
RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Scalable Distributed Erlang

Natalia Chechina
and RELEASE Team

June 10, 2014

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Outline

1 RELEASE Project

2 Distributed Erlang

3 Scalable Distributed (SD) Erlang
Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

4 Operational Semantics
S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

5 Future Plans

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Typical Target Architecture - 105 cores

Commodity hardware
Non-uniform communication
(Level0 – same host, Level1 – same cluster, etc)

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang

Transitive connections

Explicit Placement, i.e.

spawn(Node, Module, Function, Args) → pid()

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang

Transitive connections

Explicit Placement, i.e.

spawn(Node, Module, Function, Args) → pid()

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang

Reliability: multiple hardware and software redundancy
means that if one Host or Node fails, other Nodes can
continue to deliver service

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang Scalability Limitations

Global operations, i.e. registering names using global module

Other global operations, e.g. using rpc:call to call multiple nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang Scalability Limitations

Global operations, i.e. registering names using global module

Other global operations, e.g. using rpc:call to call multiple nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Distributed Erlang Scalability Limitations

Single process bottlenecks, e.g. overloading rpc’s rex process

All-to-all connections

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Design Approach & Principles

Need to scale

Persistent data structures (Riak, Casandra)

In-memory data structures (Uppsala University, Ericsson)

Computation

SD Erlang design principles

Working at Erlang level as far as possible

Preserving the Erlang philosophy and programming idioms

Keeping Erlang reliability model unchanged as far as possible

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Design Approach & Principles

Need to scale

Persistent data structures (Riak, Casandra)

In-memory data structures (Uppsala University, Ericsson)

Computation

SD Erlang design principles

Working at Erlang level as far as possible

Preserving the Erlang philosophy and programming idioms

Keeping Erlang reliability model unchanged as far as possible

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Scaling Computation

SD Erlang is a small conservative extension of Distributed Erlang

Network Scalability
All-to-all connections are not scalable onto 1000s of nodes
Aim: Reduce connectivity and shared name space

Semi-explicit Placement
Becomes not feasible for a programmer to be aware of all nodes
Aim: Automatic process placement in groups of nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Network Scalability

Grouping nodes into s groups
Types of nodes

Free nodes (normal or hidden) belong to no s group

S group nodes belong to at least one s group

Nodes in an s group have transitive connections only with nodes
from the same s groups, but non-transitive connections with other
nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Why s groups?

Requirements to the node grouping approach

Preserve the distributed Erlang philosophy, i.e. any node can
be directly connected to any other node

Adding and removing nodes from groups should be dynamic

Nodes should be able to belong to multiple groups

The mechanism should be simple

A list of considered approaches

Grouping nodes according to their hash values

A hierarchical approach

Overlapping s groups

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Hierarchical Grouping

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Free Nodes and S groups

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Embedded Grouping

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

S group Functions

S groups can be started

At launch using -config flag and a .config file

Dynamically using s group:new s group/0,1 functions

Main Functions

new s group([Node]) → {SGName, Nodes} | {error, Reason}
new s group(SGName, [Node]) → {SGName, Nodes} | {error, Reason}
delete s group(SGName) → ’ok’ | {error, Reason}
add nodes(SGName, Nodes) → {ok, SGName, Nodes} | {error, Reason}
remove nodes(SGName, Nodes) → ’ok’ | {error, Reason}

Additional Functions
S group information: s groups/0, own nodes/0,1, own s groups/0, info/0

Name registration: register name/3, unregister name/2, re register name/3

Searching and listing names: registered names/1, whereis name/2,3

Sending a message to a process: send/3,4

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

SD Erlang Improves Scalability

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit Example

Orbit is a symbolic computing kernel and a generalization of a
transitive closure computation [LN01]

To compute Orbit for a given space [0..X] we apply on the
initial vertex x0 ∈ [0..X] a list of generators g1, g2, ..., gn that
creates new numbers (x1...xn) ∈ [0..X]. The generator
functions are applied on the new numbers until no new
number is generated.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit Example

Orbit is a symbolic computing kernel and a generalization of a
transitive closure computation [LN01]

To compute Orbit for a given space [0..X] we apply on the
initial vertex x0 ∈ [0..X] a list of generators g1, g2, ..., gn that
creates new numbers (x1...xn) ∈ [0..X]. The generator
functions are applied on the new numbers until no new
number is generated.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit Example

Orbit is a symbolic computing kernel and a generalization of a
transitive closure computation [LN01]

To compute Orbit for a given space [0..X] we apply on the
initial vertex x0 ∈ [0..X] a list of generators g1, g2, ..., gn that
creates new numbers (x1...xn) ∈ [0..X]. The generator
functions are applied on the new numbers until no new
number is generated.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit Example

Orbit is a symbolic computing kernel and a generalization of a
transitive closure computation [LN01]

