
Computers & Operations Research 32 (2005) 2271–2284
www.elsevier.com/locate/dsw

Where are the hard knapsack problems?
David Pisinger∗

Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark

Available online 20 May 2004

Abstract

The knapsack problem is believed to be one of the “easier” NP-hard problems. Not only can it be solved
in pseudo-polynomial time, but also decades of algorithmic improvements have made it possible to solve
nearly all standard instances from the literature. The purpose of this paper is to give an overview of all recent
exact solution approaches, and to show that the knapsack problem still is hard to solve for these algorithms for
a variety of new test problems. These problems are constructed either by using standard benchmark instances
with larger coe5cients, or by introducing new classes of instances for which most upper bounds perform
badly. The 6rst group of problems challenge the dynamic programming algorithms while the other group
of problems are focused towards branch-and-bound algorithms. Numerous computational experiments with
all recent state-of-the-art codes are used to show that (KP) is still di5cult to solve for a wide number of
problems. One could say that the previous benchmark tests were limited to a few highly structured instances,
which do not show the full characteristics of knapsack problems.
? 2004 Elsevier Ltd. All rights reserved.

Keywords: Knapsack problem; Dynamic programming; Branch-and-bound; Test instances

1. Introduction

The classical knapsack problem is de6ned as follows: We are given a set of n items, each item
j having an integer pro6t pj and an integer weight wj. The problem is to choose a subset of the
items such that their overall pro6t is maximized, while the overall weight does not exceed a given
capacity c. We may formulate the model as the following integer programming model:

(KP) maximize
n∑
j=1

pjxj (1)

∗ Tel.: +45-35-32-1354; fax: +45-35-32-1401.
E-mail address: pisinger@diku.dk (D. Pisinger).

0305-0548/$ - see front matter ? 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2004.03.002

mailto:pisinger@diku.dk

2272 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

subject to
n∑
j=1

wjxj6 c; (2)

xj ∈ {0; 1}; j = 1; : : : ; n; (3)

where the binary decision variables xj are used to indicate whether item j is included in the knapsack
or not. Without loss of generality it may be assumed that all pro6ts and weights are positive, that
all weights are smaller than the capacity c, and that the overall weight of the items exceeds c.
From practical experience it is known that many (KP) instances of considerable size can be

solved within reasonable time by exact solution methods. This fact is due to several algorithmic
re6nements which emerged during the last two decades. These include advanced dynamic program-
ming recursions, the concept of solving a core, and the separation of cover inequalities to tighten
the formulation. For a recent survey of the latest techniques see Martello et al. [1] or the monograph
by Kellerer et al. [2].

The knapsack problem is NP-hard in the weak sense, meaning that it can be solved in pseudo-
polynomial time through dynamic programming. Meyer auf der Heide [3] showed that for the linear
decision tree model (LDT) of computation no super-polynomial lower bound can exist. This negative
result was extended by Fournier and Koiran [4] who showed that for even less powerful models of
computation no super-polynomial lower bound is likely to exist.

The lack of theoretical upper and lower bounds on the computational complexity of (KP) leaves
plenty of space for practical algorithmic development. Although none of these algorithms can ensure
e5cient solution times for all instances, progress is made on reaching acceptable running times for
all “practically occurring” instances. In the following section, we will give a short overview of the
latest exact algorithms for (KP), and state their worst-case complexity where possible. In Section 3,
we experimentally measure the performance of these algorithms for a large variety of instance types,
including two groups of new, di5cult instances. The 6rst group of di5cult instances is based on
large coe5cients, while the second group contains six categories of structurally di5cult instances
with small coe5cients. Although the classical problem instances are quite easy to solve for the most
recent algorithms, it is interesting to see that the instances do not need to be changed much before
the algorithms get a signi6cantly diKerent performance. In our search for algorithms, which are able
to solve all “practically occurring” instances, it is important to be aware of these problems, and to
extend our algorithms and in particular upper bounds to more robust variants. These thoughts are
summarized in Section 4.

