Talk Outline	Background	Greedy Effects and cNAMPs	Conclusion & Future Work
		0000 000 00000	

Using Negotiation to Reduce Redundant Autonomous Mobile Program Movements

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

September 3, 2010

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Greedy Effects and cNAMPs 0000 000 00000	Conclusion & Future Work

Background

Autonomous Mobile Programs (AMPs)

Greedy Effects and cNAMPs

Greedy Effects AMP Greedy Effect Analysis cNAMPs

Conclusion & Future Work

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Autonomous Mobile Programs (AMPs)

AMPs are mobile agents

- aware of their resource needs;
- sensitive to the execution environment;
- periodically seek a better location.

- Been investigated using
 - Mobile languages (e.g. Java Voyager [DTM06]);
 - Simulation [CKPT09].

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

A (1) > A (1) > A

Talk Outline	Greedy Effects and cNAMPs ●000 ○000 ○0000	Conclusion & Future Work
Greedy Effects		

- are redundant movements:
 - locally optimal choice;
 - globally non-optimal choice.
- occur when AMPs rebalance after a termination or new AMPs start.
- are observed in other distributed systems.

Natalia Chechina, Peter King, and Phil Trinder

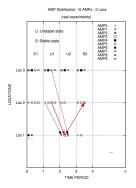
Dependable System Group, Heriot-Watt University, Edinburgh, UK

< 同 > < 三 >

Talk Outline	Greedy Effects and cNAMPs 0●00 000 00000	Conclusion & Future Work
Greedy Effects		

- Scenario 1: 25 AMPs on 15 locations with CPU speeds 3193 MHz (Loc1 – Loc5), 2167 MHz (Loc6 – Loc10) and 1793 MHz (Loc11 – Loc15).
- Scenario 2: 20 AMPs on 10 locations with CPU speeds 3193 MHz (Loc1 – Loc5), 2168 MHz (Loc6) and 1793 MHz (Loc7 – Loc10).
- Scenario 3. 10 AMPs on 3 locations with CPU speeds 3193 MHz.

Natalia Chechina, Peter King, and Phil Trinder


Dependable System Group, Heriot-Watt University, Edinburgh, UK

(日) (三)

Location Thrashing

Lack of information about other AMPs intending to move to the same location

Figure: Redundant rebalancing

Natalia Chechina, Peter King, and Phil Trinder

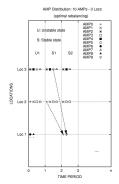
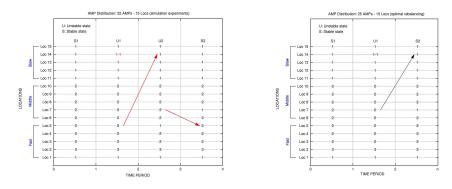



Figure: Optimal rebalancing Oqu

Greedy Effects

Location Blindness

Lack of information about the remaining execution time of other AMPs.

Figure: Redundant rebalancing

Figure: Optimal rebalancing

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline		Greedy Effects and cNAMPs ○○○○ ●○○ ○○○○○	Conclusion & Future Work
AMP Greedy Effect /	Analysis		

AMPs have a large number of redundant movements.

	Initial		Rebalancing		Large AMP	
	distribution		after an AMP		execution	
			termir	nation	time,	(sec)
Configuration	Mean	Mean	Mean	Mean		Stan-
	No.	time,	No.	time,	Mean	dard
	redun.	(sec)	redun.	(sec)		devi-
	moves		moves			ation
Scenario 1						
25 AMPs, 15 loc.	64	60.4	6	22.5	173.8	7.66
Scenario 2						
20 AMPs, 10 loc.	43	50.5	11	28.2	182.1	11.5
Scenario 3						
10 AMPs, 3 loc.	13	26.8	6	14.1	232.6	9.91

Natalia Chechina, Peter King, and Phil Trinder

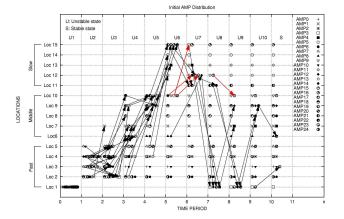
৫০০০ বিদ্যালয় বিদ্যা বিদ্যালয় বিদ্যালয় বিদ্যা বিদ্যা বিদ্যা বিদ্যা বিদ্যা বিদ্যা বিদ্যা বিদ্যা বিদ্য বিদ্য বিদ্যা বিদ্য বিদ্য

