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Abstract Classical scheduling formulations typically assume static resource require-
ments and focus on deciding when to start the problem activities, so as to optimize
some performance metric. In many practical cases, however, the decision maker has
the ability to choose the resource assignment as well as the starting times: this is
a far-from-trivial task, with deep implications on the quality of the final schedule.
Joint resource assignment and scheduling problems are incredibly challenging from
a computational perspective. They have been subject of active research in Constraint
Programming (CP) and in Operations Research (OR) for a few decades, with quite
difference techniques. Both the approaches report individual successes, but they
overall perform equally well or (from a different perspective) equally poorly. In
particular, despite the well known effectiveness of global constraints for scheduling,
comparable results for joint filtering of assignment and scheduling variables have
not yet been achieved. Recently, hybrid approaches have been applied to this class
of problems: most of them work by splitting the overall problem into an assignment
and a scheduling subparts; those are solved in an iterative and interactive fashion with
a mix of CP and OR techniques, often reporting impressive speed-ups compared to
pure CP and OR methods. Motivated by the success of hybrid algorithms on resource
assignment and scheduling, we provide a cross-disciplinary survey on such problems,
including CP, OR and hybrid approaches. The main effort is to identify key modeling
and solution techniques: they may then be applied in the construction of new
hybrid algorithms, or they may provide ideas for novel filtering methods (possibly
based on decomposition, or on alternative representations of the domain store).
In detail, we take a constraint-based perspective and, according to the equation
CP = model + propagation + search, we give an overview of state-of-art models,
propagation/bounding techniques and search strategies.
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1 Resource allocation and scheduling

Following a widely accepted definition, scheduling involves allocating scarce re-
sources to activities over time. Classical scheduling formulations1 typically assume
static resource requirements and focus on deciding when to start the problem activ-
ities, so as to optimize some performance metric. Sometimes, however, the decision
maker has the ability to choose the resources for the execution of each problem
activity. This is a far-from-trivial task, with deep implications on the quality of the
final schedule. Despite being considerably less popular than classical scheduling
in the research literature, joint resource assignment and scheduling problems are
very frequent in practice: according to [11, 51], many real world settings feature
optional activities which can be left non-executed (usually with an impact on costs) or
alternative recipes to execute an activity, with each recipe corresponding to a possible
assignment of execution resources or to a different set of sub-activities.

Here, we take into account a variety of scheduling problems, having as a com-
mon feature the fact that the resource assignment and resource requirement for
each activity are decision variables. Reported applications include batching and
scheduling in chemical plants with several reactors [86]; scheduling aircraft landings
to multiple runways [10]; simultaneous scheduling of maintenance activities requiring
different skills [14]; compilation of computer programs on heterogeneous Very Large
Instruction Word (VLIW) architectures [61]. Problems of this class do also arise in
the optimization of parallel applications on multi-core platforms [53].

Scheduling problems are well-known to be NP-hard and computationally chal-
lenging: not surprisingly, introducing resource assignment decisions drastically in-
creases the time for solving the problem. As an example, the well-known PSPLIB
benchmarks [50] include classical scheduling problems (Resource Constrained
Project Scheduling Problems—RCPSP) as well as problems involving resource
assignment decisions (Multi-mode Resource Constrained Project Scheduling
Problems—MRCPSP): while RCPSP instances with up to 120 activities are solved by
powerful hybrid CP/SAT methods [75], finding optimal solutions to instances with
up to 30 activities of the MRCPSP is still considered a very challenging task [94].

Constraint Programming (CP) can claim a success story with pure scheduling
[3], providing an elegant and versatile modeling framework, based on effective and
efficient filtering algorithms and search strategies. Significant effort has been put
into extending CP models and solution techniques for allocation and scheduling
problems. Unfortunately the obtained results are not comparable to those of pure
scheduling. The main reasons are the very large search space and lack of effective
techniques for joint filtering of assignment and scheduling variables.

Operations Research (OR) scientists have also considered resource allocation
and scheduling problems (see the survey by Brucker at al. [18]), mainly under the
flag of the MRCPSP, introduced in the late 70’s [31]. Taking advantage of a strong

1E.g. the Resource Constrained Project Scheduling Problem or Job Shop Scheduling.
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mathematical basis, they have identified relevant problem properties and powerful
optimization-based filtering rules (dominance rules). Nevertheless, no sharp dom-
inance exists between OR and CP techniques: both approaches report individual
successes, but they overall perform equally well or (from a different perspective)
equally poorly.2

Starting from 2001, hybrid CP/OR approaches have been applied to resource
allocation and scheduling problems: to the best of the authors’ knowledge, works
[41, 48, 85] are the earliest, most relevant examples; the mentioned approaches
are mainly based on Logic Based Benders Decomposition (introduced in [46] and
formalized in [45]) and report orders-of-magnitude speed-ups compared to pure
CP and pure OR methods. Intuitively, since allocation and scheduling problems
result from the composition of an assignment and a scheduling component, hybrid
algorithms have the opportunity to use the most effective (heterogeneous) technique
to target each problem part (e.g. Mixed Integer Linear Programming—MILP—for
the assignment and CP for scheduling).

Motivated by the success of hybrid methods on resource assignment and schedul-
ing, we provide a cross-disciplinary survey on the topic, including CP, OR and hybrid
approaches. The main ef fort is to identify key modeling and solution techniques, so
that they may be applied in the construction of new hybrid algorithms, or they may
provide ideas for devising novel f iltering methods (e.g. based on decomposition or on
alternative representations of the domain store). In detail, we take a constraint-based
perspective and, according to the equation CP = model + propagation + search, we
give an overview of state-of-art models, propagation/bounding algorithms and search
strategies.

In particular, we focus on approaches making some use of tree search, as the
techniques they apply are more easily portable in a CP context. This choice excludes
local search, greedy heuristics and all meta-heuristic methods; due to the problem
complexity, those are however very important approaches: [88] reports a comprehen-
sive list of previous heuristic and meta-heuristic approaches for the MRCPSP and
describes a novel genetic algorithm; [36] describes a metaheuristic based on smart
neighborhood functions; [53] is a good starting point for heuristics to map parallel
programs on multi-core platforms. Self-adaptive Large Neighborhood Search has
been successfully applied to scheduling problems [56] and to joint allocation and
scheduling problems modeled via time interval variables [55] (see Section 3.1.2).
Finally, some combinatorial problems such as Capacitated Vehicle Routing with
Time Windows are related to resource allocation and scheduling, but are left out
of this survey: for more details, the interested reader may refer to [87].

The outline of the paper is as follows: Section 2 introduces the considered problem
class and relevant variants; Section 3 discusses the main modeling techniques in OR
and CP, including decomposition based models. Sections 4 and 5 are devoted to
filtering algorithms and bounding rules; an overview of search strategies is given in
Section 6, while solution methods for decomposition based approaches are discussed
in Section 7.

2In particular, both approaches have serious scalability issues [48], typically worse for OR methods
(see e.g. the state of the art results reported in [39, 94]). On the other side, pure CP approaches have
serious difficulties with important classes of objective functions such as tardiness costs (as hinted by
the lack of research works on the topic).
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2 Reference problem class

In this section, we provide a formal definition for the main problem class we take
into account; relevant variants are discussed in Section 2.1.

We consider an allocation and scheduling problem defined over a set A of
activities (say {a0, a1, . . .}), representing atomic operations. Activities have temporal
dependencies, described via a set E of pairs (ai, a j), representing end-to-start prece-
dence relations. Activities and dependencies together form a directed acyclic graph
G = 〈A, E〉, referred to as project graph following the OR literature. Without loss of
generality, we assume there is a single source activity and a single sink activity. We
refer to the start time of activity ai as si (i.e. the first time instant t where the activity is
executing) and to the end time of ai as ei (i.e. the first time instant where the activity
is not executing, after it has started), with si, ei ≥ 0; the notation s/e refers to the full
vector of start/end times.

The problem defines a set R of resources rk, with fixed capacity ck over time
(renewable resources, introduced in [31]). Those may represent, e.g., manpower,
industrial machines or computing devices. We provide a formal description of
allocation decisions by introducing binary variables xik, with xik = 1 if ai is using rk.
Problem dependent constraints typically restrict the possible resource assignment
choices, i.e. the allowed tuples for the full vector of allocation variables x. The exact
amount of each requirement depends on the assignment decisions: formally, this is
a function rqik(x), with rqik(x) ≥ 0. Similarly, the activity durations are allocation
dependent, i.e. each duration is a function di(x), with di(x) ≥ 0. Note the approach
allows duration and requirement values to depend on allocation choices involving
multiple activities.

A solution of the problem is a full assignment of start times si and allocation vari-
ables xik such that neither temporal nor resource capacity restrictions are violated. A
solution is optimal if it has (with no loss of generality) the minimal feasible value for
a given performance metric F(x, s, e), depending in general both on allocation and
scheduling choices. Finding an optimal solution is an NP-hard problem (the proof
follows from the one in [51]).

2.1 Relevant problem variants

Resource assignment and scheduling problems mainly arise in practical contexts.
As a consequence, the basic structure outlined in the previous section is often
complicated by a number of side constraints and unique features. Rather than
attempting a comprehensive classification, we describe some of the main variants
encountered in the literature and considered in this paper.

2.1.1 Resource related variants

Besides renewable resource, other resource types are found in the literature; here,
we mention the main ones.

Non-renewable resources Non-renewable resources have a starting availability and
are consumed throughout the whole scheduling horizon, until depleted: project
budget is a good example. They were introduced in [31] and are typically considered
by MRCPSP approaches. If non-renewable resources are taken into account, finding
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a feasible resource assignment is an NP-complete problem [51] and the whole
optimization process becomes considerably harder (see [79] for some comments).
The so-called doubly constrained resources (coupling a fixed capacity over time
and an overall usage limit) are considered in some works, but can be modeled by
combining a renewable and a non-renewable resource.