2. Exact algorithms for the knapsack problem

For the following discussion we need a few de6nitions. Assume that the items are sorted according
to non-increasing e5ciencies pj=wj, so that we have

p1

w1
¿
p2

w2
¿ · · ·¿ pn

wn
: (4)

The LP-relaxation of (KP) can be solved through the greedy algorithm by simply 6lling the knapsack
until item s = min{h: ∑h

j=1 wj ¿c}, which is also known as the split item. The LP-bound is

D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284 2273

then de6ned as

U1 =
s−1∑
j=1

pj +


c −

s−1∑
j=1

pj


 ps
ws
:

The split item s and hence also the LP-solution can be found in O(n) time using a median-search al-
gorithm presented by Balas and Zemel [5]. In the following, we will denote z∗ the integer optimal so-
lution value and x∗ the corresponding solution vector. The greedy solution, choosing items 1; : : : ; s−1,
will be denoted x′.
Various branch-and-bound algorithms for (KP) have been presented. The more recent of these

solve a core problem, i.e. a (KP) de6ned on a subset of the items where there is a large probability
of 6nding an optimal solution. The MT2 algorithm [6] is the most advanced of these algorithms.
It starts by solving the core problem obtaining a lower bound z on the (KP) as well as an upper
bound U . If z=U it stops, otherwise it reduces the size of the instance by 6xing variables at their
optimal value. In the last phase, the reduced (KP) is solved to optimality.

Realizing that the core size is di5cult to estimate in advance, Pisinger [7] proposed to use an
expanding core algorithm, which simply starts with a core consisting of the split item only, and then
adds more items to the core when needed. The proposed Expknap makes use of branch-and-bound
where computationally cheap upper bounds from LP-relaxation are used.

Martello and Toth [8] proposed a special variant of the MT2 algorithm which was developed
to deal with hard knapsack problems. The resulting algorithm MThard makes use of a new family
of upper bounds based on the generation of additional cardinality constraints which again are
Lagrangian relaxed to reach an ordinary (KP).

Straightforward use of dynamic programming leads to the well-known Bellman recursion [9] which
solves the (KP) in pseudo-polynomial time O(nc). Reversing the roles of pro6ts and weights in the
dynamic programming recursion leads to an algorithm with running time O(nz∗).

Pisinger [10] presented an improved variant of the Bellman recursion which runs in time O(nm=
logm) on a word RAM, where m=max{c; z∗}. For the most di5cult instances where c and z∗ are
of the same magnitude, this leads to a logarithmic improvement over the Bellman recursion.

A balanced solution is a solution which can be reached from the greedy solution x′ through a
number of inserts and removals which maintain the knapsack 6lled close to the capacity. Using this
concept, Pisinger [11] introduced a dynamic programming recursion with time and space complexity
O(nwmax�) where pmax = maxj=1; :::; n pj, wmax = maxj=1; :::; n wj and � = z∗ − z for any lower bound
z. Since �6pmax—as we may choose z equal to the greedy solution—the complexity is bounded
by the term O(nwmaxpmax) which is linear in n when the magnitude of the weights and pro6ts is
bounded by a constant. Note that the practical running times may be improved by 6nding a lower
bound z of good quality. If we are so lucky that the optimal solution has been found by some initial
heuristic so that the balanced dynamic programming algorithm is used only for proving optimality,
the time and space complexity is limited to O(nwmax).

A 6nal dynamic programming recursion was presented by Pisinger [12] in the framework of an
expanding core algorithm. The Minknap algorithm is based on the ordinary Bellman recursion, but
the recursion starts from the greedy solution and alternate between an insertion or a removal of an
item. The running time is bounded by O(n(b−a)) where {a; : : : ; b} is the set of items which needed
to be enumerated. This set is also known as the “minimal” core of the problem.

2274 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

The currently most successful algorithm for (KP) was presented by Martello et al. [13]. The
algorithm can be seen as a combination of many diKerent concepts and is hence called Combo. The
enumeration part of Combo is based on the same dynamic programming algorithm as Minknap but
additional techniques are gradually introduced if the problem seems to be hard to solve. A good
indication of the hardness of the problem is the number of states in the dynamic programming
algorithm—if it surpasses a given threshold value, we take it as an indication of need for additional
techniques. Depending on the hardness of the problem, rudimentary divisibility techniques are used,
followed by bounds from cardinality constraints, and 6nally followed by improved lower bounding
through merging of items with the states in the dynamic programming. The three techniques are
introduced gradually, and in most cases they result in a decrease of the states in the dynamic
programming algorithm. In the worst case, we proceed with the ordinary Minknap recursion, but
hopefully having tighter upper and lower bounds available.

