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Abstract 

The phase transition in binary constraint satisfaction problems, i.e. the transition from a region 
in which almost all problems have many solutions to a region in which almost all problems have 
no solutions, as the constraints become tighter, is investigated by examining the behaviour of 
samples of randomly-generated problems. In contrast to theoretical work, which is concerned with 
the asymptotic behaviour of problems as the number of variables becomes larger, this paper is 
concerned with the location of the phase transition in finite problems. The accuracy of a prediction 
based on the expected number of solutions is discussed; it is shown that the variance of the number 
of solutions can be used to set bounds on the phase transition and to indicate the accuracy of 
the prediction. A class of sparse problems, for which the prediction is known to be inaccurate, 
is considered in detail; it is shown that, for these problems, the phase transition depends on the 
topology of the constraint graph as well as on the tightness of the constraints. 

Keywords: Search phase transitions; Constraint satisfaction; Crossover point; Mushy region; Expectation and 
variance of number of solutions 

1. Introduction 

Cheeseman, Kanefsky and Taylor [2] note that for many NP-complete or NP-hard 
problems, a phase transition can be seen as a control parameter is varied; the transition 

is from problems that are under-constrained, and so relatively easy to solve, to problems 
that are over-constrained, and so relatively easy to prove insoluble. They observed that 
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the problems which are on average hardest to solve occur between these two types 
of relatively easy problem, and further that, in the cases they considered, the phase 
transition becomes increasingly abrupt as problems become larger. For instance, for 
Hamiltonian Circuit problems, the order parameter giving the phase transition is the 
connectivity of the graph and the sharpness of the phase transition increases with graph 
size. 

Williams and Hogg [ 13-151 have developed approximations to the cost of finding the 
first solution and to the probability that a problem is soluble, both for specific classes of 
constraint satisfaction problem (graph colouring, L-SAT) and for the general case. They 
show that in the limit as the number of variables becomes large, their approximations 
exhibit both a step change in the probability that a problem is soluble and a peak in 
the cost of finding the first solution, at the same critical value of the control parameter. 
Although Williams and Hogg show that their predictions of the critical value match the 
experimental data given in [ 2,7] reasonably well, their work is essentially based on the 
asymptotic behaviour of approximations, showing an instantaneous phase transition. 

In finite problems, the phase transition is not instantaneous, but occurs over a range 
of values of the control parameter. This paper is concerned with the phase transition in 
finite constraint satisfaction problems (CSPs), the intention being to investigate not only 
the point at which the average cost of solving problems, or proving them insoluble, is 
greatest, but also the boundaries of the phase transition. Kirkpatrick and Selman [ 63 also 
consider phase transitions in finite problems, discussing the dependence of the width of 
the phase transition on problem size for R-SAT problems. 

In phase transitions of the kind modelled by applied mathematicians, for instance 
from a solid to a liquid phase, the cause of the phase transition may be modelled by 
an instantaneous change in some environmental parameter. However, the efict of the 
change may take place over a finite spatial region; this region (in which the material 
is neither completely liquid nor completely solid) is referred to as the mushy region. 

The term is used in this paper to denote the range of values of the control parameter 
over which the phase transition from solubility to insolubility takes place, in order to 
emphasise that the transition is not instantaneous. The mushy region can be defined as 
the range of values of the control parameter over which the probability that a problem is 
soluble falls from 0.99 to 0.01 (choosing these limits arbitrarily) and approximated by 
the range of values over which the observed proportion of soluble problems falls from 
2 99% to Q 1%. 

Mitchell, Selman and Levesque [7] carried out experiments with satisfiability prob- 
lems in which they noted that, as the number of formulas in random clauses is varied, 
the hardest problems occur where 50% of the problems are satisfiable. Crawford and 
Auton [ 31 took this work further in order to predict the location of the 50% satisfiable 
point, which they term the crossover point. It will be assumed in this paper that, for 
CSPs in general, the crossover point and the maximum average solution cost coincide: 
there is a great deal of experimental evidence to support this assumption. 

The paper begins by discussing the generation model used for the experimental CSPs. 
Section 3 describes the phase transition in a class of small CSPs; the behaviour of these 
CSPs suggest that the crossover point can be predicted using the expected number of 
solutions, and this is discussed in Section 4. Section 5 investigates in detail a class of 
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sparse constraint graphs, for which the prediction is inaccurate: it is shown that in some 
cases, a precise prediction of the crossover point would need to take into account the 
characteristics of the constraint graph, in particular, the degree distribution. It is shown 
that there is a close linear correlation between the crossover point and the regularity of 
the graph; the correlation is even better if end-vertices in the graph are ignored. The 
main reason for the failure of a predictor based on the expected number of solutions is 
the very high variance. Section 6 discusses the variance of the number of solutions in 
more detail, and shows that the variance can indicate when the predictor can be expected 
to give good results. Finally the paper discusses applications to real CSPs. 

