferred, while the event annotations determine
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which event should be adopted first (given a set
of possible events). Because intentions ultimately
address external events, we measure the situation
value of an intention by considering the value of
its related external event, which suffices for our
smart manufacturing example in Section 4.

Finally, to construct the probabilistic selec-
tion function for agent-level operations, we add
three keywords Aevent, Astep, and Aupdate (mir-
roring the agent-level rule names) that allow
annotations with a situation value function, i.e.
Aevent[θ1], Astep[θ2], and Aupdate[θ3]. The syntax
is shown as part of agent configurations in lines
20 to 22 in Listing 2. Each situation value func-
tion describes the relative weight to selecting each
agent-level rule. As usual, the resulting proba-
bilities to select each agent-level rule are then
determined through normalisation.

3.3.2 Selection Functions

We now describe how the selection functions are
constructed given the situation value functions.
We give the mapping for plan selection as an
example, and the others follow similarly. We define

app(B,∆) = {P ∈ ∆ | P = φ : Q, B |= φ}

as a filter that chooses the applicable plans given
a specific belief set B and set of plans ∆. Here we
use Q to indicate a plan-body. The plan selection
function is then defined as

Spp (B,∆) =

{
µ if app(B,∆) ̸= ∅
[⊥ 7→ 1] otherwise

µ =

[
P1 7→

θ1(B)
N

. . . , Pn 7→
θn(B)
N

,⊥ 7→ 0

]
with Pi∈{1,...,n} ∈ app(B,∆) and N =

∑n
i=1 θi(B).

That is, for a non-empty set of applicable plans
we normalise the situation values into the range
0 ≤ p ≤ 1 allowing them to be used as a probabil-
ity distribution. If there are no applicable plans,
or the plan set is empty, we select ⊥ with proba-
bility 1, allowing different Can rules (e.g. failure
recovery ▷⊥ in Fig. 2b) to apply.

3.3.3 Action Outcomes

Action outcomes are statically defined based on
estimates of environmental effects at design time.

We attach the static situation value functions, i.e.
values, to each effect using the follwing syntax:

act = φ← [⟨ϕ−1 , ϕ
+
1 ⟩[θ1], . . . , ⟨ϕ−n , ϕ+n ⟩[θn]]

As before, the specific probabilities are determined
through normalisation.

Finally, we note that assigning static values
to action outcomes has been considered exten-
sively in the planning literature and has led
to, e.g. probabilistic planning domain definition
languages (PPDDL) [23], that consider multi-
ple outcomes with associated probabilities (e.g.
estimated from historical data).

4 Evaluation

We demonstrate, using a smart manufacturing ex-
ample and existing probabilistic model checking
tools, how to quantitatively analyse BDI agent
programs. Specifically, we evaluate our probabilis-
tic plan/event/intention selection against common
strategies such as always selecting the most pre-
ferred plan. The results are promising, with the in-
tention completion probability using probabilistic
distributions being 97% higher than some strictly
ordered plan and intention selection strategies.

We build on previous quantitative analysis,
for the same example [20], by extending the ex-
periments to include new agent-level operation
selection strategies.

The models are freely available in BigraphER
format online1. For quantitative analysis we use
PRISM to check properties (through bigraph pat-
terns) by importing the labelled DTMC produced
by BigraphER. While we only give details of a sin-
gle case study, users of the executable semantics
can employ BigraphER to “run” models with dif-
ferent settings, e.g. external events, plan libraries,
customised situation value functions.

4.1 Smart Manufacturing Example

We consider a robotic packaging scenario, ex-
tended from [24], where a robot packs products
and moves them to a storage area. Products have
specific temperatures and must be packed in a
suitable wrapping bag to prevent decay. If the

1https://bitbucket.org/uog-bigraph/
sosym-sefm21-special-issues/src/master/

https://bitbucket.org/uog-bigraph/sosym-sefm21-special-issues/src/master/
https://bitbucket.org/uog-bigraph/sosym-sefm21-special-issues/src/master/
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product stays on the production line too long, the
temperature increases and it is spoiled and lost.
Given multiple waiting products (i.e. events to
trigger the operation) on the production line, the
robot must choose which to handle first (event se-
lection). Once chosen, the robot must then decide
which wrapping to use: either premium or stan-
dard (plan selection). Premium wrapping is ex-
pensive but always stops product decay and never
breaks. On the other hand, standard wrapping
is cheap, only works if the product temperature
remains low, and has a risk of breaking (a neg-
ative action outcome). The (partially-executed)
plan-bodies for the selected plans become inten-
tions that handle the products. Among all current
intentions, the agent also needs to decide which
intention to progress further, for example, moving
to the storage once finishing wrapping (intention
selection)

Complexity arises from the following factors:
(1) losses avoided depend on when a product is
packed, (2) when a product is packed determines
which wrappings are applicable; earlier packing
means cheaper bags, (3) cheaper wrappings in-
troduce uncertainty as they may break. A formal
model of the agent system allows us to quantita-
tively reason about the robot’s behaviours under
this uncertainty and use these results as evidence,
e.g. for regulatory certification. Furthermore, it
can help improve the design of the robot, e.g. using
a standard wrapping as often possible but within
tolerable failure threshold.

4.2 Agent Design

We consider a simplified scenario with two prod-
ucts that are initially present on the production
line, i.e. there are no dynamic events. The agent
program is given in Listing 2 and we assume be-
liefs are in a propositional logic with numerical
comparisons.

Products awaiting processing are captured by
external events shown in lines 9 and 10, e.g.
e product1 with its situation value function θ13
(explained below). The agent responds to the
events using a declarative goal on line 2 that
states it wants to achieve the state success1

(i.e. wrapped and moved) through addressing the
(internal) event e process product1; failing if
failure1 (i.e. dropped or decayed) ever becomes

true. Two plans (in lines 3 and 4), which repre-
sent the different wrappings, can handle the event
e process product1 each with different situation
value functions. Event e product2 is handled in a
similar way (in line 5–7).

The description of actions are given from lines
12 to 19. There is a probabilistic outcome for the
move product standard1 action in line 13, such
that it has a 10% chance of causing failure1

by dropping the product accidentally, else it suc-
ceeds (adding success1 to the beliefs), whereas
move product premium1 action always succeeds
in line 15. In Section 4.5 we investigate how vary-
ing action success probability effects the overall
outcomes in the dedicated section.