3. Computational experiments

Despite the NP-hardness of the knapsack problem, we strive towards developing algorithms
which e5ciently can solve a large variety of problems occurring in practice. Unfortunately, very
few real-life instances of (KP) are reported in the literature, hence algorithm design has focused
on a set of synthetic benchmark tests. These tests are all based on randomly distributed prof-
its or weights, and hence implicitly contain some structure which may not be present in real-life
instances.

In the following study, we will consider nearly all the knapsack algorithms presented in Section 1,
including the MT2, MThard, Combo, Expknap, and Minknap algorithm. The dynamic programming
algorithm based on balancing has never been implemented, although its worst-case complexity makes
it a promising candidate. The word-RAM algorithm is very complicated and the constants hidden
in the big-Oh notation are large. Hence, it is mainly interesting from a theoretical point of view,
and no computational results are given. Concerning the performance of various older algorithms the
comparison with MT2 reported in [14] should be consulted.
We will consider several groups of randomly generated instances of (KP) which have been con-

structed to reQect special properties that may inQuence the solution process. In all instances, the
weights are uniformly distributed in a given interval with data range R = 1000 and 10 000. The
pro6ts are expressed as a function of the weights, yielding the speci6c properties of each group.
The instance groups are graphically illustrated in Fig. 1.

• Uncorrelated data instances: pj and wj are chosen randomly in [1; R]. In these instances, there is
no correlation between the pro6t and weight of an item. Such instances illustrate those situations
where it is reasonable to assume that the pro6t does not depend on the weight. Uncorrelated
instances are generally easy to solve, as there is a large variation between the pro6ts and weights,
making it easy to fathom numerous variables by upper bound tests or by dominance relations.

• Weakly correlated instances: Weights wj are chosen randomly in [1; R] and the pro6ts pj in
[wj − R=10; wj + R=10] such that pj¿ 1. Despite their name, weakly correlated instances have a
very high correlation between the pro6t and weight of an item. Typically, the pro6t diKers from
the weight by only a few percent. Such instances are perhaps the most realistic in management,

D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284 2275

Fig. 1. Classical test instances: (a) uncorrelated instances, (b) weakly correlated instances, (c) strongly correlated instances,
(d) inverse strongly correlated instances, (e) almost strongly correlated instances, (f) subset sum instances, (g) uncorrelated
instances with similar weights. Note that instances (c) and (e) look very similar since the extra “noise” in almost strongly
correlated instances is very small.

as it is well known that the return of an investment is generally proportional to the sum invested
within some small variations.

• Strongly correlated instances: Weights wj are distributed in [1; R] and pj = wj + R=10. Such
instances correspond to a real-life situation where the return is proportional to the investment plus
some 6xed charge for each project. The strongly correlated instances are hard to solve for two
reasons:
(a) The instances are ill-conditioned in the sense that there is a large gap between the continuous

and integer solution of the problem.
(b) Sorting the items according to decreasing e5ciencies correspond to a sorting according to

the weights. Thus for any small interval of the ordered items (i.e. a “core”) there is a
limited variation in the weights, making it di5cult to satisfy the capacity constraint with
equality.

• Inverse strongly correlated instances: Pro6ts pj are distributed in [1; R] and wj=pj+R=10. These
instances are like strongly correlated instances, but the 6xed charge is negative.

• Almost strongly correlated instances: Weights wj are distributed in [1; R] and the pro6ts pj in
[wj + R=10 − R=500; wj + R=10 + R=500]. These are a kind of 6xed-charge problems with some
noise added. Thus, they reQect the properties of both strongly and weakly correlated instances.

• Subset sum instances: Weights wj are randomly distributed in [1; R] and pj=wj. These instances
reQect the situation where the pro6t of each item is equal (or proportional) to the weight. Thus,
our only goal is to obtain a 6lled knapsack. Subset sum instances are however challenging to
solve as instances to (KP) because most of the considered upper bounds return the same trivial

2276 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

Table 1
Average solution times in milliseconds, MT2 (Intel Pentium IV, 3 GHz)

value c, and thus we cannot use bounding rules for cutting oK branches before an optimal solution
has been found.

• Uncorrelated instances with similar weights: Weights wj are distributed in [100 000; 100 100] and
the pro6ts pj in [1; 1000].