Variable capacity and requirements over time Resources with time varying capacity
are taken into account in [79, 81]. Work [8] shows a technique to turn variable
capacities into constant ones, by introducing fictitious activities and fixing their
position in the schedule by means of time windows or time lags (see Section 2.1.2);
the method is described for the RCPSP, but can be easily generalized to take into
account resource assignments. The important case of resource breaks (e.g. vacation
time, machine maintenance downtime) and break-interruptible activities (i.e. that
can be preempted by breaks) is considered in [19] in an OR context for the MRCPSP
and in [1, 3] in CP. Time varying resource requirements are instead considered in [30]
and in [70] in the context of alternative activities (see Section 3.1.2).

Time/resource trade-of fs Some allocation and scheduling formulations take into ac-
count time/resource trade-offs, by allowing activities to assume a different duration,
depending on the consumed amount of the selected resources. The MRCPSP is the
most relevant example since activity modes may specify different requirement values
rather than different mapping choices. In such a case, mapping decisions can no
longer be formalized via the xik variables. In this paper, we consider problems with
time/resource trade-offs, provided they also feature resource mapping choices: this
leaves out pure trade-off problems with fixed resource mapping, such as the Discrete
Time/Resource Trade-off Problem in [28].

2.1.2 Temporal constraint related variants

Temporal constraints other than simple end-to-start precedence relations are very
common in the literature; here, we give a fairly complete overview of the reported
cases.

Start/start, start/end, end/end precedence relations End-to-start relations can be
generalized by introducing start-to-start, end-to-end and start-to-end precedence
constraints. Those can be easily turned one into another, provided activities have
fixed durations, say di (for example e j ≥ ei becomes s j + d j ≥ ei). The transformation
method is described in [32] for the RCPSP, but applies to the problem from Section 2
provided di(x) is constant, or whenever during search a full resource assignment
becomes known. The multi-mode RCPSP with this kind of precedence relation is
known as Generalized MRCPSP.

As a relevant remark, if precedence relations other than end-to-start are taken
into account, assigning the shortest possible duration to an activity may result in an
increase of the schedule makespan [32]. This may prevent the application of several
dominance rules (see Section 5.2.2).

Generalized precedence relations and time windows This case subsumes the previ-
ous one; additionally, minimal and maximal time lags (say δmin and δmax) label the



56 Constraints (2012) 17:51–85

precedence relations and constrain the time distance between the involved activities:
formally in case of an end-to-start arc, the produced schedule must satisfy δmin ≤
e j − si ≤ δmax. Minimal time lags enforce a minimum separation restriction, maximal
time lags may model “best before” constraints, occurring e.g. in chemical and
food industries. The Multi-mode RCPSP with this type of precedence constraint is
known as MRCPSP with Generalized Precedence Relations (GPR). Time windows,
constraining the execution of activities ai between a release time rsi and a deadline
dli are equivalent to minimal/maximal time lags from the source node.

For pure scheduling problems, a maximal time lag on an arc (ai, a j) can be
converted into a negative minimal time lag on the complementary arc (a j, ai); the
transformation follows trivially by the inequality e j − si ≤ δmax and is described in
[8, 18]. As a consequence, a graph with maximal time lags typically contains cycles.
A temporally feasible assignment of start times can be still obtained via shortest path
algorithms (as shown for the Simple Temporal Problem [27]); finding a temporally
and resource feasible schedule, however, is NP-hard even with very simple side
constraints on the assignment variables. Moreover, taking into account Generalized
Precedence Relations may prevent the application of many dominance rules, as
described above.

In allocation and scheduling problems, time lags may depend on the resource
assignment (e.g. mode dependent time lags in [39, 74]). In the context of optimization
for parallel programs on multi-core systems, allocation dependent minimal time lags
are typically used to model communication costs depending on processor assignment
decisions [52]. Observe that, as long as some assignment decisions have to be
taken, allocation dependent durations are equivalent to start-to-start precedence
constraints with allocation dependent time lags; as a consequence, most resource as-
signment and scheduling problem do behave as containing Generalized Precedence
Relations, at least for part of the search process.

Setup times Setup times are separation constraints between tasks mapped on the
same resources, modeling, e.g., the time required to perform cleaning operations or
to change tools before executing an activity ai. Unlike allocation dependent minimal
time lags, the involved activities need not to be connected by an arc in the project
graph (i.e. their order is not a-priori fixed). If the setup time between activities ai and
a j does not depend on the order they appear in the schedule, it may be incorporated
in their execution time. Conversely, one speaks of sequence dependent setup times, a
relevant case in practical applications: this is considered in [34] for scheduling with
alternative resources, [10] for scheduling aircraft landings and [86] for a batching and
scheduling problem from the chemical industry.

2.1.3 Objective function types

Time based objectives Time based objectives used in resource assignment and
scheduling are an extension of those used for pure scheduling problems. A time based
cost function only indirectly depends on allocation choices, i.e. F(x, s, e) = F(s, e).
Makespan (overall completion time) minimization is the most frequently occurring
objective in the literature; in this case we have F(x, s, e) = maxi ei. Equivalently,
assuming an−1 is the single sink activity, one can state F(x, s, e) = en−1.
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In a real-world context, where oversubscribed problems with tight time-windows
often arise, tardiness based costs are also very popular; for an activity ai with
deadline dli, the tardiness is the activity delay w.r.t the deadline; this is defined
as T Di(ei) = max(0, ei − dli). A tardiness cost function has the form F(x, s, e) =∑

i wi · T Di(ei), where weights wi are introduced for each activity to account for
non-uniform tardiness costs. This type of objective is considered in [43, 55] from a
methodological perspective and in [10, 33, 86, 92] in an industrial context. Sometimes,
there is a cost to be paid for early completions, with earliness being formally defined
as ERi(ei) = max(0, dli − ei). Earliness costs are considered in [86] (where they are
due to inventory maintenance), in [10, 33] (in case of early aircraft landing) and
in [55] (from a methodological perspective). A detailed list of possible problem
objectives appears in [79]: most of them are time-based.

Resource based objectives We refer as resource based objectives to cost functions
directly depending only on allocation choices, i.e. F(x, s, e) = F(x). The main exam-
ple are costs to be paid for assigning single activities to resources or for choosing a
specific activity mode: those include processing costs [48], energy dissipation over
multi-core systems [73], or assignment costs in general [41, 85]. Costs associated
to the assignment of activity pairs (similarly to those of a Quadratic Assignment
Problem) appear instead in [16, 63] to model bus congestion in a multi-core system
and are considerably more challenging from a computational standpoint.

Time and resource based objectives This class includes in the first place any
combination (e.g via weighted sum) of time-based and resource-based objectives.
Moreover, some cost functions depend inherently on allocation and scheduling
decisions; this is the case for setup costs, since they are defined for activities assigned
to the same resource: those are considered in [34], in [86] (where they are due to
machine cleaning operations) and in [73] (where they are associated to processor
frequency switching). A second unusual example are the rescheduling costs taken
into account in [26] in the context of reactive scheduling.

Regular vs non-regular objectives The notion of regular performance measure is
introduced in [72] for the RCPSP and extended in [81] to the multiple mode case.
A cost function is regular if its value may only improve by reducing the end time ei

of some activity (without changing the activity mode—i.e. the resource assignment).
This is an extremely important case, since with regular objectives the set of optimal
solutions always includes a tight schedule (see the detailed discussion on the Left-
shift Rule in Section 5.2.2): this property is used to devise powerful pruning rules.
Non-regular objectives are however very common in practice and include earliness
costs, setup costs and all the mentioned resource-based objectives.

3 Modeling techniques

Here, we present the main modeling techniques developed for the reference prob-
lem in CP (Section 3.1) and OR (Section 3.2); moreover, Section 3.3 discusses
decomposition-based and hybrid approaches.
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3.1 Constraint based models

3.1.1 Using classical activities and constraints

It is possible to use classical CP techniques for pure scheduling problems to take into
account resource assignment decisions. In Constraint-based Scheduling [3], activities
are represented by introducing integer variables for every activity ai. In detail we
have Si, representing the activity start time si and Ei, representing the activity
end time ei. In assignment and scheduling problems, it is customary to introduce
an integer variable Di representing the activity duration; then the constraint Ei =
Si + Di is enforced. Variables Si, Ei and Di are assumed to have convex domains;
their bounds are referred to by means of conventional names: min(Si) is the Earliest
Start Time—EST(ai)—and max(Si) is the Latest Start Time—LST(ai); the Earliest
End Time and Latest End Time—EET(ai) and LET(ai)—are defined analogously
for the Ei variable.

End-to-start precedence relations are modeled as linear constraints Ej ≤ Sj.
Generalized Precedence Relations can be taken into account by posting constraints
δmin ≤ Ei − Si ≤ δmax, according to the definition from Section 2.1.2. Enforcing
consistency for the resulting network is known as Simple Temporal Problem [27]
and can be done via propagation of the inequality constraints. However, detecting
an infeasibility with this method takes in general time proportional to the largest
Si/Ei domain. Alternatively, precedence constraints can be explicitly stated (e.g. by
means of global constraints) and one may use a shortest path algorithm for graphs
with negative weights, such as Bellmann-Ford (with complexity O(|A||E|), where
|A| is the number of activities and |E| is the number of arcs).

Allocation decisions can be modeled [2] by introducing a binary variable Xik
for each xik; duration variables are linked to allocation decisions by a constraint
Di = di(X), where X represents the whole set of Xi variables and the function di(·)
is the one from Section 2. Side constraints usually restrict the possible resource
assignments. Resource restrictions are enforced via the cumulative constraint (see
[3] for a reference). The effect of resource assignments can be modeled by using
variable resource requirements: in detail, the amount by which activity ai requires
resource rk is modeled via an auxiliary variable RQik; the variable value depends on
allocation decisions, i.e. RQik = rqik(X), where rqik(·) is the function from Section 2.
Classical filtering for the cumulative constraint can be used in this case by assuming
RQik has minimal value.