To construct probabilistic distributions, we
encode the (discrete) temporal information for
progress and deadline. Progress determines how
far (in terms of agent steps) an agent is through
an intention, while deadline determines how many
steps we can make before the product spoils. Mir-
roring implementations, we update timings in the
background, without executing an explicit action.
In this case, the progress increases whenever a
specific intention is stepped, whereas deadline de-
creases after a step of any intention. That is, we
use agent time (i.e. agent steps which is implicit
in the semantics) rather than real-time (as this
requires a secondary clock) to remain agnostic to
the actual time required for each agent step which
can be difficult to anticipate at design stage due
to the delay or variation in real process deployed
on the hardware.

Figure 4a gives the specifications for quantita-
tive reasoning. A short commentary is as follows.
de1 = 10 and de2 = 14 are the initial deadlines of
two external events: e product1 and e product2.
The precondition φ11 = de1 ≥ 3 indicates whether
de1 is greater than or equal to 3. The situation
value function θ11 = ⟨1, {φ11, 1}, sum⟩ indicates
that if φ11 holds, then θ11(φ11) = 1 + 1 = 2.
The situation value description θ13 for the ex-
ternal event e product1 is defined as a function
(de1 + pr1)

−3. Intuitively, if de1 + pr1 is smaller
relative to other products, then it has been pro-
gressed less and the deadline is approaching, so
it is more urgent. Finally, we have the situation
value functions for the agent-level operations so
that we ensure the highest weighting for the rule
Aevent when pr1 + pr2 is small (i.e. relatively low
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Listing (2) Agent design of a smart manufacturing example.

1 // Plans
2 e_product1 : true ← goal(success1 ,e_process_product1 ,failure1)
3 e_process_product1 : φ11 ← wrap_standard1; move_product_standard1 [θ11]
4 e_process_product1 : φ12 ← wrap_premium1; move_product_premium1 [θ12]
5 e_product2 : true ← goal(success2 ,e_process_product2 ,failure2)
6 e_process_product2 : φ21 ← wrap_standard2; move_product_standard2 [θ21]
7 e_process_product2 : φ22 ← wrap_premium2; move_product_premium2 [θ22]
8 // External events
9 e_product1 [θ13]

10 e_product2 [θ23]
11 // Action descriptions

12 wrap_standard1 = true ← [⟨ϕ−1 = ∅, ϕ+
1 = {product 1 packed}⟩ 7→ 1]

13 move_product_standard1 = product_1_packed ← [⟨ϕ−2 = ∅, ϕ+
2 = {success1}⟩ 7→ 0.9,

14 wrap_premium1 = true ← [⟨ϕ−1 = ∅, ϕ+
1 = {product 1 packed}⟩ 7→ 1]

15 move_product_premium1 = product_1_packed ← [⟨ϕ−2 = ∅, ϕ+
2 = {success1}⟩ 7→ 1]

16 wrap_standard2 = true ← [⟨ϕ−3 = ∅, ϕ+
3 = {product 2 packed}⟩ 7→ 1]

17 move_product_standard2 = product_2_packed ←
[⟨ϕ−4 = ∅, ϕ+

4 = {success2}⟩ 7→ 0.9, ⟨ϕ−4 = ∅, ϕ+
4 = {failure2}⟩ 7→ 0.1]

18 wrap_premium2 = true ← [⟨ϕ−3 = ∅, ϕ+
3 = {product 2 packed}⟩ 7→ 1]

19 move_product_premium2 = product_2_packed ← [⟨ϕ−4 = ∅, ϕ+
4 = {success1}⟩ 7→ 1]

20 Aevent [θ31]
21 Astep [θ32]
22 Aupdate [θ33]

Initial Deadlines Pre-conditions Situation Value Descriptions

de1 = 10 φx1 = dex ≥ 3 θx1 = {1, {φx1, 1}, sum}
de2 = 14 φx2 = dex ≥ 0 θx2 = {1, {φx3, 1}, sum}

φx3 = 3 ≥ dex ≥ 0 θx3 = (dex + prx)
−3

θ3y = (4− y) · (pr1 + pr2)
y

(a) Situation value functions where x ∈ {1, 2} and y ∈ {1, 2, 3}. dei is the deadline for product i.

Figure 4: Agent design employing the syntax of Section 2.1 with the situation value functions.

overall progress). When pr1 + pr2 gets bigger, the
power of y in (4 − y) · (pr1 + pr2)

y ensures the
rule Astep and Aupdate to have a higher weight
than Aevent, and Aupdate higher than Astep as
well. Importantly, all of deadline values and the
choice of situation value descriptions are made by
the agent designer, i.e. (de1 + pr1)

−3 was their
choice. Our approach enables the analysis of alter-
native functions quantitatively, before deploying
the agent.

4.3 Selection Strategies

We experiment with multiple selection strate-
gies used by the agent (in Listing 2), including:
agent-level operation selection, event/intention se-
lection, and plan selection, which are standard in
work e.g. [7]. A summary is given in Table 1,
and we are particularly interested in selection

strategies that use dynamic distributions based on
domain-specific information (excluding uniform
random selection strategies). A short commentary
for each selection mechanism is given next.

4.3.1 Agent-level Operation Selection
Strategies

At each agent step an agent can either: in-
corporate any pending external events through
Can rule Aevent, select an intention and exe-
cute a step through Can rule Astep (according
to intention-level semantics), or remove unpro-
gressable intentions from intention set using rule
Aupdate.

Here, agent-level operation selection strate-
gies control which agent-level operation will be
applied, e.g. select a new event or progress an
existing intention. In our smart manufacturing
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Table 1: Selection strategies.