We will compare the performance of MT2, Expknap, Minknap, MThard and Combo. The behavior
of the algorithms will be considered for diKerent problem sizes n, diKerent problem types, and two
data ranges. For each instance type a series of H =100 instances is performed. The capacity in each
instance is chosen as

c =
h

H + 1

n∑
j=1

wj (5)

for test instance number h= 1; : : : ; H . This is done to “smooth out” variations due to the choice of
capacity as described in [15].

All tests were run on an Intel Pentium IV, 3 GHz with 1 Gb RAM, and a time limit of 60 min
was assigned to each instance type for all H instances. If not all instances were solved within the
time or space limit, this is indicated by a dash in the table.

Tables 1–5 compare the solution times of the 6ve algorithms. The simple branch-and-bound
codes MT2 and Expknap, have the overall worst performance, although they are quite fast on easy
instances like the uncorrelated and weakly correlated ones. Moreover, they are among the fastest
codes for the subset sum instances. For the diKerent variants of strongly correlated instances, MT2
and Expknap are able to solve only tiny instances.

The dynamic programming algorithm Minknap has an overall stable performance, as it is able
to solve all instances within reasonable time. It is the fastest code for uncorrelated and weakly
correlated instances and it has almost the same good performance for subset sum instances as the
branch-and-bound algorithms. The strongly correlated instances take considerably more time to be
solved but although Minknap uses only simple bounds from LP-relaxation, the pseudo-polynomial
time complexity gets it safely through these instances.

D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284 2277

Table 2
Average solution times in milliseconds, Expknap (Intel Pentium IV, 3 GHz)

Table 3
Average solution times in milliseconds, Minknap (Intel Pentium IV, 3 GHz)

Table 4
Average solution times in milliseconds, MThard (Intel Pentium IV, 3 GHz)

2278 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

Table 5
Average solution times in milliseconds, Combo (Intel Pentium IV, 3 GHz)

The MThard algorithm has a very good overall performance, as it is able to solve nearly all
problems within split seconds. The short solution times are mainly due to its cardinality bounds
which make it possible to terminate the branching after having explored a small number of nodes.
There are, however, some anomalous entries for large-sized almost strongly correlated problems,
where the cardinality bounds somehow fail. Also for some large-sized subset sum problems MThard
takes unproportionally long time.

The best performance is obtained with the Combo algorithm. This “hybrid” algorithm solves all
the considered instances within 5 ms on average and the running times have a very systematic growth
rate with small variations. In particular, it is worth noting that the ratio between solving a di5cult
instance and an easy instance is within a factor of 10, thus showing that the additional work needed
to derive tight bounds can be done very fast.

Based on the results in Table 5 one could draw the wrong conclusion that (KP) is easy to solve.
One should, however, notice that we consider instances where all the coe5cients are of moderate
size. If a real-life instance has this property (or can be scaled down to satisfy the property without
signi6cantly aKecting the solution), then the problems are indeed easy to solve. However, there still
exist many applications where more or less intractable knapsack instances with very large coe5cients
occur.

3.1. Di7cult instances

There are two directions to follow when constructing di5cult instances: one may either consider
the traditional instances with larger coe5cients. This will obviously make the dynamic programming
algorithms run slower, but also the upper bounds get weakened since the gap to the optimal solution
is scaled and cannot be closed by simply rounding down the upper bound to the nearest smaller
integer. A second direction to follow is to construct instances where the coe5cients are of moderate
size, but where all currently used upper bounds have a bad performance.

3.2. Di7cult instances with large coe7cients

Our 6rst attempt to construct di5cult instances is to use the “standard” instances from Section 3
for increasing data range R. The motivation being, that we know that the magnitude of the weights

D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284 2279

Table 6
Average solution times in milliseconds, Expknap, for large range instances (Intel Pentium IV, 3 GHz)

Table 7
Average solution times in milliseconds, Minknap, for large range instances (Intel Pentium IV, 3 GHz)

strictly aKect the computational complexity of dynamic programming algorithms; hence, in this way
the eKect of upper bound tests, reduction, and early termination becomes more clear.