Fig. 1 A CP model for non-preemptive resource allocation and scheduling, with no side constraints
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Figure 1 shows a basic CP model for resource allocation and scheduling with
no side constraints; the cost function F is as from Section 2 and eoh denotes the
largest considered time instant (End Of Horizon). Non-renewable resources are
straightforward to model with this approach and result into a set of knapsack
constraints on Xik variables. Similarly, time-based objective and assignment costs
are easy to deal with. Sequence dependent setup times are usually handled by
introducing sequencing variables Bij such that Bij = 1 iff ai precedes a j, i.e. we have
Bij = 1 ⇔ Ej ≥ Si + δij, where δij is the setup time. From a modeling perspective,
there is hardly any allocation and scheduling problem beyond the reach of this
approach. Unfortunately, resource and temporal propagation tend to be very weak
when requirement or duration variables are unbound, so that more structured
approaches are in practice needed.

3.1.2 Specif ic constraint based modeling techniques

Alternative resources This approach models assignment choices by allowing an
activity ai to require exactly one resource out of a set, say R′ ⊆ R, of alternative
resources [34, 66]; formally, relation

∑
rk∈R′ xik = 1 must hold. Typically, the whole

resource set R is partitioned into subsets R0, R1, . . . of alternative resources. A
fixed requirement (say ρ) is specified for the whole set, so that the corresponding
rqik(X) function is ρ · xik. We say an alternative resource set R′ is independent if
a decision on R′ has no impact on any other assignment choice, i.e. if there is
no constraint connecting xik variables with rk ∈ R′ to other variables in x. From
a modeling perspective, alternative resources represent a restriction compared to
the approach in the previous section. However, they allow more powerful filtering,
taking advantage of the fixed requirement value and the XOR relation between xik

variables.
As a relevant special case, an independent set R′ of n identical unary resources

is equivalent to a single resource with capacity n (multi-capacity resource, see
[65]): this representation results into huge search time savings whenever applicable.
Unfortunately, side constraints or assignment dependent durations may make the
resources non-identical and invalidate the equivalence. Setup times have the same
effect, as they require to know the specific resource assignment for each activity.

Disjunctive temporal problem with f inite domain constraints Assignment and
scheduling problems over unary capacity resources can be modeled within the
framework of the Disjunctive Temporal Problem with Finite Domain Constraints
(DTPFD) by Moffitt, Peintner and Pollack [64]. A DTPFD defines a network of
time points, each with an associated temporal variable Ti and a finite domain
variable Yi; time points can represents activity start/end events. It is possible to
post between pairs of time points a disjunction of linear inequalities in the form
Ti − Tj ≤ DB(Yi,Yj); the value of the bounding function DB(Yi,Yj) depends on
the finite domain variables. This approach exposes in depth the temporal structure of
the problem, providing support for stronger filtering between time and assignment
variables (see Section 4.1.1). Variables Yi can be linked to assignment variables
xik so that two activities are required not to overlap if they are processed by the
same unary resource. The approach naturally handles setup times, by connecting
sequencing variables (e.g. the Bij we used before) to Yi variables by means of
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chaining constraints. Moreover, the DTPFD can be used to model time/resource
trade-offs (see Section 2.1.1).

Non-unary resources can in principle be handled by detecting possible resource
conflicts at search time and consequently posting new disjunctions, similarly to what
is done in many Precedence Constraint Posting approaches (see Section 3.3); this is
however not reported in the literature.

Alternative activities The so-called Alternative Activities have been introduced by
Beck and Fox in [11, 12]; they can be used to model resource assignment decisions
and their impact on durations and requirements. The project graph is extended
by including so-called XOR nodes; a pair of XOR nodes marks the start and
the end of alternative “blocks”, i.e. sets of alternative subgraphs. Formally, each
activity is assigned an execution variable exi, such that exi = 0 if activity ai does
not execute, exi = 1 in case ai executes and exi ∈ {0, 1} as long as it is undecided.
Successors/predecessors of a XOR node are mutually exclusive (i.e.

∑
i exi = 1).

Alternative blocks can be nested, but this is the only allowed way to compose
XOR nodes. A block with a single activity on each branch can be used to represent
different execution recipes for the same logical activity (i.e. combinations of duration
and resource requirements); the method is analogous to modes in the MRCPSP.
The alternative recipes may require different resources or a different amount of
the same resource; therefore this approach can be used to model time/resource
trade-offs (unlike alternative resources). Alternative paths between nested XOR
nodes may contain generic subgraphs rather than single activities; this allows one
to model alternative process plans and makes the approach more expressive than the
MRCPSP.

Alternative activities and plans are considered from a purely temporal perspective
in Temporal Networks with Alternatives (TNA), introduced by Barták, Cepek and
Surynek in [5]. TNAs feature so-called branching nodes, close in spirit to XOR
nodes, but with no composition restriction. In principle, this allow the construction
of non-nested alternative structures and model complex assignment constraints.
Unfortunately, work [5] proves that completing a partial assignment of execution
variables (e.g. finding a feasible resource assignment) is NP-complete in general,
while the problem is polynomial in nested networks3 [4].

In general, exposing assignment choices as alternative activities provides more
information to filtering algorithms (see Section 4.1.1). As a main drawback, the
project graph and the model become bigger. If Generalized Precedence Relations are
not considered, modeling assignment decisions over independent sets of alternative
resources requires an exponential number of activities (i.e. one for each combination
of resource assignments). Conversely, by using GPRs it is possible to avoid the
combinatorial blow-up; this can be done by (1) building an alternative block for each
independent set of resources; (2) synchronizing their opening/closing XOR nodes
using precedence constraints with time lags.

3We conjecture the result may hold for slightly more general graph structures, such as those
considered in [63].
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Optional activities and interval activities The so-called optional activities are similar
to alternative activities since they have an associated execution variable exi; however,
they are not necessarily part of an alternative block. They are introduced by Le Pape
in [59], where the activity representation of ILOG-Scheduler is extended, so that a
0 duration denotes a non-executing activity. Optional activities requiring different
resources can be used to model complex resource assignments decisions, by properly
constraining their execution variables.

Building on ideas developed for alternative and optional activities, in [57] Laborie
and Rogerie proposed to handle optional activities as first class variables, referred
to as time-interval variables. A time interval variable Ai has values in the domain
⊥ ∪ {[s, e) | s, e ∈ Z, s ≤ e}. In detail, either the variable is non-executed (Ai = ⊥) or
its value is a half-open interval [s, e) with integer bounds. Non-executed variables
have no effect on the constraints they are involved in. Time interval variables can
be connected by generalized precedence constraints, or can be organized in explicit
alternative and hierarchical blocks; each block corresponds to a macro-interval Ai,
spanning over a set of (possibly alternative) sub-intervals Aj.

So-called execution constraints exec(Ai) force a variable to be executed and can
be aggregated into unary or binary logical expressions (e.g exec(Ai) ⇒ exec(Aj)). Re-
source constraints are taken into account in [58], where time-intervals are associated
to step functions (referred to as cumul functions), representing the resource usage
profiles. The approach is showcased in [55] on three practical examples.

Complex resource allocation and scheduling problems can be modeled by encod-
ing resource assignment as execution decisions for interval variables.

The approach provides strong support for filtering algorithms thanks to the use of
actual activities to expose different execution recipes, and thanks to explicitly stated
alternative blocks. The availability of GPRs avoids the exponential growth of model
size in case of independent sets of alternative resources. This approach is currently
adopted by IBM-ILOG CP Optimizer and Google or-tools.

3.2 Mixed integer linear programming models

Most of the OR literature about resource allocation and scheduling is related to the
Multi-mode Resource Constrained Scheduling Problem (MRCPSP), first introduced
in [31]. In the MRCPSP, each activity ai can be executed in one out of a set of
possible modes Mi. Each mode μh ∈ Mi specifies a set of resource requirements
and a duration value. The MRCPSP does not strictly fit the notation introduced in
Section 2, but can be taken into account by introducing a mode variable mi for each
activity ai and making the requirements and duration functions mode dependent.
In practice, we can link the resource requirement and the activity duration to a
single variable mi representing the activity mode, rather than having a vector of 0–
1 decision variables x representing the assignment/non-assignment of an activity to
each resource.

The multi-mode formalism allows one to model time/resource trade-offs, since
different modes may require the same resources in different amounts. Similarly to
alternative activities and time interval variables, an exponential number of modes
is required to model assignment decisions over independent sets of alternative
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Fig. 2 A time indexed model for non-preemptive MRCPSP

resources, unless GPRs are supported. The main Mixed Integer Linear Programming
(MILP) models for the MRCPSP can be classified into time indexed and disjunctive
and are described in the following.

3.2.1 Time indexed model

In time indexed models, binary variables Ei,h,t are introduced to denote whether an
activity ai is scheduled to f inish at time t in mode μh. In Fig. 2, we report the model
introduced by Talbot in [84]. Constraints (2) require each activity to be finished
by the end of horizon. Constraints (3) enforce end-to-start precedence relations
and constraints (4) resource capacity restrictions. The cost function has been re-
formulated to take into account the different decisions variables.

Time indexed models allow resource capacity restrictions to be formulated as
linear constraints. As a drawback, due to the use of a discrete time representa-
tion, the number of variables depends on the length of the horizon, resulting in
limited scalability. In an attempt to address the issue, [93] proposes two alternative
formulations, but reports no substantial improvement. With time indexed models
it is straightforward to represent non-convex temporal domains; this allows to
easily handle disjoint time windows, required e.g. for resource breaks with non-
interruptible activities. Variable resource capacities over time are similarly easy to
deal with (see [94]). The linear relaxation provided by a time indexed model is
usually stronger than that of a disjunctive one, in particular in case of tight resource
constraints.