Agent-level Operation Se-
lection Strategies (AOSS)

Event and Intention Selec-
tion Strategies (EISS)

Plan Selection Strategies
(PSS)

SIP: Select In Priority SMU: Select Most Urgent SMP: Select Most Preferred
ProD: Progress Distribution FIFO: First-In-First-Out PreD: Preference Distribution

RR: Round-Robin
UD: Urgency Distribution
CUD: Conditioned Urgency
Distribution
OCUD: Optimised Condi-
tioned Urgency Distribution

example, this affects when a waiting product is
initially handled, and how long it takes to pack
a product. We use two different selection strate-
gies: the SIP (Select In Priority) strategy selects
agent-level operations in a priority order: pend-
ing events are adopted first, then intentions are
progressed, finally when there are no events/inten-
tions it finally removes them from the intention
set. The ProD (Progress Distribution) strategy
instead selects an agent-level operation from a
dynamic probability distribution based on the
current progress of the agent. Initially we bias to-
wards adopting events (to give the agent work
to do), and, as the agent progresses, we increase
the probability of progressing intentions instead
(to finish tasks before becoming overwhelmed). Fi-
nally, we garbage collect unprogressable intentions
near the end of a run (when there is less work to
do). The functions to compute this distribution
are in lines 20–22 in Listing 2.

4.3.2 Event/Intention and Plan
Selection Strategies

For event and intention selection, the SMU (Se-
lect Most Urgent) strategy always selects the
intention closest to the deadline. FIFO (First-
In-First-Out) and RR (Round-Robin) are fixed
orders where the former always selects the in-
tention which arrives first and the latter selects
each intention in turn. The UD (Urgency Distri-
bution) strategy selects an intention by sampling
from a distribution where situation value function
is given by (de+pr)−3. Unlike the UD, the CUD
(Conditioned Urgency Distribution) only deems
an intention urgent if the product is not packed or
spoiled. As such, it will not select an intention in

which the product is packed when there is another
intention whose product is not packed. Finally,
OCUD (Optimised Conditioned Urgency Distri-
bution) selects an intention similarly to CUD but
the situation value description is revised to be
|de + pr − steps expected|−3, which accounts for
the steps remaining to pack a product (to avoid
spoilage).

For plan selection, SMP always selects the
highest weighted plan, while PreD selects a plan
by sampling distribution based on preference.

4.4 Encoding in Bigraphs

In this section we show how we encode agent
design, probabilistic agent semantics, different
strategies, and logical predicates in bigraphs. We
begin with a brief introduction to bigraphs.

4.4.1 Bigraphs

Bigraphs are a universal graph-based modelling
formalism introduced by Milner [25], with condi-
tional, priority, parameterised, and probabilistic
extensions [18, 26]. They have an algebraic and
diagrammatic form, we employ mainly the latter
here.

An example bigraph is in Fig. 5a. It consists
of a set of entities, e.g. A, B, drawn as (coloured)
shapes2. Entities can be related through nesting
(to arbitrary depth), e.g. the B entities inside A.
Entities can also be related through hyperlinks
(permitting any-to-any links rather than just one-
to-one as is usual), such as the green link between
the B and C entities. Entities have a fixed number

2We often use the shape to denote the entity type to reduce
the need for excessive labelling.
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B B C

DA

x

(a)

B C

A

x

B CA

x

▶

(b)

B B C

A D

x

(c)

Figure 5: (a) example bigraph, (b) reaction rule,
and (c) result after applying (b) to (a).

of links, called the arity, although a link can be dis-
connected as shown by the C entity in Fig. 5c. The
name x means this link is open and can connect
to other (unspecified) parts of the system. Like-
wise, the filled grey rectangles denote that other
(unspecified) entities can exist here. Dashed un-
filled rectangles are regions that represent parallel
parts of the system: that is, these two regions can,
but do not have to, share a single parent in some
larger system model.

A bigraph represents a system at a single point
in time. To allow models to evolve over time we
can specify reaction rules of the form L ▶R,
where L and R are bigraphs. Intuitively, a bigraph
B evolves to B′ by matching and rewriting an oc-
currence of L in B with R. Such a reaction is
indicated with B ▷B′. Given an initial bigraph
and set of reaction rules, we can derive a transition
system capturing all possible behaviours.

An example reaction rule is in Fig. 5b, which
models the disconnection of B and C and also
removes the nesting of B in A. The filled grey
rectangles are called sites and represent parts of
the model, below some entity, that have been ab-
stracted away. That is, it allows matching on an A
with multiple children. Without the site, the rule
would only match when A had a single B child.

Similarly, the use of the open name x means that
the B can be connected not just to the C but also
elsewhere, in this case the other B. As B remains
connected to x the link remains connected in the
result (likewise if it had been C connected to x
then it would remain connected in the result). Re-
action rules can affect both linking and placement,
as shown here with the B entity also moving next
to C.

Priority rewriting [26] permits an ordering
on rules, defined by specifying classes of rules
and an ordering between the classes. A reaction
of lower priority can be applied only when no
reaction of higher priority is applicable. Proba-
bilistic bigraphs [18] permit rules be weighted, e.g.

t1 = L1
2
▶R1 and t2 = L2

1
▶R2, such that

if both (and only) t1 and t2 are applicable then
t1 is twice as likely to apply as t2. We allow rule
priorities, where a reaction of lower priority can
be applied only if no reaction of higher priority is
applicable. We write {r1} < {r2} to denote when
sets of rules have higher priority.

The encoding of probabilistic Can in proba-
bilistic bigraphs follows directly from the encoding
for the non-probabilistic versions [19]. For exam-
ple, the encoding of agent design remains the same
while there is a syntax change from --> to -[1]->
in BigaphER for any deterministic intention-level
semantics rule that is assigned with default prob-
ability 1. Additional rules are required, and some
rules must be updated, to support different se-
lection strategies and we describe these changes
in the coming section. Importantly, the different
strategies define a family of related models rather
than a single model with different strategy selec-
tion. This means the same rule might appear dif-
ferently, e.g. with different parameters, depending
on the specific strategies we are implementing.

Notation

We use fonts to distinguish between Can seman-
tics rules, e.g. Aevent, bigraph reaction rules, e.g.
choose a event, and bigraph entities, e.g. Aevent.

4.4.2 Encoding Agent-level Operation
Selection Strategies

To encode the selection of agent-level operation,
we add the following new reaction rules:
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{choose a update, choose a step,

choose a event}

These reaction rules determine the next agent-
level operation e.g. if choose a event (illustrated
in Fig. 6) is applied, then the agent-level rule
Aevent is applied at the next step.