For the following experiments, the codes were compiled using 64-bit integers, making it possible to
run tests with weights of considerable size. The dynamic programming tables of Minknap and Combo
were extended signi6cantly, and the subgradient algorithm used in Combo for 6nding appropriate
surrogate multipliers in the bounding procedure was slightly modi6ed. For technical reasons, it was
not possible to modify the FORTRAN codes MT2 and MThard to 64 bit integers.
The outcome of the experiments is shown in Tables 6–8. Note that the increased integer size

implies a slow-down by a factor of at least 2 compared to the tests with small data range. Apart
from this observation, it is interesting to see that uncorrelated and weakly correlated instances are
almost unaKected by an increase of the data range. However, for nearly all other instance types
the problems become harder as the data range is increased. Several instances cannot be solved
within the given time or space limit, and it is also interesting to note that the upper bounds used
in Combo for some instances have di5culties in closing the gap between the upper and lower
bound. The dynamic programming part of Minknap and Combo ensures that the optimal solution is
found in pseudo-polynomial time, but as the data range is increased this time bound starts to grow
unacceptably high. For data range R=107, Minknap and Combo frequently run out of space before
running out of time.

The main observations from the computational experiments with small-range instances are, how-
ever, still valid. First of all, we notice that the methods used for 6nding tighter upper and lower

2280 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

Table 8
Average solution times in milliseconds, Combo, for large range instances (Intel Pentium IV, 3 GHz)

bounds in Combo do pay oK, since in general Combo is able to solve considerably more instances
than the “clean” dynamic programming version Minknap. It is interesting to observe that some of
the strongly correlated problems tend to become easier for Combo when n is increasing. Next,
we notice that branch-and-bound methods, in general, cannot compete with dynamic programming
methods. There is actually a single exception to this observation for the subset sum instances. The
randomly generated subset sum instances have numerous solution to the decision problem and hence
a branch-and-bound algorithm may terminate the search as soon as an optimal solution has been
found.

3.3. Di7cult instances with small coe7cients

It is more challenging to construct instances with small coe5cients, where present algorithms
perform badly. Obviously, the worst-case complexity of dynamic programming algorithms still holds,
but one may construct the instances so that it is di5cult to fathom states through upper bound tests
when using dynamic programming. The following classes of instances have been identi6ed as having
the desired property (Fig. 2).

• Spanner instances span(v; m): These instances are constructed such that all items are multiples
of a quite small set of items—the so-called spanner set. The spanner instances span(v; m) are
characterized by the following three parameters: v is the size of the spanner set, m is the mul-
tiplier limit, and 6nally we may have any distribution (uncorrelated, weakly correlated, strongly
correlated, etc.) of the items in the spanner set.
More formally, the instances are generated as follows: A set of v items is generated with weights
in the interval [1; R], and pro6ts according to the distribution. The items (pk; wk) in the spanner set
are normalized by setting pk := �2pk=m� and wk := �2wk=m�. The n items are then constructed, by
repeatedly choosing an item (pk; wk) from the spanner set, and a multiplier a randomly generated
in the interval [1; m]. The constructed item has pro6t and weight (a · pk; a · wk).
Three distributions of the spanner problems span(s; m) have been considered: uncorrelated, weakly
correlated, and strongly correlated. The multiplier limit was chosen as m = 10. Computational

D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284 2281

Fig. 2. New test instances considered: (a) uncorrelated spanner instances span(2; 10), (b) weakly correlated spanner
instances span(2; 10), (c) strongly correlated spanner instances span(2; 10), (d) multiple strongly correlated instances
mstr(3R=10; 2R=10; 6), (e) pro6t ceiling instances pceil(3), (f) circle instances circle(23).

experiments showed that the instances became harder to solve for smaller spanner sets. Hence, in
the following we will consider the instances: uncorrelated span(2; 10), weakly correlated span(2; 10),
and strongly correlated span(2; 10).

• Multiple strongly correlated instances mstr(k1; k2; d): These instances are constructed as a com-
bination of two sets of strongly correlated instances. Both instances have pro6ts pj := wj + ki
where ki, i = 1; 2 is diKerent for the two instances.
The multiple strongly correlated instances mstr(k1; k2; d) are generated as follows: the weights of
the n items are randomly distributed in [1; R]. If the weight wj is divisible by d, then we set the
pro6t pj := wj+ k1 otherwise set it to pj := wj+ k2. Notice that the weights wj in the 6rst group
(i.e. where pj = wj + k1) will all be multiples of d, so that using only these weights we can at
most use d	c=d
 of the capacity. To obtain a completely 6lled knapsack, we need to include some
of the items from the second group.
Computational experiments showed that very di5cult instances could be obtained with the param-
eters mstr(3R=10; 2R=10; d). Choosing d = 6 results in the most di5cult instances, but values of
d between 3 and 10 can all be used.

• Pro9t ceiling instances pceil(d): These instances have the property that all pro6ts are multiples
of a given parameter d. The weights of the n items are randomly distributed in [1; R], and the
pro6ts are set to pj = d�wj=d�.
The parameter d was experimentally chosen as d = 3, as this resulted in su5ciently di5cult
instances.

• Circle instances circle(d): The instances circle(d) are generated such that the pro6ts as function
of the weights form an arc of a circle (actually an ellipsis). The weights are uniformly distributed
in [1; R] and for each weight w the corresponding pro6t is chosen as p= d

√
4R2 − (w − 2R)2.

The computational study showed that di5cult instances appeared by choosing d = 2
3 which was

chosen for the following experiments.

2282 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

Table 9
Solution times in milliseconds, MT2, for di5cult instances with small coe5cients (Intel Pentium IV, 3 GHz)

n Uncorr. Weak. corr. Str. corr. mstr(3R=10; 2R=10; 6) pceil(3) circle(23)
span(2; 10) span(2; 10) span(2; 10)

20 0.0 0.3 0.2 0.0 0.0 0.0
50 3112.0 — — 0.2 4.6 0.1
100 — — — 24.7 — 6.2
200 — — — — — —
500 — — — — — —
1000 — — — — — —
2000 — — — — — —
5000 — — — — — —
10000 — — — — — —

Table 10
Solution times in milliseconds, Expknap, for di5cult instances with small coe5cients (Intel Pentium IV, 3 GHz)

n Uncorr. Weak. corr. Str. corr. mstr(3R=10; 2R=10; 6) pceil(3) circle(23)
span(2; 10) span(2; 10) span(2; 10)

20 0.0 0.2 0.1 0.0 0.1 0.0
50 934.9 — — 0.4 6.5 0.1
100 — — — 21.4 — 15.4
200 — — — — — 9280.9
500 — — — — — —
1000 — — — — — —
2000 — — — — — —
5000 — — — — — —
10000 — — — — — —

For each instance type a series of H = 100 instances is performed, and the capacity is chosen as
in (5). Since all the above “di5cult” instances are generated with moderate data range R = 1000,
all the codes MT2, Expknap, Minknap, MThard and Combo could be used in the normal version
using 32 bit integers. The outcome of the experiments is shown in Tables 9–13.
It appears, that the branch-and-bound algorithms MT2 and Expknap are able to solve this kind of

instances only for small values of n. The MThard algorithm, which is a combination of branch-and-
bound and dynamic programming has a slightly better performance, being able to solve instances
of moderate size. Both of the two dynamic programming algorithms Minknap and Combo are able
to solve also large-sized instances since the worst-case running time of O(nc) is acceptable for
small values of the data range. It is, however, interesting to observe that the tighter bounds in
Combo do not signi6cantly improve the running times. Indeed, Minknap is able to solve some of
the strongly correlated spanner instances faster than Combo using only dynamic programming and
computationally cheap upper bounds.

D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284 2283

Table 11
Solution times in milliseconds, Minknap, for di5cult instances with small coe5cients (Intel Pentium IV, 3 GHz)

n Uncorr. Weak. corr. Str. corr. mstr(3R=10; 2R=10; 6) pceil(3) circle(23)
span(2; 10) span(2; 10) span(2; 10)

20 0.0 0.0 0.0 0.1 0.1 0.0
50 0.0 0.2 0.0 0.0 0.2 0.1
100 0.2 0.2 0.2 0.5 0.7 0.4
200 0.5 1.0 0.6 1.6 1.8 1.2
500 2.2 4.9 5.0 4.6 9.7 5.1
1000 9.0 17.7 15.3 9.8 25.5 10.4
2000 36.3 71.5 73.1 20.4 94.9 22.7
5000 205.9 419.4 448.0 71.8 744.0 76.6
10 000 899.5 1705.6 2207.6 177.2 2794.7 131.3

Table 12
Solution times in milliseconds, MThard, for di5cult instances with small coe5cients

n Uncorr. Weak. corr. Str. corr. mstr(3R=10; 2R=10; 6) pceil(3) circle(23)
span(2; 10) span(2; 10) span(2; 10)