2. Random binary CSPs 

A (finite) constraint satisfaction problem consists of a finite set of variables X = 

{ Xl,..., x,}; for each variable, a set Di of possible values (its domain) ; and a set 
of constraints, each of which consists of a subset {xi,. . . , Xi} of X and a relation 
RC_DiX*** x Dj; informally, the constraint specifies the allowed tuples of values for 
the variables it constrains (see for instance Tsang [ 121 for a detailed account of CSPs) . 
A solution to a CSP is an assignment of a value from its domain to every variable 
such that all the constraints are satisfied; a constraint is satisfied if the tuple of values 
assigned to the variables it constrains is in the constraint relation. A k-ary constraint 
constrains k of the problem variables; in a binary CSP, all the constraints are binary. 2 

The constraint graph of a binary CSP is a graph in which there is a vertex representing 
each variable and for every constraint there is an edge linking the affected variables. A 
binary constraint relation between a pair of variables with ml and m2 values in their 
respective domains can be represented by an ml x m:! matrix of boolean values; a “true” 
value indicates that the corresponding pair of values is allowed by the constraint. 

For the experiments described below, sets of randomly-generated binary CSPs were 
used. Each set of problems is characterised by four parameters: II, the number of 
variables; m, the number of values in each variable’s domain; pt, the probability that 
there is a constraint between a pair of variables, and ~2, the conditional probability that 
a pair of values is inconsistent for a pair of variables, given that there is a constraint 
between the variables. The parameters pt and p2 are the constraint density and the 
constraint tightness, respectively. Other work with randomly-generated CSPs (see for 
instance [ 41) has also defined sets of problems in terms of quantities corresponding to 
these four parameters, albeit using different terminology. 

There are several possible ways of treating the probabilities pt and ~2. One possibility 
is to select each of the n(n - 1)/2 possible edges in the constraint graph independently 
with probability pi, and then, for each pair of variables linked by a constraint, generate 
the relation matrix by assigning the value “false” to each pair of values independently 
with probability ~2. As far as generating the constraint graph is concerned, this cor- 
responds to the model termed Model A by Palmer [ 81. This method would give a 

* Or unary, but since unary constraints can be dealt wit) by reducing the domains of the affected variables, 
these will be ignored in this paper. 
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set of problems in which, on average, the number of constrained pairs of variables is 
ptn(n - 1),/2, and for each pair of constrained variables, the average number of incon- 
sistent pairs of values is m2p2. However, within a set of randomly-generated problems, 
there may be considerable variation. 

Since the ultimate aim in considering sets of randomly-generated CSPs is to be able 
to make predictions about the behaviour of problems of a given size, with particular 
observed numbers of constraints and numbers of inconsistent pairs of values, it was 
decided to generate sets of problems in which p1 and p2 specify precisely, rather than on 
average, how many constraints and pairs of inconsistent values there should be. Hence, 
for each set of randomly-generated problems, there should be exactly pln(n - 1) /2 
constraints (rounded to the nearest integer), and for each pair of constrained variables, 
the number of inconsistent pairs of values should be exactly m2pz. To allocate the 
constraints, pln(n - 1) /2 of the possible variable pairs are chosen at random; for each 
constrained pair of variables, m2p2 of the m2 possible pairs of values are chosen at 
random. This model is used for all the experiments described in this paper. It is an 
extension of the random graph model referred to by Palmer as Model B, and will be 
referred to as Model B below. 

In each of the series of experiments described below, n, m and PI were fixed, and 
p2 was the varying control parameter; a series of experiments will be referred to by the 
tuple (n, m, PI), and a set of random problems with the same four parameters will be 
referred to by (n, m, p1 ,p2). One minor disadvantage of Model B, compared with the 
first model, is that one cannot vary p2 in steps of less than l/m2; in the experiments, 
the value of m is 10, allowing p2 to be varied in steps of 0.01. 

3. A well-behaved case 

A series of experiments was carried out with sets of randomly-generated binary CSPs, 
generated according to Model B, with n = 8, m = 10, pl = 1.0 and p2 varying. These 
are small problems, and therefore do not exhibit as sharp a phase transition as has 
been observed in larger problems, for instance in [lo]. However, one of the planned 
experiments was to find all solutions to the problems over a wide range of values of 
p2 and this could not be done for large problems. As will be seen later, the behaviour 
of these problems is relatively well-behaved and so serves as a good starting point for 
investigating the phase transition in binary CSPs. 

For these experiments, the randomly-generated CSPs were solved using the forward 
checking algorithm, using the fail-first principle to select the variable with smallest 
remaining domain as the next variable to be instantiated [S] . This algorithm is known 
to be reasonably efficient and can be used to find either just one solution, or all solutions. 
It was intended to be representative of its class of CSP algorithms, i.e. depth-first search 
algorithms which seek to extend consistent partial solutions, backtracking when failure 
is detected. 

Fig. 1 shows the median cost, measured by the number of consistency checks required 
to find one solution or prove that there is no solution for each of a set of (8,lO,l.O,p2) 
problems. The minimum and maximum cost observed in each set of problems is also 
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Fig. I. Median cost (to find one solution or show that there are none) for CSPs with n = 8, m = 10, pt = 1 .O. 

shown. The vertical lines in Fig. 1 show the boundaries of the mushy region: the largest 
value of p2 at which at least 99% of problems are soluble, and the smallest value at 
which not more than 1% are soluble. (For these particular samples, no insoluble problem 
occurs to the left of the mushy region and no soluble problem to the right.) In order 
to get a clear picture of the behaviour over the phase transition, 500 problems were 

generated for each value of p2 between 0.44 and 0.55; smaller samples were required 

elsewhere, where the behaviour is much less variable.3 
A notable feature of Fig. 1 is the peak in the median cost which occurs during the 

phase transition. (For these problems, the peak in the mean search effort occurs at the 
same value of p2 as the peak in the median cost. However, for some less well-behaved 

sets of problems, individual problems with very high solution cost can occur at values 

of p2 below the phase transition and can distort the mean cost. Hence the median has 

been used as the measure of the average cost throughout.) 