Disjunctive model In a disjunctive model, a start variable Si is introduced for each
activity ai. Mode assignments are represented by variables Mih, such that Mih = 1
iff activity ai is executed in mode μh. A complete model (a slight elaboration over
the one by Heilmann in [39]) is shown in Fig. 3. Constraints (7) represent end-to-
start precedence relations and Constraints (9) force a mode to be assigned to each
activity. The notation A(S, t) refers to the set of tasks executing at time t, i.e. such
that Si ≤ t < Si + ∑

μh∈Mi
di(μh) · Mih. The cost function has been re-formulated to

take into account the different decisions variables.
Disjunctive models require a smaller number of decision variables compared to

time indexed ones. A linear representation for Constraints (8) can be provided
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Fig. 3 A disjunctive model for non-preemptive MRCPSP

by preventing the overlapping execution of conflicting activities and requires: (1)
to identify the sets of activities possibly causing an overusage (e.g. the Minimal
Forbidden Sets described in Sections 6.1 and 6.2); (2) to add constraints forcing the
disjoint execution of some of the activities in the sets. There are however two strong
disadvantages: in first place, the number of Minimal Forbidden Sets (and therefore
of additional constraints) is in general exponential in the size of the graph.4 In second
place, the disjunction constraints make use of a big-M linearization and lead to a poor
relaxation based bound (considerably worse than time-indexed models). As a matter
of fact, all approaches based on disjunctive models such as [39] rely on specific search
strategies to take care of resource constraints (see Section 6).

As an alternative, [74] proposes a more compact model where resource allocation
and scheduling is formulated as a constrained rectangular packing problem. Unfor-
tunately, since rectangular packing and renewable resource restrictions are not fully
equivalent [13], the method may miss feasible/optimal solutions.

3.3 Hybrid and decomposition based approaches

Resource assignment and scheduling problems result from the composition of a pure
assignment and a pure scheduling component: this hybrid nature can be exploited
to split the overall problem into distinct stages with separated (although dependent)
variables. Typically, one is left with a resource assignment problem (so-called master
problem) and a pure scheduling problem with the allocation provided by the master
(so-called subproblem).

Such a decomposition has a number of advantages: (1) models for both the stages
are typically much smaller and have a cleaner structure, making their solution more
efficient. For instance, it is possible to remove big-M expressions from a MILP model,
improving the linear relaxation [48]. (2) Heterogeneous techniques can be used to

4It is quadratic if only unary resources are taken into account, making this approach fairly popular
in such context.
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solve the stage they are best for (e.g. MILP for the assignment and CP for scheduling)
obtaining so-called hybrid approaches. (3) The resulting “pure” problems can be
tackled with a much better established pool of techniques, such as those in [3, 20]. (4)
In case of resource-based objectives (see Section 2.1.3), the cost function depends
only on the assignment stage, with the scheduling one acting as a feasibility check,
e.g. [16, 41, 48, 63]. (5) Finally, a clever decomposition may allow the scheduling
stage to be split into a collection of independent subproblems, making its solution
even simpler. This is relatively easy if the Project Graph contains no precedence
relations or in case only setup times are specified, as shown in [21, 41]). Splitting
the subproblem may be however be impossible if no special precedence constraint
structure is assumed.

Alternatively, a problem decomposition can be obtained by separating constraints
rather than problem variables. In such a case the master is an optimization problem,
possibly formulated with some technique with no support for resource constraints;
the subproblem is either a consistency check or a very simple feasibility problem. The
approach is discussed from a general perspective in [40], and in [85] in the context
of the Branch-and-Check framework. Typically, resource capacity constraints can
be considered only in the subproblem, leaving temporal and assignment constraints
in the master. This is a key idea in Precedence Constraint Posting approaches: in
this case possible resource conflicts in the current schedule are identified at search
time (see Sections 6.1 and 6.2) and resolved by adding cuts. These concepts have
been first introduced in [47], further elaborated in [77], and applied to allocation
and scheduling problems in [12, 39]. The approach has been applied to scheduling
problems by [71] and [54].

The obvious drawback of decomposition is the loss of valuable information due
to the decoupling. In order to improve the solution quality, the two stages are solved
iteratively in an interacting fashion: in particular, (1) cuts are injected in the assign-
ment problem whenever the scheduling problem is solved (either successfully or not).
Moreover (2) in all the mentioned references the assignment problem contains some
relaxation of the scheduling problem constraints (so-called subproblem relaxation).
Properly engineering the interaction between master and sub-problem is essential for
the effectiveness of a decomposition based approach: systematic, optimal, methods
to achieve this goal are formalized in the Branch-and-Check [85] framework and
(most relevantly) in Logic-based Benders Decomposition (LBD), formally defined
by Hooker and Ottosson in [45]. Both the approaches are discussed in Section 7.

The paper [86] tackles an allocation, batching and scheduling problem in the
chemical industry introducing temporal decomposition: the time horizon is split into
time buckets; an LBD approach is used to solve an allocation and scheduling problem
for each bucket, with resource assignment acting as the master problem; the schedule
for time bucket i is built by extending that of bucket i − 1; solved buckets are never
revised. Temporal decomposition is applied in a more systematic fashion by Coban
and Hooker in [24]; however, this is done in the context of a single facility scheduling
problem.

Finally, it is possible to devise hybrid approaches not relying on decomposition:
work [48] reports a double CP/MILP model for an assignment and scheduling
problem; specifically, branching is essentially based on the CP representation, while
the MILP model is used to obtain bounds via its linear relaxation.



Constraints (2012) 17:51–85 65

4 Propagation

In the context of resource assignment and scheduling problems, the key difficulty
addressed by propagation techniques is to provide the tightest possible interaction
between allocation and scheduling choices. In the following, we overview exist-
ing propagation techniques, roughly categorized in temporal, logical and resource
filtering, depending on the aspect they mainly focus on. It is interesting to see
how most of the filtering techniques for assignment and scheduling problems are in
fact relatively simple extensions of the corresponding methods for pure scheduling:
we found this stimulating rather than disappointing, as it leaves room for possible
future improvements. With decomposition methods, classical scheduling constraints
can be used in each subproblem; the problem of the interaction between resource
assignment and scheduling translates instead to the problem of the interaction
between the resulting components (addressed in Section 7).

4.1 Temporal reasoning

If only end-to-start precedence relations are defined, temporal constraint propaga-
tion can be done via the classical Critical Path Method [49]: lower bounds on the time
windows (i.e. ESTs) can be obtained by assuming the durations are fixed to the lowest
value and computing shortest paths from the source node. Temporal reasoning and
time window determination have an important role in reducing the size of time-
indexed models (see Section 3.2.1) and the quality of their linear relaxation.

If maximal time lags or precedence constraints other than end-to-start are con-
sidered, minimum durations do not necessarily lead to valid ESTs (this happens if a
backward arc is part of the critical path as discussed in [32]). Correct time windows
can be computed by relying on the equivalence between durations and min/max time
lags (see Section 2.1.2), i.e. min(di(x)) ≤ ei − si ≤ max(di(x)): enforcing bound con-
sistency on the resulting inequality constraints or performing shortest/longest path
computation on the equivalent Simple Temporal Problem leads to valid EST/LET
values. Obviously, no issue exists if durations are not allocation dependent; in
general, however, when complex precedence constraints are taken into account, one
should be aware that shortest durations do not necessarily result in the shortest
possible schedule. As a remark, this prevents the application of some dominance
rules (see Section 5.2.2).

4.1.1 Temporal reasoning with alternative resources and activities

Alternative and optional activities can be tackled by including the execution vari-
ables exi ∈ {0, 1} in the precedence constraint expression, so that an end-to-start
constraint becomes e.g. exi × ex j × s j ≥ exi × ex j × ei + di(x), as in [6]. The resulting
propagation is however usually weak: this is quite expected since no specific con-
straint structure is assumed for the exi variables.

Stronger propagation can be obtained for nested alternative blocks [6, 12], for
alternative groups of time-interval variables [57] and for alternative resources: the
basic technique used to perform filtering is the same in all cases and is described
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here in the context of alternative resources. In detail, let ai be an activity requiring ρ

units of one resource out of a set R′ of m alternative resources, propagation can be
performed as if ai was split into m alternative activities a0

i , . . . am−1
i , each requiring

ρ units of a specific resource in rk ∈ R′. Then temporal reasoning maintains the
constructive disjunction between the time window of the alternative sub-activities
(see [34, 65]):

EST(ai) = min
rk∈R′{EST(ak

i )} LST(ai) = max
rk∈R′

{LST(ak
i )}

EET(ai) = min
rk∈R′{EET(ak

i )} LET(ai) = max
rk∈R′

{LET(ak
i )}

classical filtering methods for temporal constraints can be used to prune the time
windows of the sub-activities. Whenever the domain of a start time variable becomes
empty, the corresponding resource rk is removed from the set of possible assignment
choices, or the corresponding exk

i variable is set to 0 in case of alternative activities
or time interval variables.

A similar approach is adopted by the least commitment method for the DTPFD

described in [64]. Here, temporal constraints with disjunctive bounds in the DTPFD

are associated with min/max time lags by convexification (i.e. by assuming the
loosest bounds DB(Yi,Yj) allowed by the finite domain variables), then relaxed,
convex, time windows are computed for each node. Whenever the time windows are
tightened, incoherent Yi values are ruled out.

As a last, very interesting case, the time-interval variable approach described in
[57], allows binary logical constraints to be specified on the exi variables. Those are
encoded as an implication graph, allowing joint logical and temporal propagation to
be performed. In detail, assuming an arc (ai, a j) exists, whenever the logical network
can infer the relation exi ⇒ ex j the arc can propagate the conditional bounds from
s j to ei. Similarly, if the relation ex j ⇒ exi can be inferred, then the other half of the
propagation can be performed. This allows propagation of temporal bounds even if
the execution status is not yet fixed.

