Outline of Talk	Aim of Research	Background 00 00	Simulation Model 000000 000	Conclusion and Future Work

Simulating Autonomous Mobile Programs on Networks

Natalia Chechina

Dependable System Group, Heriot-Watt University

March 19, 2009

Natalia Chechina

Dependable System Group, Heriot-Watt University

Outline of Talk	Aim of Research	Background 00 00	Simulation Model 000000 000	Conclusion and Future Work

Aim of Research

Background

Load Balancing Autonomous Mobile Programs

Simulation Model

Homogeneous Network Heterogeneous Network

Conclusion and Future Work

Dependable System Group, Heriot-Watt University

Simulating Autonomous Mobile Programs on Networks

Outline of Talk	Aim of Research	Background 00 00	Simulation Model 000000 000	Conclusion and Future Work

Aim of Research

- Obtain Detailed map of AMP behaviour;
- Estimate AMP capabilities;
- Investigate AMP behaviour on Wide Area Networks.

Natalia Chechina

Dependable System Group, Heriot-Watt University

Outline of Talk	Aim of Research	Background ●0 ○0	Simulation Model	Conclusion and Future Work
Load Balancing				

Load Balancing

- (in our case) Load balancing is a technique for work distribution between computers of the network.
- Main goals:
 - Minimizing execution time;
 - Maximizing resource utilization.

Taxonomy of Load Balancing Methods

Outline of Talk	Aim of Research	Background ○○ ●○	Simulation Model 000000 000	Conclusion and Future Work
Autonomous Mobile Pro	ograms			

Autonomous Mobile Program (AMP)

- The motivation for AMPs is to minimise processing time by seeking the most favourable resource, without any requirement to visit specific processor [Den07].
- AMPs periodically use a cost model to decide where to execute in the network.
- To reduce time for information exchanging, AMPs use load server architecture.

Outline of Talk	Aim of Research	Background ○○ ○●	Simulation Model 000000 000	Conclusion and Future Work
Autonomous Mobile P	rograms			

A Cost Model for AMP

$$T_{total} = T_{Comp} + T_{Coord} + T_{Comm} \quad (1)$$

$$T_h > T_{comm} + T_n \tag{2}$$

$$gran > \frac{T_{coord} \cdot S_h}{O}$$
(3)

 T_{total} - total execution time; T_{Comp} - time for computation; T_{Coord} - total time for coordination; T_{Comm} - total time for communication: T_h - execution time on the current location: T_n - execution time on new location: gran - part of work that must be executed between searches of better location:

O - overhead.

Dependable System Group, Heriot-Watt University

A (10) × A (10) × A

Natalia Chechina

Outline of Talk	Aim of Research	Background 00 00	Simulation Model	Conclusion and Future Work

Simulation Model

- The simulation network is a fully connected graph of locations;
- At initial time all AMPs start on the first location;
- Program of square matrix multiplication of 1000 dimension is used in the experiments;
- The model is implemented on the OMNeT++ network simulator.

Outline of Talk	Aim of Research	Background 00 00	Simulation Model ●00000 000	Conclusion and Future Work
Homogeneous Network				

Homogeneous Network

- Type of experiments:
 - Optimal balance;
 - Near-optimal balance;
 - Adding more AMPs;
 - Removing AMPs.
- Number of locations: 3-5
- Number of AMPs: 5-13
- Speed of processors is 3139 MHz.