20 0.0 0.1 0.2 0.0 0.1 0.0
50 1.4 1.9 2.1 0.1 0.7 0.1
100 5.6 10.1 8.0 0.5 6.1 0.9
200 2039.5 8806.1 4221.5 4.9 10 559.2 4.7
500 — — — 7228.6 — 29.2
1000 — — — — — 172.4
2000 — — — — — 1028.7
5000 — — — — — —
10000 — — — — — —

Table 13
Solution times in milliseconds, Combo, for di5cult instances with small coe5cients

n Uncorr. Weak. corr. Str. corr. mstr(3R=10; 2R=10; 6) pceil(3) circle(23)
span(2; 10) span(2; 10) span(2; 10)

20 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.3 0.1 0.1 0.1
100 0.1 0.1 0.3 0.3 0.5 0.2
200 0.4 0.8 0.7 0.8 0.8 0.5
500 1.9 3.7 4.0 1.8 6.9 1.9
1000 6.5 12.7 13.6 4.2 19.4 6.1
2000 24.0 52.4 73.5 10.2 72.0 13.0
5000 134.9 392.6 434.9 38.7 652.5 56.4
10 000 629.3 1523.4 2272.6 97.3 2434.3 105.7

2284 D. Pisinger / Computers & Operations Research 32 (2005) 2271–2284

4. Conclusion

We have compared the solution times of all recent algorithms, using classical and new benchmark
tests. The classical instances are generally easy to solve and hence one could wrongly conclude that
no more research is needed for the knapsack problem. The new classes of benchmark tests clearly
show that this is not the case. There are numerous interesting instances for which all currently known
upper bounds perform badly, and for which the running times of the algorithms are close to the
worst-case time-bound.

Dynamic programming is one of our best approaches for solving di5cult (KP), since this is the
only solution method which gives us a worst-case guarantee on the running time, independently on
whether the upper bounding tests will work well.

Research in upper bounds working on more general classes of problems should also be stimulated.
The knapsack polytope is one of the best studied (see e.g. Weismantel [16]) and numerous valid
inequalities have been found which can be used to strengthen the LP-formulation of the (KP). Al-
though a branch-and-cut framework may seem as an over-kill for knapsack problems, such techniques
may become necessary in order to solve the more di5cult instances.

References

[1] Martello S, Pisinger D, Toth P. New trends in exact algorithms for the 0–1 knapsack problem. European Journal of
Operational Research 2000;123:325–32.

[2] Kellerer H, Pferschy U, Pisinger D. Knapsack problems. Berlin: Springer; 2004.
[3] Meyer auf der Heide F. A polynomial linear search algorithm for the n-dimensional knapsack problem. Journal of

the ACM 1984;31:668–76.
[4] Fournier H, Koiran P. Are lower bounds easier over the reals? In: Proceedings of the 30th Annual ACM Symposium

on Theory of Computing (STOC), 1998. p. 507–13.
[5] Balas E, Zemel E. An algorithm for large zero-one knapsack problems. Operations Research 1980;28:1130–54.
[6] Martello S, Toth P. A new algorithm for the 0–1 knapsack problem. Management Science 1988;34:633–44.
[7] Pisinger D. An expanding-core algorithm for the exact 0–1 knapsack problem. European Journal of Operational

Research 1995;87:175–87.
[8] Martello S, Toth P. Upper bounds and algorithms for hard 0–1 knapsack problems. Operations Research 1997;45:

768–78.
[9] Bellman RE. Dynamic programming. Princeton, NJ: Princeton University Press; 1957.
[10] Pisinger D. Dynamic programming on the word RAM. Algorithmica 2003;35:128–45.
[11] Pisinger D. Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms 1999;33:

1–14.
[12] Pisinger D. A minimal algorithm for the 0–1 knapsack problem. Operations Research 1997;45:758–67.
[13] Martello S, Pisinger D, Toth P. Dynamic programming and strong bounds for the 0–1 knapsack problem. Management

Science 1999;45:414–24.
[14] Martello S, Toth P. Knapsack problems: algorithms and computer implementations. New York: Wiley; 1990.
[15] Pisinger D. Core problems in knapsack algorithms. Operations Research 1999;47:570–5.
[16] Weismantel R. On the 0/1 knapsack polytope. Mathematical Programming 1997;77:49–68.

	Where are the hard knapsack problems?
	Introduction
	Exact algorithms for the knapsack problem
	Computational experiments
	Difficult instances
	Difficult instances with large coefficients
	Difficult instances with small coefficients

	Conclusion
	References