4.2 Logical filtering

Logical filtering includes the approach described in [7] for Temporal Network with
Alternatives, that improves propagation by adding redundant side constraints on
the execution variables. Such redundant constraints are based on the identification
of classes of “equivalent” activities, inferred from the network structure. Equiva-
lent activities share the same execution variable: explicitly stating this information
substantially improves propagation over resource assignment variables. The paper
proves that detecting all equivalent nodes in a network is NP-hard, but proposes
three polynomial complexity methods to identify some equivalence relations. The
most effective technique relies on the detection of nested substructures, in which case
the entry and exit node can be considered equivalent. A second relevant example is
the implication graph in [57], that may allow stronger propagation compared to local
consistency.
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4.3 Resource reasoning

The earliest edge-finding algorithm for resource assignment and scheduling problems
is discussed in [2]: optional activities are tackled by assuming non-executed activities
to have a duration of zero. Alternative resource assignments are dealt with by con-
ditioning the resource requirement with the demand variables Xik from Section 3.1.
The resulting propagation is however quite weak.

Optional activities modeled via execution variables are first taken into account
into edge-finding reasoning in [12]. In details, the algorithm is based on two simple
ideas: (1) an optional activity ai should not be taken into account when computing
bounds on any other activity a j; (2) if the time window of ai gets empty due to
resource propagation, the value 1 should be removed from the execution variable exi

(i.e. the activity is deemed non-executable). This kind of reasoning to extend classical
propagators for resource constraints to optional activities is the same encountered
for temporal propagation in Section 4.1.1; it is also the key idea behind many other
filtering algorithms, applied for example in [91] in the context of efficient edge
finding with �-trees; in [34] for alternative resources, where the execution variables
are replaced by resource assignment choices; in [90] for mixed timetable/edge-
finding; in [89] within an interesting method to filter the maximal resource usage
and maximal duration; in [70] where activities with negative resource consumption
(i.e. resource producers) are taken into account.

The opposite process (deducing the necessary execution of an activity) is inher-
ently more difficult. Typically, the most effective way to reach such a conclusion is
propagating side constraints on the resource allocation (or the execution) variables.
As an exception, in [70] it is shown how to deduce the necessary execution of
activities with negative resource consumption.

For a set R′ of alternative resources, complementary propagation is possible
by introducing a redundant resource [65] with capacity

∑
rk∈R′ ck and applying

classical filtering algorithms. Combined with the previously discussed methods, the
approach provides improved propagation as long as the resource assignment is
undecided.

5 Lower bounds and bounding rules

Research efforts in the context of the Multi-mode RCPSP have focused on bounding
and dominance rules. Bounding rules refer to inferring necessary restrictions on time
windows, mode assignments and scheduling decisions; they are closely related to
filtering in CP. Dominance rules are based on some proof that the set of optimal
solutions must include a schedule with specific properties, which are then used to
narrow the search space. As an exception, some dominance rules exploit knowledge
on past search to deduce that no better schedule can be reached from the current
search node: they can be considered as a form of no-good learning. The most
relevant bounding and dominance rules are presented in Section 5.2. Conversely,
lower bounds for the MRCPSP tend to be not so effective: they are discussed in
Section 5.1.
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5.1 Lower bounds

Lower bounds on the optimal problem cost are a fundamental component of many
search strategies (such as branch & bound, branch & cut, branch & price). In CP, a
lower bound can be encapsulated in a global constraint, improving the effectiveness
on optimization problems and providing access to useful information, such as re-
duced costs [35].

Effective lower bounds for resource allocation and scheduling problems are
difficult to obtain. Time indexed and disjunctive models for the MRCPSP provide
ready to use bounds via their linear relaxation, but those are unfortunately not so
tight. The relaxation of time-indexed models provides the best results, due to lack
of linearized constraints via big-Ms. To the authors knowledge, [94] is the only work
directly exploiting a bound obtained by the relaxation of a (time-indexed) ILP model.
the bounding technique is employed in two stages: in a preprocessing step to tighten
time windows and reduce the model size, then during the solution process to fathom
search nodes. The tightness of the linear relaxation can be improved by adding
redundant cuts: this is done in [94] for the MRCPSP and in [10] in the context of
scheduling aircraft landings.

In case of regular performance measures (see Section 2.1.3) a straightforward
lower bound on the optimal cost can be obtained by ignoring resource constraints and
starting each non-scheduled activity at the Earliest Start Time, obtained via longest
path computation. Interestingly, this is the most widely employed bound for resource
assignment and scheduling problems, since it is both easy to obtain and reasonably
effective. In case of non-regular objectives, things get more complicated since an
earliest start schedule does not necessarily correspond to a better cost: for earliness
and tardiness objectives, [33] develops a modified network simplex algorithm which
can be used to obtain in polynomial time an optimal schedule (without resource
constraints). In [78] two families of lower bounds are proposed for the parallel
machine scheduling problem in which the jobs have distinct due dates with earliness
and tardiness costs: assignment-based lower bounds and bounds based on a time-
indexed formulation of the problem. Lower bounds for sequence dependent setup
times are considered in [34], while [26] discusses lower bounds for rescheduling
costs.

An interesting technique to strengthen a lower bound consists in performing
truncated tree search with a maximum depth: the weakest bound on the tree frontier
is valid for the root node. The method is applied in [94] and [26].

5.2 Bounding rules

Bounding rules are tree reduction techniques that check if the current search
node can be fathomed. Unlike filtering algorithms, bounding rules are executed
as part of the search method and are not attached to a constraint. As a con-
sequence, the rule formulation is tailored on a specific branching scheme (see
Section 6.2), even though the main underlying idea usually has broader applica-
bility. There is no general coordination mechanism (such as propagation), so that
the combination of different rules is up to the algorithm designer. From a CP
perspective, bounding rules may serve as a basis for the development of filtering
algorithms.
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5.2.1 Feasibility and symmetry based rules

Non-renewable resource rule This rule appears in [38], in [80] (with the name “non-
renewable resource consumption”) and in [26] (as “resource infeasibility rule”).
The rule considers each non-renewable resource rk: if scheduling each currently
unscheduled activity in the mode with the lowest request for rk would exceed its
capacity ck, then the current partial schedule cannot be feasibly completed. The rule
is given a very efficient static formulation in [79] (where it is referred to as “input
data adjustment”). This kind of reasoning is subsumed in CP by the usual constraint
propagation techniques on the resource capacity constraints and the assignment
variables.

Immediate selection We group here two different rules, sometimes also referred to
as “Non-delayability”, based on the principle that an obvious or forced scheduling
choice should be immediately performed. The first rule, described in [18, 38, 79, 80]
requires to identify an unscheduled activity a j having fixed mode and no chance to
overlap (due to resource or precedence constraints) with scheduled or unscheduled
activities. In this case, ai can be immediately selected for scheduling. The second rule
only appears in [39] and specifies that, if a possible resource conflict (e.g. a Minimal
Critical Set) admits a single resolution choice, than this should be immediately
performed. The mentioned works contain specific adaptations to different scheduling
schemes.

Single enumeration rule The single enumeration rule, introduced in [81] and further
applied and refined in [38, 79] is a type of dynamic symmetry breaking constraint for
precedence tree branching (see Section 6.2). The rule targets two activities a′, a′′,
scheduled in two subsequent search steps i and i + 1 in mode m′ and m′′; if their
assigned start times do not depend on which activity is scheduled at step i and which
one at i + 1, then only one sequence needs to be considered.

5.2.2 Dominance rules

Dominance rules are a super set of symmetry breaking constraints for optimization
problems. They are based on the observation that the set of optimal solutions
necessarily contains a schedule with specific properties. One can therefore focus on
the generation of that specific schedule, considerably narrowing the search space.

Dominance rules come with specific applicability assumptions. In particular, they
are often restricted to regular cost functions (see Section 2.1.3). All presented
dominance rules target a search process where a partial schedule is built by assigning
a start time to unscheduled activities, proceeding in chronological order.

Left-shift rule This extremely important class of dominance rules is based on a
property of regular objective functions (see Section 2.1.3), and on the concept of
left-shift (discussed in details in [82]). A left-shift is an operation on a single activity
ai within a feasible schedule S, deriving a feasible schedule S′, such that ei(S′) < ei(S)

(where ei(S) is the end time of ai in S) and no other schedule modification occurs. A
left shift of exactly one time unit is called local left shift. A multi-mode left shift [80]
is a left shift of ai where the activity is allowed to change mode (e.g. to be assigned
to a different resource). A schedule is active if it is feasible and no activity can be
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left-shifted, a schedule is tight if it is feasible and no multi-mode left-shift can be
performed. In case of regular performance measures (see Section 2.1.3), the set of
optimal schedules is guaranteed to contain a tight schedule (an active schedule in the
case of the RCPSP).

A pruning rule can be devised based on those properties; the general version of
this left-shift rule states that a partial schedule in which an activity ai can be left-
shifted without violating the precedence and the resource constraints needs not to be
completed (as it is dominated by another active or tight schedule). Several variants
of the rule exist: they are employed in [26, 38, 79, 80]. Brief and effective descriptions
are reported in [18].

Multi-mode rule This rule (employed in [18, 25, 38, 79, 80]) is based on the so-called
mode-reduction operation. A mode reduction [80] of an activity ai within a feasible
schedule is an operation changing the mode of ai to one with shorter duration,
without changing its finish time and without violating the constraints or changing
the modes or finish times of the other activities. A schedule is called mode-minimal
if no mode reduction can be performed. If there is an optimal schedule for a given
instance, then there is an optimal schedule which is both tight and mode-minimal.
Some care must be observed with maximal time lags and precedence constraints
other than end-to-start (see Sections 2.1.2 and 4.1). Note that a tight schedule may not
be mode-minimal, and a mode-minimal schedule may not be tight (for an example
see [80]). The rule states that, if a mode reduction can be performed on an activity ai

with ei equal to the current scheduling time, then the current partial schedule needs
not to be completed.

Order swap rule An order swap [18, 38] is an operation on a feasible schedule
targeting two activities ai, a j with j > i, such that ai, a j are scheduled in sequence, i.e.
ei = s j. The order swap consists of an exchange of the start time of the two activities,
with no violation of a precedence or resource constraint. Changing the mode of any
activity or the start time of any activity other than ai and a j is not allowed.

A schedule where no order swap can be performed is called order monotonous. If
the order swap does not affect the objective function value (this is the case e.g. for
the makespan, but not for tardiness costs), the set of order monotonous schedules
is guaranteed to contain an optimal schedule. Therefore, before an activity ai is
scheduled at time t, if an order swap is allowed with any scheduled activity having
end time t, then the current search node needs not to be further extended. The order
swap rule is not the same as the single enumeration one, since the latter does not
require the activities to form a sequence in the schedule.

5.2.3 Static bounding/dominance rules

Static bounding rules are introduced in [80] and used in most of the exact approaches
for the MRCPSP developed later on. They are applied prior to the beginning of
search and consist in the removal of non-executable modes, inef f icient modes and
redundant resources. The rule application is iterative, until a fix-point is reached,
making them very similar to constraint propagation.

In detail, a mode μh for activity ai is defined as non-executable if any of the
corresponding resource requirements rqik(μh) exceeds the capacity of a renewable
resource (or the capacity of a non-renewable resource, reduced by the sum of the
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minimum requirements of all other activities). A non-renewable resource rk is said
to be redundant if its capacity exceeds the sum of the maximum consumption of all
activities. Finally, a mode μh for activity ai is inefficient if there exist some other
mode μr with shorter duration and lower consumption for all resources. Note this
is in fact a form of static dominance rule (see Section 5.2.2). As such, non-regular
objectives, maximal time lags and precedence constraints other than end-to-start may
prevent the rule application (see Section 2.1.3 and 4.1).

5.2.4 Multi-mode cutset rules

This family of rules requires to store information about past search. During the
solution process, the current partial schedule is compared with the stored data. If the
current partial schedule cannot be completed to a solution better than those obtained
from a previously evaluated partial schedule, then backtracking is performed. The
presented formulation is devised for makespan minimization, but does extend to
regular performance measures [79]. Some care should be observed with Generalized
Precedence Relations (see Sections 2.1.2 and 4.1). Cutset rules are described in
[18, 25, 26, 38].

Given a partial schedule S, the cutset C(S) is the set of activities scheduled so
far. Besides the cutset, the rule requires to store the completion time of the partial
schedule e(S) (i.e. the highest end time among activities in S) and the leftover
capacities of all non-renewable resources. Then:

Rule 1, dominated heads Let S be the partial schedule to be extended at time t
in the current search step, having cutset C(S). If a stored partial schedule S′ exists,
with the following features: (1) the same cutset, i.e. C(S′) = C(S); (2) lower or equal
completion time, i.e. e(S′) ≤ e(S); (3) higher or equal leftover capacities for all non-
renewable resources; then the current partial schedule needs not to be completed.

A second rule is presented in [79] and provides a bound for the time span
necessary to complete the current partial schedule. The rule requires to store, for
each visited partial schedule S the updated latest finish time LET(S, ai) of ai, after
all possible continuations of S have been explored.

Rule 2, incompletable tails Let S be the partial schedule to be extended with activity
ai at time t in the current search step, having cutset C(S). If a stored partial schedule
S′ exists, with the following features: (1) the same cutset, i.e. C(S′) = C(S); (2) higher
or equal leftover capacities for all non-renewable resources; (3) t + LET(S′, ai) −
e(S′) + 1 > LET(ai); then the current partial schedule cannot be completed with a
makespan better than the current LET(ai).

5.2.5 Ef fectiveness of the bounding rules

Some experimental evaluation of the described rules is reported in [26, 38, 79, 80];
additionally, [79] provides some details about the rule implementation. An overall
thorough comparison is difficult, since different works have considered different
bounding rules and sometimes targeted different instance sets. As a general remark,
combining bounding rules is in general fruitful, i.e. there is not a sharp dominance
relation.
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The non-renewable resource rule is considered to be among the most effective
techniques and provides the highest speed-up both in [80] and [79]; the reported
improvement is less substantial, but still remarkable, in [26]. This result points out
the difficulties encountered by OR methods when feasible schedules are not trivial
to build (e.g. when non-renewable resource capacities are taken into account). The
effectiveness of the left-shift rule is also well documented. Interestingly, the best
results are usually obtained by testing the feasibility of local left-shifts. The single
enumeration rule has a fundamental role within precedence tree branching [38]. The
multi-mode rule performs nicely in the comparison from [80]. Among the cutset
rules, the rule of dominated heads performs very well, definitely much better than
incompletable tails. The immediate selection rule tends to be effective for small
instances, but becomes more expensive and less likely to be triggered on larger ones.
Static bounding rules are very effective for MRCPSP instances with high average
resource requirements (specifically, Resource Strength—see [50, 80]). The order-
swap rule introduced in [38] is as effective as the local left-shift one.

6 Search

The key problem addressed by search methods for assignment and scheduling
problems is how to effectively explore a search space that is in the typical case
impressively large: this is a combined effect due to the domain size of temporal
variables and to the presence of resource allocation choices. Efficacy can be obtained
by applying one of the following actions: (1) by guiding search as quickly as
possible towards feasible/optimal solutions; (2) by designing branching decisions
so as to maximize propagation effectiveness; (3) by reducing the portion of the
search space that needs to be explored (e.g. via the application of dominance rules
or dynamic symmetry breaking techniques). While powerful techniques to achieve
this goals are known for pure scheduling problems, it is not so clear how resource
assignments are best treated. This section discusses the main search methods adopted
in CP for resource allocation and scheduling problems (Section 6.1) and in OR for
the MRCPSP (Section 6.2), trying to outline similarities and point out the main
strengths/weaknesses of each approach.

6.1 Search strategies in constraint programming

Exact CP algorithms for resource allocation and scheduling problems are usually
based on Depth First Search. The nodes of the search tree represent partially
instantiated schedules, where scheduled activities have fixed start time; time windows
for the unscheduled activities are maintained via the domains of start/end variables
and updated via propagation. Search proceeds by opening choice points and posting
different branching constraints along each branch. Distinct strategies differ for the
type of posted constraints and for the heuristics used to take non-deterministic
decisions.

Two-stage search Here, two-stage search refers to any tree search method taking
into account resource assignment and scheduling variables in successive, distinct
phases. This is the default search method for alternative resources in IBM ILOG
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Scheduler, where all resource assignment decisions are taken in a first stage, and a
branching scheme for pure scheduling is then applied. The approach is very simple
to implement, but tends to considerably under-exploit the joint propagation of
precedence and resource constraints. The best results are obtained for project graphs
featuring a very small number of arcs. The method is also considered for the Disjunc-
tive Temporal Problem with Finite Domain constraints [64] (see Section 3.1.2).

“Left-justif ied random” and “next or successor-but-not-next” The Left-Justified
Random strategy has been introduced in [67] for pure scheduling problems. The
method finds the smallest earliest f inish time of all the unscheduled activities and
then identifies the set of activities which are able to start before this time. One of
the activities in this set (say ai) is selected randomly and scheduled at its earliest
start time. When backtracking, the alternative commitment is to update the earliest
start time of the activity to the minimum earliest finish time of all other activities
on the same resource as ai. The approach has been extended to models with
alternative activities in [12], by preventing activities with exi variable bound to 0
from being selected for scheduling. Then, when the chosen activity is scheduled, it
is simultaneously selected for execution. On backtrack, the earliest start time of the
ai is updated, but the corresponding execution variable is not modified (this ensures
that search is complete).

By scheduling activities at their earliest start time, Left Justified Random focuses
on the construction of active schedules (see Section 5.2.2). This considerably narrows
the search space and incurs no loss of optimality in case of regular performance
measures (very common in practice). In the experimental results in [12], Left-
Justified Random reports quite poor results compared to Precedence Constraint
Posting guided by texture based heuristics; we conjecture that changing the activity
selection criterion may improve the outcome.

A closely related strategy is employed in [34] for an assignment and scheduling
problem with unary resources and setup times. The method makes use of binary
choice points. Let L be the set of the last activities scheduled on each resource; in the
first branch, the activity ai with minimum earliest start time is scheduled to be “next”
after some activity a j in L and assigned to the same resource. On backtracking, ai is
forced to be a “successor, but not next” and no resource assignment is performed.
This strategy mainly differs from Left-Justified random for the activity selection
criterion (which tends to be more effective) and for the lack of an earliest start
time update on backtracking. The approach has some similarity with Precedence
Constraint Posting, since it does not require to immediately assign a start time to
the selected activity.

“Schedule or postpone” This strategy is proposed in [60] for pure scheduling
problems. At each search node an activity ai is selected for branching; typically,
this is the one with the lowest EST(ai), while LET(ai) is used to break ties. Then
a binary choice point is opened and ai is scheduled at EST(ai) along the first branch.
Upon backtracking the activity is marked as non-selectable (i.e. postponed) until
its earliest start time is modified by propagation. In other words, the time window
update performed on backtracking by Left-Justified Random is delegated here to
resource constraint propagation, thus making the approach more general. Moreover,
postponing activities reduces the size of the search space by preventing scheduling
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choices to be repeated. The main underlying idea is once again to focus search on the
production of active schedules. However, the method performs well even for many
non-regular objectives, despite no optimality guarantee can be given in that case.

Intuitively, generalizing the schedule-or-postpone strategy requires to take into
account resource assignment decisions and to focus on the production of tight (rather
than active) schedules. This is attempted in [17] within an approach with alternative
resources, by adding an assignment stage before opening a schedule-or-postpone
choice point. The method works very well for graphs with many precedence con-
straints, since in this case interleaving assignment and scheduling decisions triggers
better propagation compared to two-stage search. Note however that, in order to
produce tight schedules, it would be sufficient to postpone the activity only once all
the possible resource assignments have been tried. As a consequence, the proposed
strategy explores unnecessary portions of the search space, leaving room for future
improvements.

Precedence constraint posting (PCP) This search method has been designed for
pure scheduling problems and proceeds by resolving possible resource conflicts
through the addition of precedence constraints. The key idea is to identify minimal
sets of activities causing a resource over-usage in case of overlapping execution, i.e.
so called Minimal Critical Sets (MCS), introduced in [47] as “Minimal Forbidden
Sets” and first used in CP in [22]. Due to the minimality property, the occurrence of
a MCS can be prevented by adding a single precedence constraint between any two
activities in the set (a so-called resolver). Branching is done either by enumerating
all possible conflict resolution choices, or by opening a binary choice point where
a selected resolver is alternatively posted or forbidden. MCS can be detected (1)
by enumeration [54], (2) by sampling peaks over an earliest start schedule or over
a worst case resource usage envelope [71], or (3) by solving a minimum flow
problem [62].

This search method has been applied to resource assignment and scheduling
problems in [12], modeled via alternative activities. MCSs are identified and solved
by either posting a precedence constraint or by setting to 0 the execution variable exi

of some activity. Search is performed via binary choice points. The PCP approach
allows to resolve conflicts in a non-chronological order (e.g. the hardest first). As a
side effect, the resulting schedules are not necessarily tight (see the example in [82])
and left-shift rules are difficult to apply.

The actual conflict and the resolver used for branching are chosen according to
some heuristic. In [12], three different heuristics are proposed and evaluated: the first
one is an adaptation of a slack based heuristic from the literature. The latter two are
texture based heuristics, corresponding in practice to conflict and resolver selection
procedures: the main underlying idea is to rely on some information extracted from
the current problem state (a so-called texture) to identify a critical resource r∗

k and
a critical time point t∗. Then sequencing decisions are taken on the activities with
a chance of overlap and cause a conflict at t∗. In detail, the paper considers two
textures: (1) a probabilistic resource usage profile and (2) a conflict probability
function over time, from which the critical resource and time point are extracted.
Both approaches perform very well in the experimental results. As a main difference
with classical PCP conflict selection, the heuristics may identify critical (r∗

k, t∗) even
if no conflict arises for that pair and should be therefore coupled with a conflict
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detection procedure. Note the worst case usage envelope employed in [71] to detect
MCS can be considered a form of texture. The ideas exposed in this section are
very closely related to Minimal Forbidden Set branching for the MRCPSP (see
Section 6.2).

6.2 Branching schemes for the MRCPSP

All the exact approaches developed in an OR context for the MRCPSP are based
on tree search. Unlike in Constraint Programming, where a search node always
corresponds to a state of the domain store, branching schemes from the Operations
Research literature rely on different types of schedule representation.

Precedence tree branching This branching strategy is introduced in [84], but re-
ceived a major improvement by Patterson in [68]. Each node of the search tree
corresponds to a resource- and precedence-feasible partial schedule, i.e. a schedule of
a set S of activities, built in chronological order from time 0. No updated information
(e.g. range of possible start times) is maintained for unscheduled activities.

The strategy consists of scheduling at each step of the search tree an activity whose
predecessors have all been scheduled. Therefore, for each search node with partial
schedule S a set of eligible activities E(S) is unambiguously defined. On backtrack,
a different activity is chosen, so that each path from the root of the search tree to
the leaves corresponds to a possible linearization of the partial order induced on
A by the precedence graph. A mode alternative within this branching scheme is
an assignment of a mode μh to the target activity ai, which is performed after the
scheduling decision. On backtrack, different modes are tested, so that a scheduling
decision on ai is only undone once all modes for ai are tested.

The algorithm by Patterson has been further improved in [81] and [79], in
particular with the introduction of bounding rules. The structure of the approach is
well described in [38]. The precedence tree method suffers from symmetry issues. In
particular, if two activities ai, a j can be independently assigned the same start time,
the method will always test both enumeration sequences. This is countered by the
application of the single enumeration rule (see Section 5.2), which in fact provides
the highest benefits on this branching scheme.

Mode and delay alternatives This branching method is introduced in [23, 29] for the
RCPSP and is adapted to the multi-mode case in [80]; it is well described in [38] and
recently used in [26]. Each node of the search tree is associated to a feasible partial
schedule S and a time instant t. A clear distinction is then made between completed
activities at time t (say C(S, t)) and activities in process (say P(S, t)); eligible activities
for scheduling are those whose predecessors have all completed execution.

Then an attempt is made to schedule all eligible activities and they are added to
the set of activities in process. Of course this may cause a conflict; in such a case
the method branches by withdrawing from execution the so-called delay alternatives.
Those are: (1) activities in process, i.e. in P(S, t) and (2) activities such that, if they are
removed, no resource conflict occurs. A delay alternative is called minimal if none of
its proper subsets is a delay alternative. Branching on minimal delay alternatives is
sufficient to explore the whole search space. If no resource conflict occurs, the only
minimal delay alternative is the empty set.
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This method differs from the precedence tree based one in two regards: (1) the
process branches on sets of activities and (2) activities scheduled at a search node
may be withdrawn from execution later on: in case this is not done, the algorithm
only builds so called non-delay schedules [82] and may miss the optimal solution
(even in case the objective is regular).

Activities are assigned a mode when they are first inserted in the P(S, t) and
they retain the mode assignment when they are withdrawn from execution. As a
consequence, when the simultaneous execution of all eligible activities is probed,
some activities already possess a mode, while the remaining ones are modeless.
A mode alternative in this search strategy is a mapping that assigns a mode to
every activity in the modeless eligible set. On backtracking, when the subtree
corresponding to a delay alternative has been completely explored, a different mode
alternative is picked.

Mode and extension alternatives This method was proposed in [83] for the RCPSP,
while the adaptation to the multi-mode case is discussed in [38]. The approach is
similar to mode and delay alternatives: each search node corresponds to a partial
schedule S and a time instant t, for which sets C(S, t) and P(S, t) are identified. The
activities with all predecessors in C(s, t) form the eligible set E(S, t).

The current partial schedule is extended by starting a subset of the eligible
activities without violating the renewable resource constraints. Conversely, in delay
alternatives all eligible activities are started, then some are withdrawn from execu-
tion. In order to ensure that the algorithm terminates, empty extension alternatives
may be disregarded if P(s, t) = ∅ (i.e. no activity is in process). However, if there are
currently activities in process, the empty set is always an extension alternative which
must be tested in order to guarantee optimality. In case this is not done, the algorithm
only builds non-delay schedules and may miss the optimal solution.

A mode alternative is a mapping of modes to activities and occurs as soon as
they become eligible, before an extension alternative is selected. The backtracking
mechanism is the same as for delay alternatives. This branching scheme is proven
to be dominated by precedence tree and delay alternative branching in [38], at least
when no bounding rule is applied.

Dichotomization and time window tightening A branching scheme based on di-
chotomization is proposed for the MRCPSP in [94]. The approach operates on a
time indexed model and is based on Special Ordered Sets (SOS, [9]); in detail, each
considered SOS includes all the binary variables Ei,h,t referring to a single activity.

Given a fractional LP solution, branching is performed by splitting the SOS
referring to an activity ai, based on its average finish time tb . The first subset contains
variables with t ≤ tb , the second with t > tb . Two branches are defined by respectively
setting the variables in each subset to zero. The search method is coupled with a
bound-tightening step at each branch. The approach obtains interesting results.

A related approach for the Multi-skill Project Scheduling Problem (affine to
the MRCPSP) is proposed by Pessan et al. in [69] and is based on time windows
tightening. At each node a time window is selected and reduced until all activities
have their starting point fixed. During the process two lower bounds are used: one
based on the compatibility graph that checks which activities can be scheduled at the
same time, and one based on energetic reasoning that checks the mandatory parts.
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Minimal forbidden sets Minimal Forbidden Sets, known in CP as Minimal Critical
Sets, are introduced in [47] in the early 80s; they can be used to define choice
points in tree search as described in Section 6.1. Unlike in the CP literature where
branching is mainly done via binary precedence constraints (resolvers), OR methods
have explored the use of disjunctive precedence constraints. A disjunctive precedence
constraint requires a specific activity ai in the MCS to execute after at least one other
activity a j in the set: the specific a j causing the delay may be left undecided until all
start times are assigned. The method is devised in [76] for the RCPSP and is applied
in [39] to the multi-mode case.

With this branching strategy, a search node corresponds to a f ictitious schedule
rather than to a partial schedule. A fictitious schedule assigns a set of possible
modes and a provisional start time to each activity of the project. The resulting
representation is very similar to the one obtained in CP via the domain store.
Disjunctive precedence constraints are based on the same idea of delay alternatives,
but enable one to consider conflicts in non-chronological order. In particular, the
method described in [39] systematically branches on the (estimated) hardest decision.
The specific branching rule applied depends on the type of this decision: if this is a
mode decision, each branch is a mode assignment for the corresponding activity. If
it is a conflict decision, each branch is a possible disjunctive precedence constraint to
resolve the conflict.

The use of disjunctive precedence relation allows a remarkable reduction of
the search tree compared to binary resolvers. As a drawback, with this type of
precedence relations the feasible space becomes a union of convex polyhedra and
Generalized Arc Consistency on the temporal constraints can no longer be achieved
in polynomial time.