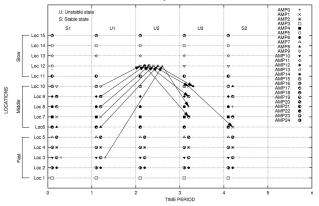
Background 0 Greedy Effects and cNAMPs

Conclusion & Future Work

AMP Greedy Effect Analysis

Types of Movements (Scenario 1)




Figure: Initial AMP distribution

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

AMP Greedy Effect Analysis

Types of Movements (Scenario 1)

Rebalancing after an AMP Termination

Figure: AMP rebalancing after termination

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Greedy Effects and cNAMPs ○○○○ ●○○○○	Conclusion & Future Work
cNAMPs		

Methods of AMP Negotiation

- Malicious
- ► Honest:
 - 1. queuing
 - 2. probabilistic
 - 3. relationship
 - 4. competitive.

Natalia Chechina, Peter King, and Phil Trinder

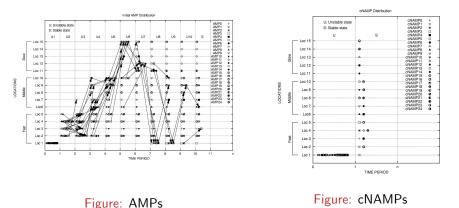
Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Greedy Effects and cNAMPs ○○○○ ○●○○○	Conclusion & Future Work
cNAMPs		

Negotiating AMPs

- cNAMPs are negotiating AMPs with a competitive scheme:
 - announce their intentions to move;
 - compete with each other for opportunity to transfer.
- Two values of load:
 - actual load;
 - committed load.
- cNAMPs only reduce location thrashing.

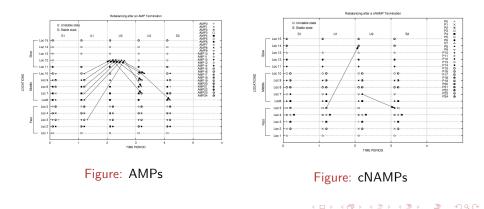
Natalia Chechina, Peter King, and Phil Trinder


Dependable System Group, Heriot-Watt University, Edinburgh, UK

cNAMPs

AMP and cNAMP Comparison (Scenario 1)

Initial distribution.



Natalia Chechina, Peter King, and Phil Trinder Dependable System Group, Heriot-Watt University, Edinburgh, UK

AMP and cNAMP Comparison (Scenario 1)

Rebalancing after an AMP/cNAMP termination.

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Background	Greedy Effects and cNAMPs	Conclusion & Future Work
		0000 000 0000●	

cNAMPs

cNAMPs make much fewer Redundant Movements

	Initial distribution		Rebalancing after an AMP/cNAMP		Large AMP/ cNAMP execution	
Configuration				mination	time, (sec)	
and type of		Mean		Mean	LIIII	e, (sec)
experiment	Time	number of	Time	number of	Mean	Standard
experiment	(sec)	redundant	(sec)	redundant	Wiedin	deviation
		movements		movements		
Scenario 1						
AMPs	60.4	64	22.5	6	173.8	7.66
cNAMPs	14.7	-	5.9	-	104.8	12.9
Reduction	4.11	64 moves	3.81	6 moves	1.65	
Scenario 2						
AMPs	50.5	43	28.2	11	182.1	11.5
cNAMPs	12.4	-	7.8	1	113.6	9.43
Reduction	4.07	43 moves	3.62	10 moves	1.6	

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Greedy Effects and cNAMPs 0000 000 00000	Conclusion & Future Work

Conclusion

- Identified two types of AMP greedy effect;
- Investigated extent of AMP greedy effect using simulation;
- Introduced the concept of negotiating AMPs (NAMPs);
- Reduced the greedy effect (cNAMPs).

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

< 同 > < 三 >

Talk Outline	Background	Greedy Effects and cNAMPs	Conclusion & Future Work
		0000 000 00000	

Future Work

- A mathematical analysis of location blindness on homogeneous and heterogeneous networks to estimate maximum number, and probability of, redundant movements [CKT10];
- Investigation of cNAMP behaviour on wide area networks.

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Greedy Effects and cNAMPs 0000 0000 00000	Conclusion & Future Work

Questions?

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

< ロ > < 回 > < 回 > < 回 > < 回 >

2

- Natalia Chechina, Peter King, and Phil Trinder. Complete experimental and theoretical analysis of greedy effects in autonomous mobility. Technical Report 0073, Heriot-Watt University, Edinburgh, UK. 2010.
- X. Y. Deng, P. W. Trinder, and G. J. Michaelson.
 Autonomous mobile programs.
 In *IAT '06*, pages 177–186, Washington, DC, USA, 2006. IEEE Computer Society.

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK