
The Design of
Scalable Distributed (SD)

Erlang

Natalia Chechina, Amir Ghaffari, Phil Trinder,
and RELEASE team

June 15, 2012

Design Approach

• Typical hardware architecture
• Scaling

• Persistent data structures
• In-memory data structures
• Computation

• Security

2

Typical architecture – 105 cores

3

Design Approach

• Typical hardware architecture
• Scaling

• Persistent data structures
• In-memory data structures
• Computation

• Security

4

Distributed Erlang

5

Scaling Computation
• Network Scalability

• All to all connections are not scalable onto
1000s of nodes

• Aim: Reduce connectivity

• Semi-explicit Placement
• Becomes not feasible for a programmer to

be aware of all nodes
• Aim: Automatic process placement in

groups of nodes

6

Design Principles

General:

• Working at Erlang level as far as possible

• Preserving the Erlang philosophy and • Preserving the Erlang philosophy and
programming idioms

• Minimal design changes

7

Design Principles

Reliable Scalability:

• Avoiding global sharing

• Avoiding explicit prescription• Avoiding explicit prescription

• Introducing an abstract notion of
communication architecture

• Keeping Erlang reliability model
unchanged as far as possible

8

Network Scalability
• Grouping nodes in Scalable groups (s_groups)

• transitivetransitivetransitivetransitive connections with nodes of the same
s_group

• nonnonnonnon----transitivetransitivetransitivetransitive connections with other nodes
• Types of s_groups:• Types of s_groups:

• Hierarchical
• OverlappingOverlappingOverlappingOverlapping
• Partition

• Using s_groups_groups_groups_group variables instead of globalglobalglobalglobal
variables: Var@Group

9

Creating an s_group

A: new_s_group(G1, [A, B, C]).A: new_s_group(G1, [A, B, C]).

10

Overlapping Groups &
Non-transitive Connections

C: new_s_group(G2, [C, D, E]).

11

Any to Any Connection

B: spawn(E, f).

12

s_group Functions (1)

• Creating a new s_group
new_s_group(S_GroupName, [Node]) -> true | {error, ErrorMsg}

• Deleting an s_group
del_s_group(S_GroupName) -> true | {error, ErrorMsg}del_s_group(S_GroupName) -> true | {error, ErrorMsg}

• Adding new nodes to an existing s_group
add_node_s_group(S_GroupName, [Node]) -> true | {error, ErrorMsg}

• Removing nodes from an existing s_group
remove_node_s_group(S GroupName, [Node]) -> true | {error,

ErrorMsg}

13

s_group Functions (2)

• Monitoring all nodes of an s_group
monitor_s_group(S_GroupName) -> ok | {error, ErrorMsg}

• Sending a message to all nodes of an s_group
send_s_group(S_GroupName, Msg) -> Pid | {badarg, Msg} {error,

ErrorMsg}ErrorMsg}

• Listing nodes of a particular s_group
s_group_nodes(S_GroupName) -> [Node] | {error, ErrorMsg}

• Listing s_groups that a particular node belongs to
node_s_group_info(Node) -> [S_GroupName]

14

Scaling Computation
• Semi-explicit Placement

• Becomes not feasible for a programmer to be
aware of all nodes and place each of them
explicitly

• Aim: Automatic process placement• Aim: Automatic process placement

15

chose_node/1

chose_node(Restrictions) -> node()

Restrictions = [Restriction]

Restriction = {s_group, S_Group}

| {min_dist, MinDist :: integer() >= 0}

| {max_dist, MaxDist :: integer() >= 0}

| {ideal_dist, IdealDist :: integer() >= 0}

start() ->

TargetNode = chose_node({s_group, S_Group},
{ideal_dist, IdealDist}),

spawn(TargetNode, fun() -> loop() end).

16

Thank you!Thank you!