7 Decomposition-based solution methods

Most of the decomposition approaches for assignment and scheduling problems are
strongly related to Logic based Benders Decomposition (LBD), introduced in [46]
and formalized in [40, 45]. LBD generalizes classic Benders Decomposition [15] and
considerably broadens its application field, by replacing the linear dual used for
cut generation with a so-called inference dual. The method breaks a combinatorial
problem into a master and a subproblem, which are solved in sequence. The master
solution is used to prime the subproblem, then a cut is generated (Benders cut) and
permanently added to the master problem. The process repeats until the master
and the sub-problem converge in value and optimality is proved. In the context of
allocation and scheduling, resource assignment variables xik are typically included in
the master problem, while scheduling variables si, ei only appear in the subproblem.
Assuming a minimization objective, the cost function F(x, s, e) is replaced by a
relaxed function G(x) such that G(x) ≤ F(x, s, e). The approach allows one to use
heterogeneous solution techniques: quite often MILP is employed with the master
and CP with the subproblem, due to the effectiveness of CP constraints and search
strategies for pure scheduling.

Benders cuts at each iteration, once an assignment of master problem variables x′

is available, are obtained from the solution of an inference dual. In detail, let the func-
tion F∗(x) denote the minimum value of F(x, s, e) corresponding to an assignment
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of the master problem variables: the inference dual consists in computing the value
F∗(x′). Then, the algorithm designer is responsible to identify a bounding function
βx′(x) such that βx′(x) ≤ F∗(x) and βx′(x′) = F∗(x′). In other words, βx′(x) equals the
optimal F(x, s, e) when x = x′, otherwise the function provides a valid bound. The
subscript of the bounding function denotes the x values used for its construction.
The Benders cut consists in forcing the master-problem objective to be greater then
the bounding function, i.e. F(x) ≥ βx′(x). At each iteration, the cumulated Benders
cuts prevent old master problem solutions from being re-proposed.

The approach was first applied to allocation and scheduling problems in [37, 48],
obtaining dramatic improvements over pure CP/MILP methods and over a hybrid
algorithm using CP for branching and LP-based lower bounds. Other application
examples include [42] for tardiness costs, [21] for scheduling on hard-real time
systems, [73] for power consumption minimization on multi-core CPUs.

In case of resource based objectives (see Section 2.1.3) the sub-problem has
no cost function, making CP an even better candidate for its solution; this is well
documented in [44, 48]. In that case, Benders cuts can be simply formulated as
constraints on the xik variables rather than bounds on the master cost function.
Sometimes, it is possible to further decouple the subproblem into independent
components (e.g. a scheduling problem for each resource), with strong efficiency
improvements: this typically occurs when no precedence constraint is specified and
is discussed in Section 3.3. In general, a tighter bounding function βx′(x) results
in quicker convergence, providing motivation for cut strengthening techniques: an
efficient ad hoc method is reported in [41].

Balancing Quite often, the master problem turns out to be considerably harder
to solve than the sub-problem, therefore limiting the number of full iterations
performed in a given amount of time. This is a relevant issue and can be dealt with in
a number of ways:

– by not solving the master problem to optimality: this especially makes sense in
case of scheduling dependent objectives, where optimal values for the relaxed
cost function F(x) do not necessarily result in better solutions. This observation
is reported in [85] and provides some arguments for the use of CP in the master
problem;

– by solving the sub-problem while still branching to search for a master solution:
this is the key idea behind so-called Branch-and-Check [85] and requires a
method to formulate the sub-problem when some master problem variables
are unassigned—e.g. because the master and the sub-problem may share some
variables;

– By using stronger and more computation expensive cuts. For example, improved
cuts can be obtained via explanation minimization by repeatedly solving polyno-
mial complexity sub-problems [21] or even NP-hard ones [63].

– by applying LBD recursively on the master problem itself, obtaining a multi-
stage decomposition: [17] describes the approach in a specific application settings
and provides empirical rules to balance the computational load of the different
decomposition stages.

Subproblem relaxation Logic based Benders Decomposition incurs the risk of los-
ing valuable information due to decoupling; addressing this issue is the fundamental
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problem during the design of a LBD approach: this is of course tackled by devising
effective cuts, but the interaction between the two stages can be further tightened
by introducing in the master problem a so-called sub-problem relaxation. This may
consist of additional constraints (i.e. some of the subproblem constraints, possibly
relaxed) or may be an additional bounding function on the master problem objective.
The actual formulation has to be given case by case: examples can be found in
basically all LBD related references in this paper. The use of an effective subproblem
relaxation often has a tremendous impact on the performance: in [85] it is shown how
removing the relaxation from the model in [48] increases the search time by several
orders of magnitude. Finally, in case of cost functions depending on both assignment
and scheduling decisions, a subproblem relaxation guides the master problem solver
towards better solutions.

8 Core solution ideas

Despite their number and variety, all the presented techniques tend to cluster around
some core strategies to cope with the specificities of Assignment and Scheduling
problems. In the following, we briefly discuss what we believe are the three main
ones.

8.1 Improving propagation between assignment and scheduling variables

Assignment and Scheduling problems are particularly challenging for CP ap-
proaches, since classical scheduling constraints tend to propagate quite poorly until
many assignment decisions are taken. The need to deal with this critical issue has
lead CP researchers to devise novel modeling approaches. Those are designed to be
sufficiently general to describe practical problems and yet sufficiently restricted to
provide useful information to propagation algorithms.

Alternative resources are one such example: they can only model very simple
assignment decisions, but enable stronger filtering via multiple fake activities, re-
dundant resources and unit propagation on the assignment variables (Section 4).
Alternative activities provide similar advantages, but manage to model also multiple
modes, complex assignment constraints and alternative process plans. Conditional
Time Intervals are probably the most mature outcome of this research line: they
have a clean formulation, provide the same benefits as alternative activities (thanks
to explicitly stated alternative blocks) and support a more traditional modeling style
by allowing optional activities out of alternative blocks. Additionally, Time Interval
Variables introduce novel forms of joint temporal and assignment filtering.

8.2 Exploiting problem specificities to focus search

This approach has been primarily pursued in the Operations Research, due to the
lack of effective MILP bounds for scheduling problems. The most relevant outcome
is a set of powerful search strategies (Section 6.2) and dominance rules (Section 5.2).

Disjunctive precedence constraints are a powerful tool to reduce the size of
the search tree. Branching schemes based on minimal delay alternatives report
remarkable results compared to other OR approaches. As far as dominance
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rules are concerned, the best results are obtained by restricting search to tight
and mode minimal schedules and by removing permutation symmetries at search
time.

Finally, despite the fact that bounds based on linear relaxations tend to be weak, a
linear model may still provide a guide for search strategies. This is particularly valu-
able for cost functions with poor back-propagation, such as tardiness and earliness
based objectives: in this case, a linear relaxation may be used to identify optimal
starting times (see Section 5.1). This method is exploited in CP in the context of self-
adapting large neighborhood search [56].

8.3 Using decomposition to reduce the search time

Decomposition based approaches take a radically different perspective, moving
the focus away from the issue of exploiting the connection between assignment
and scheduling variables. Conversely, they rely on maximizing the benefits of
decomposition: smaller and easier to solve subproblems, plus the ability to use
heterogenous techniques. The most relevant examples are probably Logic based
Benders Decomposition (LBD) and Branch-and-Check (Sections 3.3 and 7).

The main drawback in this case is the loss of propagation between assignment and
scheduling decisions. Benders cuts are the basic mean to cope with this issue. Using
basic no-goods does not in general compensate for the decoupling, but refinement
techniques may greatly improve the cut effectiveness. Introducing a subproblem
relaxation in the master is a second, very effective mean to reduce the adverse effects
of decomposition.

Published results from the last 10 years (such as [44, 48]) are characterized by a
quite sharp dominance of LBD like approaches over pure CP or MILP ones. For this
reason, hybrid, decomposition based, approaches are suggested for solving to opti-
mality most practical assignment and scheduling problems. The specific technique to
be applied in the master and the subproblem should be chosen case by case. Using
MILP or some strongly optimality-driven technique in the master problem is advised
in case the cost function only depends on the master variables. Pure MILP and CP
approaches can still provide very good results on specific scenarios: this is the case
if the graph contains many precedence constraints and the assignment component
is relatively simple (e.g. [17]), or with very tight resource constraints (e.g. [94]).
Note also that pure CP approaches can be effectively employed in conjunction with
decomposition based methods to quickly provide good quality solutions.

It is interesting to see how some of the most effective search methods in the
OR literature (delay alternatives and disjunctive precedence constraints) have not
been applied in a CP context so far. Integrating the two approaches provides an
interesting improvement opportunity, but is not trivial since disjunctive precedence
constraints limit temporal consistency and delay alternatives require to withdraw
activities from execution. The effectiveness of the left-shift rule is well acknowledged
in CP and the Schedule or Postpone strategy is an effective way to build active
schedules when there are no assignment decisions. There is however a lack of CP
methods designed to produce tight schedules for problems with assignment decisions.
Similarly, search strategies for mode minimal schedules are largely uninvestigated in
the CP community and may provide an interesting topic for future research. Finally,
effective joint propagation on assignment and scheduling variables appears to be



Constraints (2012) 17:51–85 81

inherently difficult for classical CP filtering. This provides a stimulating challenge for
novel techniques such as Lazy Clause Generation or propagation based on Multi-
valued Decision Diagrams.

9 Conclusions

We provided an overview of state of the art approaches for a class of resource
allocation and scheduling problems, arising in a variety of real world settings. Given
the number of problem variants we chose to focus this work on techniques to
address individual problem traits, rather than on devising an exhaustive (most likely
too complex) classification. In particular, we mainly drew the presented pool of
algorithms and methods from scheduling related OR and CP literature. Constraint
Programming is a natural candidate to support the integration of heterogeneous
techniques: its typical distinction between model, propagation and search provided
the backbone for the work organization. Hybrid methods were given prominent
importance, as they proved to be particularly effective on allocation and scheduling
problems. The whole paper can be considered as an attempt to provide hints for the
development of new hybrid algorithms and novel filtering methods.

We decided to limit our discussion to exact approaches. However, given the
impressive complexity of this class of problems, a very large number of works from
the literature adopts heuristic solution methods. We hope our effort will provide
motivation to the research community for surveying the state of the art of heuristics
for resource assignment and scheduling.
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