Priorities can be used to implement selection
strategies such as SIP, which selects agent oper-
ations in a priority order. That is, we can assign
rule priorities:

{choose a update} < {choose a step}
< {choose a event}

To encode the ProD strategy, which selects
an agent-level operation rule from a dynamic dis-
tribution, we employ parameterised reactions that
define a family of rules. For example, reaction
r(k) generates a set of rules r(k1), r(k2), . . . for all
values of k. We then define the ProD strategy by:

{choose a event(pr1, pr2),

choose a step(pr1, pr2),

choose a update(pr1, pr2)}

where pr1 and pr2 denote the steps being applied
to events e product1 and e product2, respec-
tively. Recall in Section 4.3.1, we have the situa-
tion value of selecting each agent-level rule (using
the same syntax as lines 20 - 22 in Listing 2):

Aevent[θ1], Astep[θ2], Aupdate[θ3]

where the situation value function θi is (4 − i) ·
(pr1 + pr2)

i where mi is a positive number, i ∈
{1, 2, 3}. Therefore, reaction rule choose a event

has weight 3 · (pr1+pr2), choose a step 2 · (pr1+
pr2)

2, and choose a update (pr1+pr2)
3. As an ex-

ample, reaction rule choose a event(pr1, pr2) is
illustrated in Fig. 8. This is a modification of Fig. 6
including the progress step of two products.

The weights are normalised (automatically by
BigraphER) based on which reaction rules are ap-
plicable to a given (bigraphical encoding of) agent
state. For example, if pr1 = 0 (e product1 is
not adopted in the intention set) and pr2 = 1
(e product2 is adopted in the intention set and
ready for being progressed), both choose a event

and choose a event are applicable. Then we
have the weight of rule choose a event is 3 and
choose a step is 2. After normalisation, the final
probability of selecting corresponding Can rule
Aevent is 0.6, while the probability of selecting the
corresponding Astep is 0.4. Such a distribution in-
dicates that at this early stage, the agent is more
likely to adopt any pending event over progressing
the existing intention. Importantly, these reaction
rules are all in the same priority class (in the bi-
graph models) meaning any could be applied at
each step, and the probabilities indicate relative
likelihoods.

4.4.3 Encoding Event/Intention and
Plan Selection Strategies

To encode the event/intention selection strategies,
we modify the reaction rules for corresponding to
agent-level rules of Aevent, Astep, and Aupdate from
our previous work [19].

The first event/intention selection strategy is
to always select the most urgent (SMU). To
encode this, we can continue to employ the pa-
rameterised reaction. Unlike using parameters for
obtaining the weight in ProD previously, param-
eter is used to control whether the first event or
its related intention should be selected. For ex-
ample, the parameterised reaction rule a event(1)
only select the e product1, i.e. parameter 1 cor-
responds to the product identifier number. Since
we know, in Listing 2, that the deadline of
e product1 is nearer (hence more urgent) than
e product2 We can have the following priority to
implement the SMU strategy:

{a event(2), a step(2), a update(2)}
< {a event(1), a step(1), a update(1)}

Similarly, we can have the following priority
reactions for First-In-First-Out (FIFO) event/in-
tention selection strategy under the assumption
that e product2 arrives earlier than e product1

(otherwise it will be same as SMU):

{a event(1), a step(1), a update(1)}
< {a event(2), a step(2), a update(2)}
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EventBeliefs

Desires x

Aevent
Event

Desires
Beliefs

x

▶

Figure 6: Reaction rule choose a event.

Aevent
IntentionsEvent

Desires
Beliefs

x

EventBeliefs

Intent

Desires

Intentions
x

▶

Figure 7: Reaction rule a event adds an event to the intention set if it matches token Aevent. The
dashed arrows (called the instantiation map in bigraphs) forces the site in the right hand side to be the
copy of the site on the left.

To encode the Round-Robin (RR) strategy, we
also use some auxiliary token to control the or-
der of selection. For instance, we have a step to
select an intention which is linked with an entity
Pointer (a token showing that now it should be
progressed). In our example with two intentions
(corresponding to two products), the token Pointer
will be moved to one intention after the other
one is processed one step (through rule a step).
Illustrated in Fig. 9, the execution of an inten-
tion linked through x1 with an event labelled with
Pointer will result in moving the Pointer to another
event (linked through x2) and vice versa.

To encode urgency distribution (UD), we have
the following set of parameterised reactions for
agent-level rules:

{a event(pr, de), a step(pr, de),

a update(pr, de)}

where pr and de denote how many steps have been
progressed and are left for an event or its related
intention. Each rule has the weight of 1/(pr+de)3

(according to Section 4.3.2).

Conditioned urgency distribution (CUD) is
same as UD, but only deems an intention urgent
if the product is not packed or spoiled. To en-
code it, we employ conditional bigraphs [26] that
allow application conditions to specify contextual
requirements within the bigraphical system. As
such, we only need to add the contextual require-
ment to reaction rule a step(pr, de) (illustrated
in Fig. 10).

The optimised conditioned urgency distri-
bution (OCUD) is the same as (CUD) but
with weight |de + pr − steps expected|−3, where
step expected accounts for the number of steps
that is expected to pack a product (to avoid
spoilage). This value can be obtained through a
simulation on one single product in BigraphER.

Finally, the similar priority (resp. parameter)
approach can be used to encode the plan selection
strategy SMP which selects the highest weighted
plan and ProD which selects a plan by sampling
distribution based on preference.
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Progress(pr1) Progress(pr2)Beliefs

Event Event

Desires
x2x1

Aevent Progress(pr1) Progress(pr2)

Event EventBeliefs

Desires x2x1

θ1 ▶

Figure 8: Reaction rule choose a event(pr1, pr2) where we use parameterised entities, e.g. Progress(pr1),
to represent the steps of an event which has been progressed and θ1 = 3 · (pr1 + pr2).

Pointer Astep Intent1 Intent2

IntentionsBeliefs

x1 x2

Pointer Intent1 Intent2

Beliefs Intentions

x1 x2

▶

Figure 9: Reaction rule a step encodes Round-Robin intention selection via a token entity Pointer that
moves after each step. Entity Intent, highlighted in red, denotes that this intention will be progressed
through intention-level rules.

4.4.4 Encoding Probabilistic Action
Outcomes

To encode probabilistic outcomes, we extend
the representation of action with a set of
outcomes. Each outcome is pre-assigned with
a parameterised bigraph entity EffWeight(n).
Figure 11 shows the bigraph representation of
action move product standard1 from line 13
in Listing 2. To execute an action with probabilis-
tic outcomes, we can encode intention-level rule
actp (in Section 3.2.1) as a parameterised reac-
tion illustrated in Fig. 12 with transition weight
n based on the given EffWeight(n) . This is then
normalised to a probability by BigraphER.

4.4.5 Intention Success and Failure

Can does not indicate whether an intention has
completed successfully or with a failure. This is,
Aupdate (Fig. 2a) removes a completed intention
from the intention base, regardless if it had com-
pleted successfully (was the nil program) or if it
could not make any further progress (failed). Fol-
lowing previous work [19] (which encodes standard
Can semantics), we overcome this limitation in
two ways: 1. we add identifiers to each intention
using the event name that generated the intention
(not possible in Can semantics); 2. We encode the

Can rule Aupdate as two different bigraph reac-
tion rules: one handling a successfully completed
intention, and the other a failed intention. This al-
lows the rules to add additional entities to track
intention state (either Success or Failure).

To add the labels to output DTMC states, we
use two bigraph patterns, for success and failure,
as shown in in Fig. 13. Once states are labelled,
can use these in an eventually PCTL formulae for
PRISM. This gives a general approach to reason
about each intention individually, or a combina-
tion of intentions (through conjugation). For ex-
ample, we use the formula P=?F[S(1)∧S(2)] in our
packing use-case, which computes the probability
that both products are processed successfully.

4.5 Analysis

Table 2 gives the probability of processing the
products successfully or with a failure, under
different agent-level operation selection, and even-
t/intention selection strategies, with SMP chosen
for plan selection. We use the shorthand (X1,Y2)
to stand for P=?F[X(1) ∧ Y (2)] where X and Y
are drawn from {S, F} denoting success or failure.

We see the necessity for good event/intention
selection, with the first three combinations never
successfully processing both products, i.e. (S1,
S2). Using UD, it starts to have limited success
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Astep Deadline(de) Progress(pr) Intent

IntentionsBeliefs

x

Deadline(de) Progress(pr) Intent

Beliefs Intentions

x

if ⟨−,
Packed

, ↓⟩, ⟨−,Spoiled, ↓⟩

θ
▶

Figure 10: Conditional reaction rule a step(pr, de) for CUD strategy with θ = 1/(pr+de)3. The symbol
− indicates a negative condition i.e. that the bigraph of the condition should not appear/be matched.
Packed and Spoiled are bigraphs representing the unwanted product statues. The ↓ means we do not want
these states to appear in (any of) the sites. The red highlighted Intent on the right hand side means this
intention will be progressed by further rules.

EffWeight(1) Del Failure1 EffWeight(9) Del Success1 Product 1 packed

Add Add Pre

Effect Effect

Act

Figure 11: Bigraph representation of actions (Act) with a set of outcomes (Effect) each one containing
a parameterised entity (EffWeight(n)) indicating its weight.

(p = 0.06 for SIP and p = 0.05 for ProD). With
UD, the chance of succeeding with product 1 in-
creases to more than 50% whereas the failure of
product 2 is nearly 72%. This indicates the weight-
ing function is skewed toward product 1 at the
detriment of product 2, leading to the improved
CUD strategy. This is a key advantage of our ap-
proach: discovering potential pitfalls and trialling
new strategies without changing the underlying
agent programs and semantics. Similar reasoning,
that now product 2 was succeeding more often un-
der strategy OCUD being trialled with extremely
good success rates, e.g. p = 0.97. We should never
expect the probability of (S1, S2) = 1 due to the
action outcome uncertainty (e.g. the wrapping bag
breaks).

We also see a better performance of SIP
strategy for agent-level operation selection. For
example, the probability of successfully process-
ing both products with the last three event/in-
tention strategies under ProD is consistently
lower (though by margin) than those under SIP.
In general, any success rate improvement, even
marginally, should be used as it can result in
great savings—particularly in large scale pro-
cesses, e.g. an expected two-product successful

behaviour tending to occur 97% of the time in-
stead of 90%. It shows that it is better to get
the event adoption done in the beginning of the
agent operation, updating unprogressable inten-
tion in the end, and the usual intention progress
in the middle. In particular, ProD has a signifi-
cantly detrimental effect when havingRR for plan
selection, with p = 0.8 for (S1, S2). The reason
is that under ProD the agent may still continue
to progress the same event just after it has been
adopted, or remove an unprogressable intention
just after progressing it. Both of the situations can
lead to the other product being left there too long
and becoming spoiled before it needs to be packed.
Interestingly, agent-level operation selection seems
to make no difference for event/intention selection
strategies (i.e. SMU and FIFO).

Table 3 gives the probability of processing the
products either successfully or with a failure, un-
der different event/intention selection strategies
and plan selection strategies, but with SIP for
agent-level operation selection listed in Table 1. In
this example, we find that plan selection has lim-
ited effect compared to event/intention selection,
but nevertheless positive effects, which is key to
this application. This itself is a valuable insight,
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EffWeight(n) Del AddBeliefs

Effect

Act

NilDel Add

Beliefs

n
▶

Figure 12: Bigraph rule for actionp executing an action with an effect having the parameterised entity
(EffWeight(n)). The dashed arrows (called the instantiation map in bigraphs) forces the site in the right
hand side to be the copy of the site on the left. The green circle stands the bigraph of the applicability of
pre-condition of this action and the red highlighted entity Act implies that this action is to be executed.

Table 2: Probability of (product 1, product 2) completing successfully/with failure for different agent-
level operation selection and event/intention selection strategies using the SMP (Select Most Prefered)
plan selection. Remaining abbreviations are in Table 1