To compute Orbit for a given space [0..X] we apply on the
initial vertex x0 ∈ [0..X] a list of generators g1, g2, ..., gn that
creates new numbers (x1...xn) ∈ [0..X]. The generator
functions are applied on the new numbers until no new
number is generated.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit Example

Orbit is a symbolic computing kernel and a generalization of a
transitive closure computation [LN01]

To compute Orbit for a given space [0..X] we apply on the
initial vertex x0 ∈ [0..X] a list of generators g1, g2, ..., gn that
creates new numbers (x1...xn) ∈ [0..X]. The generator
functions are applied on the new numbers until no new
number is generated.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit Example

Orbit is a symbolic computing kernel and a generalization of a
transitive closure computation [LN01]

To compute Orbit for a given space [0..X] we apply on the
initial vertex x0 ∈ [0..X] a list of generators g1, g2, ..., gn that
creates new numbers (x1...xn) ∈ [0..X]. The generator
functions are applied on the new numbers until no new
number is generated.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Why Orbit?

Uses a Distributed Hash Table (DHT) similar to NoSQL
DBMSs like Riak [Bas13], i.e. the hash of a value defined
where the value should be stored

Uses standard P2P techniques and credit/recovery distributed
termination detection algorithm [MC98]

Is only a few hundred lines and has a good performance and
extensibility

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit in Non-distributed Erlang

Main components: master.erl, worker.erl, table.erl, credit.erl

Pid = spawn link(worker, init, [TabSize, TmOut, SpawnImgComp])

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Orbit in Distributed Erlang

Main components: master.erl, worker.erl, table.erl, credit.erl

× Pid = spawn link(worker, init, [TabSize, TmOut, SpawnImgComp])

X Pid = spawn link(Node, worker, init, [TabSize, TmOut, SpawnImgComp])

(a) (b)

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Distributed Erlang Orbit vs. SD Erlang Orbit

(c) (d)

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Distributed Erlang Orbit → SD Erlang Orbit

Distributed Erlang Orbit:

master.erl, worker.erl, table.erl, credit.erl

SD Erlang Orbit:

master.erl, worker.erl, table.erl, credit.erl

+ submaster.erl, grouping.erl

Kent team works on refactoring mechanisms

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Speed Up of Distributed Erlang Orbit & SD Erlang Orbit

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Semi-Explicit Placement

In a distributed system, communication latencies between
nodes may vary according to relative positions of the nodes in
the system.

Some nodes may be “nearby” in terms of communication
time, while others may be further away (in a different cluster
within a cloud, for example).

We may wish some tasks to be close together because they’re
communicating with each other a lot. computation, we may
wish to spawn it nearby to reduce communication overhead.
wish to spawn it on a distant node which is lightly loaded.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Example

System structure

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Example: system structure

Racks

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Example: system structure

Clusters

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Example: system structure

Cloud

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Measuring communication distance

We can define a distance function d on the set V of Erlang VMs
in a distributed system by

d(x , y) =

{
0 if x = y

2−`(x ,y) if x 6= y .

where `(x , y) is the length of the longest path which is shared by
the paths from the root to x and y .

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Distances

`(b, c) = 2
d(b, c) = 2−2 = 1/4

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Distances

`(b, g) = 1
d(b, g) = 2−1 = 1/2

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Distances

`(b, k) = 0
d(b, k) = 2−0 = 1

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

Dendrogram
bw

lf1
6

bw
lf1

3

bw
lf1

5

bw
lf0

3

bw
lf0

5

bw
lf3

4

bw
lf0

6

bw
lf1

2

bw
lf0

8

bw
lf2

7

bw
lf3

3

bw
lf1

8

bw
lf2

8

bw
lf2

3

bw
lf0

4

bw
lf0

7

bw
lf1

0

bw
lf1

7

bw
lf2

6

bw
lf0

1

bw
lf2

0 bw
lf2

1

bw
lf3

1

bw
lf1

4

bw
lf1

9

bw
lf2

4

bw
lf2

5

bw
lf2

9 bw
lf0

2

bw
lf0

9

bw
lf2

2

bw
lf3

0

bw
lf1

1

bw
lf3

2

am
at

er
as

u

pe
rs

ep
ho

ne

ob
er

on

ca
nt

or

os
iri

s

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

H
ei

gh
t

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Design Approach
Network Scalability
Preliminary Validation
Orbit
Semi-Explicit Placement

choose nodes/1

Every node may have a list of attributes

choose nodes/1 function returns a list of nodes that satisfy
given restrictions

s_group:choose_nodes([Parameter]) -> [Node]

where

Parameter = {s_group , SGroupName} | {attribute , AttributeName}

| {nearer , 0.4} | {between , 0.5, 0.7}

SGroupName = group_name ()

AttributeName = term()