Outline of Talk	Aim of Research	Background 00 00	Simulation Model	Conclusion and Future Work
Homogeneous Network				

Optimal Balance

	5 AMPs	7 AMPs	9 AMPs	10 AMPs	13 AMPs
3 Locations					
real	1/2/2	1/3/3	1/4/4	-	-
simulation	1/2/2	1/3/3	2/3/4	-	-
4 Locations					
real	-	1/2/2/2	-	1/3/3/3	1/4/4/4
simulation	-	1/2/2/2	-	1/3/3/3	2/4/4/3
5 Locations					
real	-	-	1/2/2/2/2	-	-
simulation	-	-	1/2/2/2/2	-	-

Table: Optimal Balance

Natalia Chechina

 $\exists \rightarrow$ Dependable System Group, Heriot-Watt University

< 🗇 🕨 🔸

Outline of Talk	Aim of Research	Background 00 00	Simulation Model	Conclusion and Future Work
Homogeneous Network				

Near-Optimal Balance

	6 AMPs	5 AMPs
3 Locations		
real	1/2/3	-
simulation	1/2/3	-
2 Locs		
real	-	2/3
simulation	-	2/3

Table: Near-Optimal Balance [Den07, Figures 5.56, 5.57]

Dependable System Group, Heriot-Watt University

Natalia Chechina

Adding More AMPs

ingure. Simulation experiments

Dependable System Group, Heriot-Watt University

Natalia Chechina

Outline of Talk	Aim of Research	Background 00 00	Simulation Model 0000●0 000	Conclusion and Future Work
Homogeneous Network				

Removing AMPs

Dependable System Group, Heriot-Watt University

Simulating Autonomous Mobile Programs on Networks

Discussion

- Optimal Balance. Simulation and real experiments obtain similar distribution;
- Near-Optimal Balance. Real and simulation results are identical;
- Adding AMPs. Simulation and real experiments obtain the same distribution;
- Removing AMPs:
 - all simulation experiments enter 3 of 4 balance states of real experiments;
 - ▶ 18% of simulation AMPs enter all states of real experiments;
 - 23% of simulation experiments have state S2 and 70% have state K2, which is also balance state.

Outline of Talk	Aim of Research	Background 00 00	Simulation Model 000000 000	Conclusion and Future Work
Heterogeneous Networ	k			

Heterogeneous Network

- First experiment:
 - ▶ 25 AMPs;
 - 15 locations (1-5 locations 3139 MHz; 6-10 locations -2168 MHz; 11-15 locations - 1793 MHz).
- Second experiment:
 - 20 AMPs;
 - 10 locations (1-5 locations 3139 MHz; 6 locations 2167 MHz; 7-10 locations - 1793 MHz).

25 AMPs on 15 locations

Figure: Real experiments

Figure: Simulation experiments

< 17 >

Dependable System Group, Heriot-Watt University

Simulating Autonomous Mobile Programs on Networks

Outline of Talk	Aim of Research	Background 00 00	Simulation Model ○○○○○○ ○○●	Conclusion and Future Work
Heterogeneous Networ	k			

Discussion

- 41% of simulation experiments have the same distribution with real experiments, here other types of distribution are also balanced;
- in 6% of the first type simulation experiments AMPs remove from the same type of locations as in the real experiments.

Outline of Talk	Aim of Research	Background 00 00	Simulation Model 000000 000	Conclusion and Future Work

Conclusion and Future Work

Conclusion. Adjusted for minor differences, we can make a conclusion that current simulation model reflects real AMP behaviour and can be used for further analysis.

Future Work:

- Analysis of greedy effect on homogeneous and heterogeneous networks;
- Further investigation of AMP behaviour on wide area networks.

Outline of Talk	Aim of Research	Background 00 00	Simulation Model 000000 000	Conclusion and Future Work
	F. L. Casavant and J A taxonomy of sched computing systems. IEEE Trans. Softw. E	J. G. Kuhl. Iuling in gene Eng., 14(2):14	ral-purpose distr 1–154, 1988.	ibuted
	K. Y. Deng. <i>Cost Driven Autonon</i> ² hD thesis, School o Heriot-Watt Universi	nous Mobility f Mathematic ty, Edinburgh	cal and Compute , UK, June 2007	er Sciences, 7.
	H. G. Rotithor.	ic task schodu	ling schomos in	dictributed

Taxonomy of dynamic task scheduling schemes in distributed computing systems.

IEEE Proceedings Computers & Digital Techniques, 141(1):1–10, January 1994.