EISS
SMU FIFO RR

A
O
S
S

S
I
P

(S1,S2)
0

(S1,F2)
0.9

(S1,S2)
0

(S1,F2)
0

(S1,S2)
0

(S1,F2)
0

(F1,S2)
0

(F1, F2)
0.1

(F1,S2)
0.9

(F1,F2)
0.1

(F1,S2)
1

(F1,F2)
0

P
ro
D

(S1,S2)
0

(S1,F2)
0.9

(S1,S2)
0

(S1,F2)
0

(S1,S2)
0

(S1,F2)
0.1

(F1,S2)
0

(F1,F2)
0.1

(F1,S2)
0.9

(F1,F2)
0.1

(F1,S2)
0.1

(F1,F2)
0.8

UD CUD OCUD

A
O
S
S

S
I
P

(S1,S2)
0.06

(S1,F2)
0.45

(S1,S2)
0.51

(S1,F2)
0

(S1,S2)
0.97

(S1,F2)
0

(F1,S2)
0.22

(F1,F2)
0.27

(F1,S2)
0.48

(F1,F2)
0.01

(F1,S2)
0.03

(F1,F2)
0

P
ro
D

(S1,S2)
0.05

(S1,F2)
0.47

(S1,S2)
0.48

(S1,F2)
0.04

(S1,S2)
0.9

(S1,F2)
0.05

(F1,S2)
0.17

(F1,F2)
0.31

(F1,S2)
0.46

(F1,F2)
0.02

(F1,S2)
0.04

(F1,F2)
0.01

and given the complexity of agent behaviours,
determining this expected probability precisely,
without such a model, would be difficult. In par-
ticular, we can see that when the event/intention
selection is in a one-by-one manner, selecting plans

from a dynamic distribution is much more use-
ful, e.g. an expected two-product failure behaviour
tending to occur 7% of the time instead of 10%.

The effects of different action outcomes are
shown in Figure 14 where the probability of stan-
dard wrapping failing is increased from 10% to
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Figure 13: Bigraph patterns for checking in-
tention success and failure. (a) S(i): product i
completes successfully. (b) F (i): product i com-
pletes with failure.

90% for three strategy pairs: (SIP, SMU, PreD),
(SIP, RR, PreD), and (SIP, OCUD, PreD)

We can see that negative action outcomes have
a much larger effect on strictly ordered intention
selection (SMU), e.g. the probability of (S1,F2)
decreases from over 90% to below 40%. Mean-
while, (SIP, OCUD, PreD) is more robust to
action outcome changes. For example, the proba-
bility of (S1, S2) in it has a minor decrease of no
more than 20%. This is due to increased interleav-
ing of these two intentions, rendering the standard
wrapping inapplicable more often. In particular,
in (SIP, RR, PreD), the strategy of round-robin
renders the standard wrapping inapplicable at all
times when handling product 2. As such, the prob-
ability changes of standard wrapping failing has
no impact to the final result in this case.

5 Discussion

We reflect on the insights gained by constructing a
probabilistic extension of Can language, including
the process of building bigraph models. We detail
our first-hand experience of the value and limits of
the bigraph approach applied to agent languages
and their policies, which is not included in our
previous work e.g. [20].

By building on an existing encoding of Can
in bigraphs [19], much of the probabilistic exten-
sion required limited effort. For example, most

(deterministic) Can semantics rules are modi-
fied to be probabilistic rules with a probability
1. For bigraphs, this requires the change of a

reaction rule from L ▶R to L
1
▶R. The de-

sign of each agent (e.g. plan library) remains
unchanged. This is because we focus on proba-
bilistic behaviours rather than the probabilistic
knowledge (e.g. probabilistic belief bases [27] that
we detail in Section 6). Although it is promising
to analyse an agent with both probabilistic be-
haviours and knowledge, it remains a challenging
task in the context of verification given the com-
putational complexity of uncertainty theories and
their revision strategies. A feasible starting point
of this integration can be an executable encoding
of a belief base of a BDI agent in any form of
these uncertainties theory together with its revi-
sion strategies in bigraphs before the final step of
verification analysis, which we leave it as future
work.

A characteristic of Can is that the transition
rules can be given incrementally, i.e. a modular
operational semantics. In this case, the modular-
ity in Can separates how to evolve an intention
(i.e. the intention-level semantics) from how to
evolve the whole agent (i.e. the agent-level seman-
tics). This approach has its merits, for example,
we can easily extend or modify one side of the
semantics (e.g. the agent-level) without altering
the other one. As such, it allows us to separate
concerns (decreasing errors) efficiently in the mod-
elling plan/event/intention selection strategies. In
particular, such a modular operational semantics
turned out to be beneficial when analysing various
combination of these plan/event/intention selec-
tion strategies under different action outcomes
(seen in Section 4.5).

When modelling different plan/event/inten-
tion selection strategies, we found that BigraphER
provides expressive and highly flexible features to
construct these. For example, the priority classes
of BigraphER naturally supports ordered selection
strategies (e.g. First-In-First-Out) while condi-
tional rules allow fixed schedules (e.g. Round-
Robin) through auxiliary token entities. These
strategies are often domain-independent (regard-
less of agent designs) as they do not require the
details of specific intention to make a decision.
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Figure 14: Probability of reaching the final state (product 1, product 2) with increasing failure probability
in (SIP, SMU, PreD), (SIP, RR, PreD), and (SIP, OCUD, PreD).

The parameterised reaction rules in Bigra-
phER also play a key role in probabilistic selec-
tion (especially from dynamic distribution based
on run-time domain-specific information). These
probabilistic selection strategies are likely to be
domain-dependent as they require the domain-
specific knowledge, e.g. deadlines. In practice, we
often needed a set of new rules to capture some do-
main specific information updates. For example,
the temporal information of progress and dead-
line in smart manufacturing case are maintained
as separately: to increase the progress of an event
whenever either such an event or its related inten-
tion is stepped, whereas to decrease the deadline
of all events after an application of any agent-
level rule. Mirroring implementations, we update
timings in the background through applying in-
stantaneous reaction rules [15] on the bigraphs.
To write these new instantaneous reaction rules,
it is often sufficient to have some form of discrete
step update/manipulation rules. As these instan-
taneous rules do not show up in the resulting
transition system, it does not affect our analysis
on the agent behaviours, which is the focus of our
work. We also note that these temporal timings

are treated as agent steps which suffices in our
case (rather than real times). However, a domain-
specific mapping of real time of each agent step on
different agent programs can be specified.

Our modelling approach comes with some lim-
itations. Firstly, our approach does not naturally
support mixed strategies, e.g. starting with an or-
dered strategy before swapping to probabilistic
distribution. Modelling mixed strategies could be
possible by providing conditioned selection strate-
gies. In this approach, certain strategies are only
applicable if related conditions are held in the en-
vironment. To model this in bigraphs, we could
constrain strategies using pre-defined ranges of
agent-operation parameter steps, e.g. use strat-
egy x when deadline is less than 5. Secondly,
there is a growing amount of work employing
external advanced decision-making tools to solve
selection problems (which we detail Section 6).
Our approach cannot be compared directly with
complex external decision-making techniques as
advanced decision-making tools are often black-
box techniques that we can not easily derive a
discrete formal model for. For example, [28] for-
malises the intention selection problem in BDI
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Table 3: Probability of product 1, product 2 for the properties, e.g. (S1, S2) with different event/intention
selection strategies and plan selection strategies, and SIP (Select In Priority) for agent-level operation
selection given in Table 1.
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agents as a planning problem in the PDDL de-
scription language [29]. A possible way to compare
with selection strategies offered by this advanced
decision-making tools is to employ models at run-
time by taking model updates as inputs from
external decision-making tools. Finally, we do not
model costs/rewards, e.g. the price of the wrap-
ping bags in Section 4.2. Utilising costs/rewards,
we could perform multi-objective optimisation e.g.
achieving different success rates and robustness to
action outcomes while keeping the overall cost low.

Besides ensuring the agent model is correct, it
is important to make sure the model deals with
the right issue and helps ask the right questions.
Our computational models can help agent pro-
grammers understand the behaviours of the agent
they design before they are even employed. In
other words, these allow agent programmers to
do virtual “what if?” experiments—even chang-
ing the rules of how this detail operates—before
we try things out for real. For example, the agent
designer can use our models to understand the
potential consequences of choices of different se-
lection strategies quantitatively, which selection
strategy has a dominant effect regard to the task

completion in the given scenario, and how to pa-
rameterise the best probabilistic distribution, all
of which our approach supports and have demon-
strated in Section 4. As such, the designer can
have the quantitative assurance on the behaviours
of the agents which they programmed.

6 Related Work

Verifying BDI agents through model checking and
theorem proving has been well explored (seen in
survey [30]). For example, the work [31] (resp. [32])
applies the Java PathFinder model-checker (resps.
Isabelle/HOL proof assistant) to verify BDI pro-
grams in a non-deterministic fashion. Recent work
also started considering probabilistic verification
of BDI agents. The work [33] uses a two-stage
verification methods that first generates a model
through program model checking (of a system im-
plementation), and then converts this model to
PRISM input format for analysis. However, unlike
our focus on probabilistic extensions of the BDI
semantics itself, the BDI agent used in [33] does
not contain any probabilistic aspects. Instead, the
environment where the agent executes enables the
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probabilistic reasoning. Similarly, the work of [34]
facilitates probabilistic verification of BDI agents
by encoding them in PRISM. In this case, instead
of generating the model based on an implemen-
tation, they implement a significantly simplified
version of AgentSpeak directly in PRISM. The
simplifications deviate from realistic BDI agents,
e.g. enabling truly-concurrent intentions (and no
intention selection) and treating plan selection as
non-deterministic. Our approach faithfully mod-
elled the full Can semantics with various selection
strategies development support while still provid-
ing PRISM verification capabilities. One of the
closest work to us is perhaps the work [35] which
introduces probabilistic state transitions in BDI
agents. Same as us, they are motivated to capture
the situation such as “if an agent at state s1 exe-
cutes an action, then it transfers to state s2 with
probability 0.7, or transfers to state s3 with proba-
bility 0.3”, which is difficult to reason in standard
BDI agents. Unlike our work on the level of a
BDI programming language, however, their work
is to propose a modal logic system and proofs of
properties are obtained from the resulting deduc-
tion system. Notably, a main disadvantage of their
work is that the description with the probability is
restricted to the transition between current time
and the next time due to its next-time-like tempo-
ral operator to construct a proof system base on
the tableau method.

Besides BDI agents, quantitative verification
techniques have also applied to other types of
agent systems. For example, the work of [36]
considers uncertain communication channels be-
tween systems of interacting agents. For verifi-
cation the multi-agent system is transformed to
finite state Markov chains for establishing quanti-
tative temporal properties of the system. Similar
to our evaluation of plan/event/intention selection
strategies, the work of [37] provides a quantita-
tive assessment for a decentralised control policies
in multi-vehicle scenarios. Specifically they study
conflict resolution policies to ensure that a policy
never causes collisions under some mild assump-
tions on the initial conditions. For general agent-
based verification (which is beyond the scope of
this work), we refer to [38] for the interested
readers.

Works studying plan and intention selection
strategies have also been well investigated sepa-
rately within the BDI community. In fact, most

BDI platforms provide some forms of hooks that
allow the agent developers to control which plan
is adopted. For example, the plan selection func-
tion in [7] is a user-defined function to customise
plan/intention selection for a particular appli-
cation domain. Meanwhile, various plan selec-
tion strategies such as precedence-based selection
(e.g. preference) is also studied in [39] to select
more preferred plans (according to some domain-
specific plan characteristics).

Unlike plan selection to choose the “best”
means to achieve an event, the intention selec-
tion which decides about which intention is the
best to execute next often comes as how to man-
age interleaving. Therefore, it is possible that the
interleaving of steps in different intentions may
result in undesired outcomes such as overlooked
product left to be spoiled in our smart manufac-
turing scenario. To manage intention interleaving,
researchers tend to employ external tools to help
the agent to pursue multiple intentions in paral-
lel. For example, the work of [24] compiles agent
programs to TÆMS (Task Analysis, Environment
Modelling, and Simulation) framework to repre-
sent the coordination aspects of problems such as
“enables” and “hinders” relations between tasks.
A Design-To-Criteria scheduler is then used for
intention selection to determine the full set of
decisions that the agent needs to perform. The
work [40] applies the Single-Player Monte Carlo
Tree Search [41] to selects which intention to
progress at the current step. The work [28] showed
that many of the intention selection issues can be
modelled in planning domain definition language
(PDDL) [42] (the de-facto standard planning lan-
guage) and resolved through suitable planners
such as a modern highly efficient (online) plan-
ner [43]. In fact, an increasingly popular topic in
the BDI community is intention progression [44],
e.g. the Intention Progression Contest3.

However, the goal of these plan and inten-
tion selection studies above in BDI community
is to help the agent to make better decisions,
by modifying or replacing entirely the original
BDI reasoning, either through some extra book-
ing of domain-specific information or through
other advanced decision-making techniques. On

3https://sites.google.com/site/intentionprogression/home

https://sites.google.com/site/intentionprogression/home
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the contrary, the focus of our work (arguably com-
plementary to them at large) is to provide an
automated quantitative analysis of BDI agents un-
der different common selection strategies (though
excluding the strategies provided by the external
tool-based approach).

Existing work provides “what-if” analysis ca-
pability for BDI agents through simulation. For
example, [45, 46] proposes an evacuation model
using BDI agents and other network-oriented
modelling approaches (e.g. [47]). This model sim-
ulates crowd behaviour to evaluate the effects of
changing psychological and socio-cultural factor
parameters. While useful, simulations or experi-
ments only examine a subset of all the possible
behaviours of the given system. If the resulting
system is to be used in safety-critical areas, the
above approaches guarantee little about actual
system behaviour. Instead, we reason about sys-
tems through formal reasoning and verification,
analysing all the possible behaviours of the system
against pre-defined requirements.

There are many existing work on providing
probabilistic capacity to BDI agents for various
reasons. For example, the work [27] addressed the
uncertainty in the belief base of a BDI agent
e.g. due to sensor noise (80% the agent believes
a true and 20% the agent believes ¬a true). To
achieve so, they modelled the beliefs of an agent
as a set of epistemic states and each state can
use a distinct underlying uncertainty theory (e.g.
probability and possibilities probabilities) with
its own belief revision strategy. Similarly, it is
possible to use Bayesian Networks to represent
probabilistic knowledge in BDI agents [48]. Con-
trary to our approach in which probability comes
to model the transition of agent behaviours for
a quantitative behaviour analysis, their focus is
to provide a quantitative approach of represent-
ing the knowledge (e.g. probabilistic beliefs) of the
agent for, at best, standard agent qualitative test-
ing. In particular, we note that a plan selection
strategy has been proposed a BDI agent under
probabilistic beliefs in [49]. However, such a plan
selection strategy is abstract i.e. no actual im-
plementation and, importantly, its feasibility and
computational cost (e.g. tractability) remains un-
clear, in particular in context of practical formal
verification. The work [50] presents an imple-
mentation of the appraisal process of emotions

using an add-on probabilistic reasoning (specifi-
cally Bayesian networks) in BDI agents. According
to appraisal theory [51], the appraisal depends of
one’s goals and values, which can be represented
as BDI agents’ events and beliefs, and is calcu-
lated by Bayesian networks to estimate e.g. the
undesirability (a value) of being in a smashed state
(representing the emotion of fear) for a robot.

7 Future Work

Once we accept probabilistic reasoning inside
an agent, it quickly becomes apparent we could
consider an external uncertain environment. Cur-
rently, only some aspects of an uncertain envi-
ronment are addressed, i.e. interactions between
agent and environment can be probabilistic. For
example, the agent tries to open the door but
may fail to open it. However, the environment
may change itself due to e.g. natural phenomena
for example, 30% chance it will rain tomorrow.
We may need to assess whether the agent behaves
as required in all possible environmental changes.
The difficulty is to obtain a realistic environment
abstraction that can be integrated with existing
BDI semantics whilst avoiding state explosion due
to branching in both environment changes and
agent reasoning. We have previously considered
self-dynamic environments (without probabilistic
distribution) for BDI agents [52]. One way forward
is to extend this with probabilities and integrate
it with our new probabilistic semantics.

As discussed, BDI agents have several key de-
cisions to make when operating: which event to
handle first (event selection), and which inten-
tion to progress next (intention selection). Given
the number of decisions faced by an agent, we
may want to synthesise a strategy to determine
ahead-of-time the decisions an agent should make
e.g. to avoid the worst-case execution. Though we
cannot replicate some advanced decision-making
techniques e.g. from the planning community,
formal verification does offer some strategy syn-
thesis capabilities. For example, model checkers
can give a trace of evolution that makes some
reachability-related properties hold (e.g. some
goals are achieved). To allow this, instead of us-
ing pre-defined selection strategies (fixed, round-
robin, probabilistic choice), we can keep the non-
determinism explicit and ask a model checker for
a good strategy. This is our current ongoing work.
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In principle, our current framework can sup-
port reasoning about multi-agents naively: each
agent as a thread. Though feasible, we expect
the state space will very quickly increase and be
practically infeasible. A way forward is to en-
force a schedule in which an agent can progress.
Before we consider multi-agent settings, a fun-
damental question is “what are the interesting
properties of agent behaviours in a multi-agent
setting that we can obtain from analysing only a
single agent?” If these properties are related to
competition between these agents, then a game-
theoretical approach (e.g. in [53]) might be more
suitable than a full multi-agent setting.

BDI agents draw heavily from logic program-
ming, e.g. Prolog [54], and feature similar syntax
and semantics. Given the probabilistic extensions
to logic languages, e.g. Prolog [55], a comparative
study would allow research ideas to flow between
the probabilistic BDI agent and probabilistic logic
programming domains. We leave this investigation
as future work.

8 Conclusions

A quantitative evaluation and comparison frame-
work can aid design-time specification of agents
by allowing us to reason about agents that exhibit
probabilistic behaviours from uncertain or failed
actuators, and probabilistic decision policies.

We have extended the Can language—that
formalises the behaviour of a classical BDI agents
including advanced features such as failure re-
covery and declarative goals—to a probabilistic
setting, allowing both probabilistic action out-
comes and probabilistic selections, e.g. of plans.
The extended semantics is executable through an
encoding to probabilistic bigraphs, which enables
quantitative analysis using BigraphER and the
probabilistic model checker PRISM. Importantly,
this approach allows examination of the potential
consequences of different selection strategies.

Through a smart manufacturing example we
have shown that it is possible to reason about
different combinations of selection strategies, and
that probabilistic selection strategies can reduce
the impact of undesirable outcomes, compared
with ordered or fixed strategies. In this example,
we found that plan selection has limited effect
compared to intention selection, which is a valu-
able insight. In particular, due to the agent making

smarter intention selection choices, the impact of
action outcomes can be marginal—even when the
failure probabilities are large.
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Appendix

We provide the full set of probabilistic rules for
both agent (Fig. 15a) and intention-level seman-
tics (Fig. 15b) for Can in Fig. 15.
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(a) Probabilistic agent-level Can semantics.
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(b) Probabilistic intention-level Can semantics.

Figure 15: Probabilistic extension of Can semantics from [3].
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