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

S group Operational Semantics

Defined an abstract state of SD Erlang systems

Presented the transitions of fifteen SD Erlang functions

Nine functions change their state after the transition:
register name/3, re register name/3, unregister name/2,

whereis name/3, send/2, new s group/2, delete s group/1,

add nodes/2, remove nodes/2

Six functions do not change the state after the transition:
send/3, whereas name/2, registered names/1, own nodes/0,

own nodes/1, own s groups/0

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

SD Erlang State

(grs, fgs, fhs, nds) ∈ {state} ≡
≡ {({s group}, {free group}, {free hidden group}, {node})}

gr ∈ grs ≡ {s group} ≡ {(s group name, {node id}, namespace)}
fg ∈ fgs ≡ {free group} ≡ {({node id}, namespace)}
fh ∈ fhs ≡ {free hidden group} ≡ {(node id , namespace)}
nd ∈ nds ≡ {node} ≡ {(node id , node type, connections, gr names)}

Property. Every node in an SD Erlang state is a member of one of
the three classes of groups: s group, free group, or
free hidden group. The three classes of groups partition the set of
nodes.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

Transitions

(state, command, ni) −→ (state ′, value)

Executing command on node ni in state returns value and
transitions to state ′.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

register name/3

SD Erlang function

s group:register name(SGroupName, Name, Pid) → yes | no

((grs,fgs, fhs, nds), register name(s, n, p), ni)

−→ (({(s, {ni} ⊕ nis, {(n, p)} ⊕ ns)} ⊕ grs ′, fgs, fhs, nds), True)

If (n,) /∈ ns ∧ (, p) /∈ ns

−→ ((grs, fgs, fhs, nds), False)

Otherwise
where

{(s, {ni} ⊕ nis, ns)} ⊕ grs ′ ≡ grs

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

Validation of Semantics and Implementation

Validate the consistency between the formal semantics and
the SD Erlang implementation
Use Erlang QuickCheck tool developed by QuviQ
Behaviour is specified by properties expressed in a logical form
eqc statem is a finite state machine in QuickCheck

Figure: Testing SD Erlang Using QuickCheck eqc statem

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

Precondition for new s group operation

precondition(State, {call , ?MODULE , new s group,

[{ SGroupName, NodeIds, CurNode},
AllNodeIds]})→

NodeIds/ = [];

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

Postcondition for new s group operation

AbsRes – abstract result; AbsState – abstract state
ActRes – actual result; ActState – actual state

postcondition(State, {call , ?MODULE , new s group,

{SGroupName, NodeIds, CurNode},
AllNodeIds]},
{ActResult, ActState})→

{AbsRes, AbsState} =

= new s group next state(State, SGroupName, NodeIds, CurNode),

(AbsResult == ActResult) and is the same(ActState, AbsState);

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Future work

Semi-explicit Placement

For reasons of portability and understandability it might not
be desirable to expose too much information about distances
to programmers. We may wish to implement a more abstract
interface, using attributes along the lines of very close, close,
medium, distant, very distant.

We will look into the possibility of discovering the system
structure at runtime, instead of describing it in a configuration
file.

We also want to look into questions of reliability – to have
some means of dynamically adjusting our view of the system if
new nodes join it, or if existing ones fail.

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Future Plans

Run Sim-Diasca simulation engine on massively parallel
supercomputer Blue Gene/Q with approx. 65,000 cores

SD Erlang to become standard Erlang

Methodology, i.e. portability principles, scalability principles

Continue the work on SD Erlang Semantics

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Sources

RELEASE Project http://www.release-project.eu/

RELEASE github repos

SD Erlang https://github.com/release-project/otp/tree/dev
DEbench, Orbit
https://github.com/release-project/benchmarks
Percept2 https://github.com/release-project/percept2

BenchErl http://release.softlab.ntua.gr/bencherl/index.html

Sim-Diasca simulation engine
http://researchers.edf.com/software/sim-diasca-80704.html

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

Thank you!

N. Chechina, RELEASE team Scalable Distributed Erlang

RELEASE Project
Distributed Erlang

Scalable Distributed (SD) Erlang
Operational Semantics

Future Plans

BashoConcepts.
Concepts, 2013.

Frank Lubeck and Max Neunhoffer.
Enumerating Large Orbits and Direct Condensation.
Experimental Mathematics, pages 197–205, 2001.

Jeff Motocha and Tracy Camp.
A taxonomy of distributed termination detection algorithms.
The Journal of Systems and Software, pages 207–221, 1998.

N. Chechina, RELEASE team Scalable Distributed Erlang

	RELEASE Project
	Distributed Erlang
	Scalable Distributed (SD) Erlang
	Design Approach
	Network Scalability
	Preliminary Validation
	Orbit
	Semi-Explicit Placement

	Operational Semantics
	S_group Operational Semantics
	Validation of SD Erlang Semantics and Implementation

	Future Plans