The minimum cost at each value of p2 remains very low as long as there are problems 
in the sample which have a solution; if a problem has at least one solution, there is 
always a chance that it will be found very quickly, and in these experiments the sample 
size at each value of p2 was sufficiently large that this did in fact happen for at least 

one problem throughout the mushy region. Most of the maximum values in the mushy 

3 Solving 500 problems with these parameter values takes 52 CPU seconds when p2 = 0.48 (using a C 

program running on a SPARCstation IPX). 
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Fig. 2. Median cost for CSPs with n = 8, WI = 10, pt = 1.0; soluble and insoluble problems shown separately. 

region (and certainly those beyond it) are due to insoluble problems; however, the 
overall maximum value (at p2 = 0.43) is clearly caused by a problem which does have 
solutions, since at that point all the problems have solutions. Fig. 1 illustrates what is 
commonly observed: that the solution cost is very variable around the peak in average 
cost, and that the greatest variability occurs before the peak. 

The peak corresponds approximately to the value of p2 at which half the problems 
are insoluble and half are soluble, the point referred to by Crawford and Auton [3] 
as the crossover point. In fact, exactly 50% of the problems have a solution at p2 = 
0.48; the median cost is almost identical at p2 = 0.48 and 0.49. For smaller values of 
~2, for which all problems are soluble, problems are much easier to solve, on average, 
until there is a sharp increase in difficulty as p2 increases and insoluble problems begin 
to occur. For larger values of ~2, as problems become uniformly insoluble, the fall in 
the median consistency checks is much more gradual, and it is an over-simplification 
to describe this side of the phase transition as a region of easy problems. Although it 
does become easy to prove insolubility for p2 close to 1, many of the problems in this 
region are easy only by comparison with the insoluble problems occurring in the mushy 
region. 

Fig. 2 shows the same set of problems as Fig. 1, but with soluble problems separated 
from insoluble problems in the mushy region, where a mixture of soluble and insol- 
uble problems occurs. (A similar graph displaying satisfiable and unsatisfiable 3-SAT 
problems separately is given in [7] .) 
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At the edges of the phase transition, the population of problems is dominated by 
one of these two types of problem, so that some of the points on the graph represent 
only small numbers of problems (although points representing fewer than 20 problems 
have been omitted). Separating soluble from insoluble problems in this way leads to a 
plausible explanation for the fact that the maximum average search cost occurs during 
the phase transition, for any algorithm of the same general type as forward checking. For 
insoluble problems, the search effort decreases as p2 increases, because the increasingly 
tight constraints allow a greater degree of pruning in any algorithm which backtracks as 
soon as it encounters a failure. Hence the cost, for insoluble problems, is greatest at the 
smallest value of p2 for which insoluble problems occur, i.e. in the mushy region. 

The case of soluble problems is more complex. As pz increases, the fact that the 
number of solutions is decreasing rapidly becomes significant and it becomes harder 
(for any algorithm) to find a solution. During the phase transition, the soluble problems 
have very few solutions and as solutions become rarer, the algorithm must on average 
explore more of the induced search space before finding the first solution. Fig. 2 shows 
that the search effort in fact appears to reach a maximum and begins to decline, just 
as the soluble problems are running out; this can be explained by arguing that for 
problems with only one solution, which for this sample increasingly dominate as soluble 
problems become scarce, the algorithm must on average explore half the search space 
before finding the solution, and since the total size of the search space decreases as 
p2 increases, the search effort to find a single solution similarly starts to decrease, 
just before the soluble problems disappear altogether. Fig. 2 is consistent with the 
experiments on graph colouring problems reported by Cheeseman, Kanefsky and Taylor 
[ 21, where a peak in the average solution cost of soluble problems was found, as the 
average connectivity increased. In that case, the problems were generated in such a way 
that they were guaranteed to have a solution, and thus very easy soluble problems were 
found well beyond the peak in average cost, in contrast to Fig. 2. This suggests that 
the decrease in average solution cost beyond the crossover point shown in Fig. 2 would 
continue as p2 increases. 

To summarise, soluble problems are easier to solve as p2 decreases from the crossover 
point; insoluble problems are easier to prove insoluble as p2 increases, and overall the 
maximum average search effort must occur in the mushy region, where the most difficult 
soluble problems and the most difficult insoluble problems co-exist. This is exemplified 
in Figs. 1 and 2. 

As problems get very large (n -+ oc), experimental evidence suggests that the phase 
transition becomes increasingly sharp, so that in the limit there is an instantaneous 
change from soluble to insoluble problems at a single value of ~2, and we should expect 
that the maximal search effort will then coincide with this point. However, for finite 
problems, the phase transition occurs over a range of values of p2 (defining the mushy 
region), and pzcrit, the value at which the average search effort reaches a maximum and 
(by assumption) the probability that a problem has a solution is 0.5, occurs at some 
point in that range. 

Clearly the phase transition is independent of the algorithm used to find the solutions, 
though the number of consistency checks required to find the first solution, or to show 
that there is no solution, depends very much on the algorithm. However, Prosser’s 
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Fig. 3. Median cost (to find all solutions or show that there are none) for CSPs with n = 8, m = 10, pi = 1.0. 

experimental results [ IO] for a CSP algorithm which combines forward checking with 
conflict-directed backjumping, described in [ 91, show similar qualitative behaviour to 

that shown in Fig. 1. In particular the peak in the median consistency checks appears to 
occur at the same value of p2 for different algorithms. The results reported in [lo] also 
show that the qualitative behaviour of larger problems (for instance n = 20, m = 20; 
n = 30, m = IO), and for a range of values of ~1, is similar to that shown in Fig. 
1, although the peak becomes much less sharply defined for small values of pl. It 
appears therefore that the phase transition behaviour shown in Fig. 1 is common to 

constraint satisfaction problems in general when subjected to backtracking depth-first 
search algorithms. Similar curves are also shown in [7] for randomly-generated 3-SAT 
problems. 

As well as the first solution, all solutions were found for the sample problems shown 
in Fig. 1. It is instructive to plot the median cost to find all solutions for the soluble 

problems, and compare the results with the median cost to prove insolubility for the 
insoluble problems. The two curves are shown in Fig. 3; by definition, they overlap 
in the mushy region, where there are both soluble and insoluble problems. (The curve 
representing insoluble problems is identical to the right hand curve of Fig. 2, but with 
a log scale on the vertical axis.) 

It can be seen from Fig, 3 that the two curves are virtually indistinguishable in the 

mushy region; for a given value of pz it appears to be neither more nor less difficult 
to find all solutions to the soluble problems than to show that the insoluble problems 
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have no solutions. (In fact, it requires fewer consistency checks on average to prove 
insolubility than to find all solutions at the same value of ~2, but the difference is very 
small for these problems and hence is barely detectable in Fig. 3.) 

If we require to find all solutions to a CSP, or prove that there are none, the median 
cost decreases smoothly and rapidly as p2 increases, and nothing noteworthy happens as 
the problems become insoluble. The phase transition is only an interesting event if just 
one solution is required: it can then also be viewed as a transition from a partial search 
of the induced search space (which can be terminated as soon as a solution is found) to 
a complete search (which is required if there are no solutions). The transition therefore 
involves a more or less sudden jump from the lefthand curve of Fig. 2 to the righthand 
curve. 

4. The expected number of solutions 

In the previous section, the phase transition and its associated phenomena were de- 
scribed, at least for one particular set of parameters. It would be useful to know over 
what range of values of p2 the mushy region occurs, and where the crossover point 
is, without extensive experimentation. However, we have no way, so far, of accurately 
estimating the probability that a binary CSP is soluble. 

For the problems discussed in the last section, at the crossover point, i.e. where 50% 
of problems have a solution, the soluble problems have very few solutions. Of the 500 
random problems generated at p2 = 0.48, the 250 soluble problems have, on average, 
2 solutions (and therefore the average number of solutions for all 500 problems is 
I). If this observation, that at the crossover point the soluble problems have very few 
solutions, is generally true, then instead of trying to estimate the probability that a 
problem is soluble directly, we can alternatively look for a value of p2 at which the 
expected number of solutions is small. 

It is possible to do this, since, for CSPs generated following Model B, the expected 
number of solutions, E(N), is given by: 

E(N) = m”( 1 - p2p-QJ1/2, 

i.e. the number of possible assignments of m values to n variables, multiplied by the 
probability that a randomly-chosen assignment is consistent. (See the appendix for a 
derivation of Eq. ( 1) ) . For instance, when p2 = 0 (or PI = 0)) there are no inconsistent 
pairs of values and E(N) = m”; when p2 = 1 (and p1 > 0) there are no solutions. 
The expected number of solutions decreases very rapidly, from m", as p2 increases from 
zero. The sample problems discussed in Section 3, for which all solutions were found, 
as well as other experimental results, confirm that (1) gives very accurate results for 
the average number of solutions, given a large sample of problems. The formula can 
easily be modified to allow p2 to take different values for different constraints and to 
allow different domain sizes for different variables, if this is a more realistic model for 
a particular CSP. 

For a well-behaved case, such as that discussed in the previous section, a value of p2 
for which E(N) is small, but not too close to zero, can be expected to give a mixture 
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of problems with no solutions and problems with very few solutions, i.e. a point in 
the mushy region, and therefore close to the crossover point, pZc,.tt. Experimental results 
suggest that, as for the (8,10,1) problems, E(N) = 1 would give a good predictor, 
&it, of the crossover point. 

From E(N) = 1, we have m”( 1 - &it) n(n-1)“‘2 = 1, and hence: 

,. 
p2cri. = 1 - m-2/((“-lh)* 

For the (8,10,1.0) problems of the last section, the value of E(N) when p2 = 0.48 
is 1 .l2, and &it is 0.482, corresponding slightly better to the observed peak in the 
median search effort, which appears to occur between 0.48 and 0.49. 

Prosser [ 101 gives results comparing the observed values of pzcet (in this case, the 
observed peak median cost) with the estimated values given by (2) for three series of 
experiments: n = 20, m = 10; IZ = 20, m = 20; and n = 30, m = 10. The experimental 
results show that the observed value of P2crit and the predicted value &it are in close 
agreement, except for low values of pt (smaller than 0.3), when &tit is an over-estimate 
of Pzcrit. That is, for small values of pt , E(N) is greater than 1 at the crossover point. 
This discrepancy will be discussed further below. 

The assertion that the point at which E(N) = 1 marks the phase transition, from 
a region where most problems have many solutions to a region where most problems 
have no solutions, is also made by Williams and Hogg [ 151. They note that the choice 
of parameters which makes E(N) = 1 marks the boundary between a region in which 
E(N) increases exponentially with n (the number of variables in the problem) and a 
region in which E(N) decays exponentially with n. 4 

If the expected number of solutions is very small, then, as Williams and Hogg point 
out, we can safely conclude that the probability that a problem has any solutions, psot, 
is likewise very small, from the Markov inequality, which gives: 

pso~ = P(N k 1) < E(N). (3) 

For large n, E(N) --+ 0 for all p2 > &it and SO psOl -+ 0. 
However, we cannot similarly assume that, if the expected number of solutions is 

very large, most problems have many solutions, or even that most problems have any 
solutions: it depends on the variance, var( N). A bound on psol is given by the Cauchy 
inequality [ 11: 

1 -psol=P(N=O) < 
v=(N) 

E(N)2+var(N)’ 

Making the assumption that var( N) /E( IV) 2 -+ 0 as n + oo, when E(N) > 1, Williams 
and Hogg conclude that psOl -+ 1 and hence that, asymptotically, there is an instantaneous 
phase transition at the point where E(N) = 1, i.e. at &tit. 

Since for the (8,10,1) experiments described in Section 3, the point at which E(N) 
= 1 does correspond very well to the crossover point, where psol = 0.5, it is clear that at 

4Eq.(1)canbewrittenasE(N)=[m(l-pz) (n-l)pl 121n, and at e&h, the term inside the square brackets 

is equal to 1. 
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that point vat(N) must be small. The behaviour of var(N) in other cases is discussed 
in Section 6. 

5. Sparse constraint graphs 

As already noted, Prosser [lo] observed that &tit, the value of p2 at which E(N) 
= 1, is a good predictor of the location of the peak median cost for most of the 
CSPs he studied, but not for those with the sparsest constraint graphs, with p1 < 0.3. 
Furthermore, he found that in some cases &tit is not even in the mushy region; there 
were no soluble problems in his samples, even though at that point E(N) = 1. It was 
decided to investigate the behaviour of these sparse problems in more detail: this section 
presents a description of the phase transition behaviour of a set of sparse CSPs, in order 
to explain why the arguments presented earlier break down in these cases. 

It was at first thought that the discrepancy between &wit and pzc,.it might be partly 
caused by disconnected graphs, and in particular by graphs with isolated vertices. If 
the constraint graph has i isolated vertices (corresponding to unconstrained variables) 
and the rest of the problem has exactly one solution, then the whole problem has mi 
solutions. Hence, problems which are “only just” soluble will have many solutions, 
rather than very few as in Section 3. To eliminate this factor, it was decided to consider 
only connected graphs. Problems were generated using Model B, as before, but each 
constraint graph was checked for connectedness: any disconnected graph was thrown 
away and a new graph was generated. The results presented in the rest of this section 
refer to connected graphs only; however, &tt is still not a good predictor of the phase 
transition for small n when p1 is also small. 

Fig. 4 shows the phase transition for three sets of problems with n = 30, m = 
10, and increasingly sparse constraint graphs. For each value of ~2, 100 problems 
(with connected constraint graphs) were solved. As before, the vertical lines mark the 
boundaries of the respective mushy regions. For these sets of problems, IjZc,.tt is 0.41 
for p1 = 0.3, 0.55 for p1 = 0.2 and 0.79 for p1 = 0.1. So IjZcfit is a worse predictor of 
the location of the peak median cost as p1 gets smaller, and for p1 = 0.1 is not even 
in the mushy region, even though the mushy region is getting wider as p1 gets smaller. 
The peak median cost for the (30,10,0.1) problems occurs for p2 = 0.73, at which 
point 61% of the sample problems are soluble;5 at this point, the expected number of 
solutions is 95,500. 

In investigating the behaviour of these problems, an obvious difference from the well- 
behaved problems of Section 3 is that a random sample of (30.10,O.l) problems contains 
a variety of constraint graphs, even when disconnected graphs are excluded, whereas the 
CSPs discussed in Section 3 all have the same constraint graph, i.e. the complete graph, 
Kg, since PI = 1. The question naturally arises whether different constraint graphs yield 
different behaviours. 

5 This is consistent with the peak occurring at the crossover point, since for pz = 0.72, 41% of the sample 
problems are soluble. 
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Fig. 4. Phase transition for three sets of sparse CSPs with n = 30. 

The generation of a random instance of a CSP can be divided into two stages; first 

the generation of the constraint graph, governed by the parameter pt, and secondly, 

the generation of the relation matrix for each pair of variables linked by a constraint, 
using ~2. It is possible to generate a single constraint graph and use it as the basis of 
a whole population of CSPs. In just the same way, the (8,10,1) CSPs of Section 3 

are problems with the same constraint graph, Kg. Hence, in carrying out experiments 

with CSPs whose constraint density pt is less than 1, there is a choice between using a 
separate randomly-generated constraint graph for each individual problem, or generating 

all of the required problems with the same constraint graph, which effectively becomes 
a fifth parameter, along with n, m, pt and pz. 

To investigate whether different constraint graphs give rise to different phase transition 

behaviours, a number of sets of CSPs were generated, with II = 30, m = 10, p1 = 0.1 
and several values of p2 in the region of the phase transition, in such a way that all 
the problems within a set had the same constraint graph, but different sets had different 
constraint graphs. The proportion of soluble problems for a given value of p2 was found 
to vary from set to set. Hence, the probability that a problem is soluble, psol, depends 
on the constraint graph, as well as on the four parameters n, m, p1 and pz. 

This is perhaps intuitively obvious; it is at least easy to imagine that CSPs based 
on some constraint graphs would be less likely to have a solution than others with the 
same parameters. If a graph has one or more vertices of higher than average degree, 
i.e. with a large number of adjacent vertices, then the corresponding variable is highly 
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constrained and would be difficult to assign a locally-consistent value. On the other hand, 
local consistency is more likely to be achievable in a graph with the same number of 
constraints, but much closer to being regular, i.e. with all vertices having approximately 
the same degree. 

If pro1 at a particular value of p2 depends on the constraint graph, then so does 
the crossover point; hence, each constraint graph has its own phase transition. This is 
demonstrated in Fig. 5, which shows the phase transition for two sets of (30,10,0.1) 
problems with different graphs. Graph (a) is from a set of randomly-generated graphs 
and has a very irregular degree distribution. Graph (b) was hand-generated and is as 
close to regular as possible (28 vertices have degree 3, 2 have degree 2, giving the 
required total of 44 constraints). As expected, at any value of ~2, CSPs with the more 
regular graph are more likely to have a solution than those with the irregular graph, 
and so the crossover point for graph (b) occurs at a higher value of ~2. Fig. 5 also 
shows that the effort required to solve a problem or to show that it has no solution also 
depends on the constraint graph, at least during the phase transition. 

The graphs shown in Fig. 5 are extreme cases, and do not show that there is a cor- 
relation between the regularity of the constraint graph and the location of the crossover 
point, in general. To establish whether or not this is the case, the relationship was 
investigated further for the (30,10,0.1) problems. 

Using Model B with m = 10, p2 can only be varied in steps of 0.01, and it was 
decided to estimate the crossover point more precisely by linear interpolation from the 
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proportion of soluble problems found at two adjacent values of ~2. For instance, if 35% 
of problems are soluble at p2 = 0.74 and 65% are soluble at p2 = 0.75, the crossover 
point is estimated to be 0.745. (For the experiments discussed in this section, it is almost 
invariably the case that the peak median cost occurs at a value of p2 adjacent to the 
crossover point estimated in this fashion.) 

In a population of constraint graphs with fixed n and pt, the number of constraints, c, 
and so the number of edges, is fixed. The mean vertex degree is also constant (2c/n). 
A very irregular graph has some vertices with much higher than average degree, and 
correspondingly other vertices with lower than average degree. The regularity might 
therefore be measured by the variance of the degree distribution, or, since the mean 
degree is constant, by CL, df, where di is the degree of vertex i. 

The regularity of the constraint graph is indeed closely correlated with the crossover 
point. The correlation is slightly better if any end-vertices (vertices of degree 1) are first 
eliminated from the graph. It can be argued that an end-vertex has very little influence on 
whether or not the variable represented by the adjacent vertex can be found a consistent 
value. If a vertex of high degree is adjacent to several end-vertices, its corresponding 
variable is not as highly-constrained as the degree suggests. Hence, end-vertices should 
be ignored in calculating the contribution of their adjacent vertices to the regularity 
of the graph, if, as here, the regularity of the graph is being used as an indication of 
the likelihood that there is a solution to a CSP based on the graph. End-vertices are 
eliminated recursively, so that any vertex adjacent only to end-vertices and one other 
vertex are also eliminated.6 

Cyit df/n’ was then calculated for the remaining graph, where n’ is the number of 
remaining vertices. A large value of this measure indicates a very irregular graph in 
which some vertices are adjacent to many others, which in turn are adjacent to yet other 
vertices; the high-degree vertices correspond to variables which it may be difficult to 
find consistent values for. A small value of the regularity measure indicates that the 
graph is close to being regular, and all vertices have similar degree. 

Fig. 6 shows the results: the crossover point is estimated from samples of 500 problems 
at each value of ~2.’ The random graphs are a set of 30 randomly-generated graphs, 
intended to show the distribution of crossover points likely to occur, while the extreme 
graphs were picked from a much larger sample to show the extremes of regularity that 
might occur, together with graph (b) from Fig. 5, which is the point on the extreme 
left. Graph (a) from Fig. 5 is the point on the extreme right. There is clearly a close 
correlation between the regularity of the constraint graph, measured as described, and 
the crossover point for these problems. (The linear correlation coefficient is -0.95 1 for 
the data shown in Fig. 6. This is slightly better than if the end-vertices are not removed 
(correlation coefficient -0.926) ) . 

6 This procedure would cause any constraint graph which is a tree to disappear completely. On the other 
hand, CSPs whose constraint graphs are trees are known to be easy [4], so this may be sensible. 

’ For these parameter values, solving 500 problems takes approximately 175-350 CPU seconds, depending 
on the constraint graph (using a C program running on a SPARCstation IPX), and estimating the crossover 
point needs runs with at least two values of p2, so that Fig. 6 required more than 20,000 CPU seconds in 
total. 
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Fig. 6. Comparison between crossover point and regularity constraint graph for a set of (30.10.0.1) CSPs. 

It should be pointed out that these high correlation coefficients are very dependent on 
the way in which the regularity of the constraint graph is calculated. Nevertheless, the 

correlation is striking, and the removal of end-vertices makes a noticeable difference. 
It is possible that by identifying other relevant features of the constraint graph, a still 

better correlation could be achieved. 
The random graphs from Fig. 6 suggest an explanation for the width of the mushy 

region for (30,10,0.1), as shown in Fig. 4. The mushy region is based on a composite 
of many different constraint graphs whose crossover points occur, typically, anywhere 
between 0.7 and 0.74. 

This evidence suggests that it might be difficult to predict the crossover point for 

small problems with sparse constraint graphs solely in terms of the parameters II, m 
and pr, since the topology of the constraint graph also needs to be taken into account. 
However, experimental evidence ( [ 1 I] and Fig. 4) suggests that, for larger values of 

n and/or pt, the mushy region is narrower, and so the effect of the different constraint 
graphs will be less important. 

Consideration of the effect of different constraint graphs does not explain, however, 
why the predicted crossover point at 0.79 is so inaccurate for the (30,10,0.1) problems; 

it over-estimates the crossover point even for the regular graph, which from Fig. 6 
probably has the highest possible crossover point for these problems. The discrepancy 
is due to the very high variance in the number of solutions for these problems: at 
p2 = 0.79, the expected number of solutions is 1, but in practice almost all problems 
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are insoluble. 1000 problems (with a different (connected) constraint graph for each 
one) were solved and yielded just one soluble problem, with 2340 solutions: hence 

the expected number of solutions is made up of a very high proportion of insoluble 

problems and a very small proportion of problems with many solutions. Conversely, at 
the observed crossover point (0.73)) where E(N) = 95,500, the problems which are 
soluble (approximately half of the total) must have approximately 191,000 solutions on 
average (although this has not been verified experimentally). 

Although psOl depends on the constraint graph, E(N) does not. This has been em- 

pirically verified by finding all solutions to samples of (30,10,0.1) problems with two 

different connected constraint graphs at p2 = 0.77. The constraint graphs were the reg- 

ular graph (graph (b) of Fig. 5), for which 0.77 is the crossover point, and one of the 
random graphs from Fig. 6, whose crossover point was at 0.728. 200 problems based 
on the regular graph were solved; 51.5% have no solutions and the average number of 

solutions is 83.3, comparing well with E(N) which is 82.4. For the other constraint 
graph, hardly any problems have solutions, as expected so far from its crossover point; 
10,000 problems had to be solved in order to find a reasonable number of soluble prob- 

lems. 99.1% of the problems have no solutions and the average number of solutions is 
69.3; the 88 soluble problems have on average 7875 solutions. 

Whether or not the constraint graph is taken into account, the expected number 

of solutions at the observed crossover point is much greater than the predictor &crit 
requires. Since, by definition, 50% of problems have no solution at the crossover point, 

this implies that the variance of the number of solutions is extremely high. The variance 
must also be very high at the predicted crossover point, since the rare problems that 

have solutions at that point have very many of them, to give an overall average of 1 

solution. The variance of the number of solutions for this and other classes of CSP is 
discussed in more detail in the next section. 

6. The variance of the number of solutions 

In the previous section it was shown that for (30,10,0.1) problems, the predictor 

of the crossover point given by (2) is very inaccurate, since E(N) = 1 does not 
indicate equal proportions of insoluble and soluble problems, as it does for the (8,10,1) 
problems of Section 3, but that almost all problems are insoluble and the very few soluble 

problems have many solutions. It should be expected, therefore, that the variance of the 
number of solutions, var( N), at &it should be small for the (8,10,1) problems and 

very large for the (30,10,0.1) problems. If var( N) can be calculated, then its value at 
/&it allows an informal check on the likely accuracy of the prediction of the crossover 

point. Furthermore, the inequalities (3) and (4) give bounds on psOl at any value of ~2, 

provided that E(N) and var(N) are known. 
For problems generated according to Model B, the variance can be calculated from: 

E(iV2) = 

n 

m" co ; (m_ 1)+ (li,);;,~;?,,, _p2)c (l_ &!L)c-‘, (5) 

s=o t=o 
2 
c 
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where c is the number of constraints ((i)p 1, rounded to the nearest integer). The 
derivation of Eq. (5) is given in the appendix. 

The value of this can be computed, with some effort, for moderate values of n. 
As expected, vat(N) is small at &tit for (&lo, 1) problems (var(N) = 2.55 at p2 = 
0.482)) but extremely large for (30,10,0.1) problems at both the predicted and observed 

crossover points (var( N) = 1.16 x lo6 at p2 = 0.79; var( N) = 2.44 x lo’* at p2 = 0.73). 
The bounds given by (3) and (4) can be used to give lower and upper bounds on the 

mushy region, From the definition of the mushy region given earlier, the lower boundary 

is at 1 -psol = 0.01 and the upper boundary is at psol = 0.01. From (3) and (4), bounds 

on the mushy region are given by the largest value of p2 for which 

var( N) 

E(N)* + var( N) 
< 0.01 (6) 

and the smallest value of p2 for which 

E(N) < 0.01. (7) 

These inequalities cannot be expected to give very tight bounds on the mushy region 
for small n, but they may converge as n increases. Bounds on the crossover point can 
also be found by substituting 0.5 for 0.01 in (6) and (7). It has not been possible 

to calculate the variance of the number of solutions for large n, but assuming that the 
trends seen for smaller values of n continue, some conclusions can be drawn. 

Fig. 7 shows the calculated bounds on the mushy region and the crossover point for 
a case in which they converge as n gets larger: here 12 and m are equal, and p1 = 1. 

As II increases, it rapidly becomes prohibitively time-consuming to solve large samples 
of problems with these parameters, and empirical results are not available for n > 20. 
Prosser [ lo] showed that mc,.tt for (20,20,1) problems is 0.27 (identical to &,.tr); the 

mushy region for these problems is already very narrow. Fig. 7 confirms that for this 
class of problems, &,+ is an accurate predictor of the crossover point for n > 10, and 
for n > 70, say, marks an almost instantaneous phase transition. 

The behaviour of var( N) at &rir has also been investigated: informally, a small value 

of var( N) should indicate that &it will be a reliable predictor of the crossover point, 
as for the (8,10,1) problems; a very large value will indicate that it is likely to be an 
over-estimate, as for the (30,10,0.1) problems. Table 1 shows the results for problems 
with pt = 1. 

As can be seen from Table 1, for (n, n, l), the class already described and shown in 

Fig. 7, vat-(N) at &rit appears to be small for all II, and in fact to decrease as n gets 
larger. The appendix gives an asymptotic analysis of (5) in this case, which shows that 
as n + cc, var( N) ---f e, which is consistent with Table 1. 

Unfortunately, it is difficult to analyse the asymptotic behaviour of (5) in other cases. 

However, Fig. 8 shows the behaviour of var( N) at &tit for (n, n, pt ) problems, over a 
range of values of pt. It appears that for these problems, var( N) at &,.tr decreases as 

n increases, from some point onwards (for pt = 1, the initial increase (if any) occurs 

for 12 < 10, and so is not shown in Table 1). For all values of n, it appears that var(N) 
is small (< 11.4) at &it for pt > 0.5: this indicates that &crtr will be an accurate 
estimate of the crossover point for all these problems. 



172 B.M. Smith, M.E. Dyer/Ar@cial Intelligence 81 (1996) 155-181 

0.5 

0.45 

0.4 

0.35 

0.3 
N a 

0.25 

0.2 

0.15 

0.1 

I I I 1 I I 1 I 

Bounds on the mushy region ----- 
Bounds on the crossover point ----. 

Predicted crossover point - 

I I I I I I I I 

10 20 30 40 50 60 70 60 90 100 
n 

Fig. 7. Calculated phase transition bounds for (n,n, 1) problems. 

Table I 
var( N) at the predicted crossover point for classes of CSPs with pa = 1 

n 10 20 30 40 50 60 70 80 90 100 

??I 

IO 3.34 10.8 31.1 88.3 251 723 2086 6036 17507 51029 

20 3.32 5.57 9.44 16.0 27.4 46.8 80.2 137.4 235.9 

30 3.06 4.34 6.18 8.79 12.5 17.9 25.5 36.4 

40 2.96 3.85 5.02 6.53 8.50 11.1 14.4 

50 2.91 3.59 4.43 5.47 6.74 8.32 

60 2.88 3.43 4.08 4.86 5.78 

70 2.86 3.32 3.85 4.46 

80 2.85 3.24 3.69 

90 2.83 3.18 

100 2.82 

As problems become sparser, Fig. 8 shows that there is an enormous increase in 
var( N) at &it, culminating in the huge variances when p1 = 0.1 already seen in 
Section 5. In general, for sparse CSPs in which m increases with n, evidence based on 
var( N) suggests that &it may eventually be a good predictor of the crossover point, but 
only for extremely large values of n: for (n, n, 0.1) problems, for instance, Fig. 8 shows 
that the variance at &rit begins to decrease when n = 60, but clearly it will not reach 
the level seen for pl = 1 for a long time. Although experimental evidence suggests that 
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Fig. 8. var(N) at the predicted crossover point for (n,n,p~) problems. 

the phase transition does become sharper for (n, n, 0.1) problems as n increases, there 
is little evidence to support this from the variance; the calculated bounds on the mushy 
region are very far apart, although they appear to get closer as n increases. The situation 
is further complicated by the fact that for small sparse CSPs, different constraint graphs 
may have crossover points which differ significantly, as shown in Section 5. The variance 
of the number of solutions will also depend on the constraint graph, but var(N) for a 
particular constraint graph cannot easily be computed, even if it would be useful to do 
so. 

Table 1 suggests that for some other classes of problems in which m increases with 
n, e.g. (n, n/2, l), var(N) at &it decreases as n increases. A similar pattern to the 
(n, n, pt ) problems might be expected in this case, i.e. for problems with high constraint 
density, j&tit is a good predictor of the crossover point even for small values of n; as 
problems become sparse, however, this is only true for very large values of n. 

Keeping m constant as n increases does not, asymptotically, make sense, since the 
minimum possible non-zero value of p2 is l/m2 and for any fixed ~2, E(N) + 0 as 
II ---f co, so that ultimately all such problems with p2 > 0 are insoluble. However, for 
small n, the behaviour of this class of problem is of interest. If m is constant, Table 
1 shows that vat(N) at b2crit increases as n increases: for (n, 10, l), var(N) at &tit 
increases rather rapidly with n. From other investigations with different values of ~1, it 
appears to be a general rule that if m is kept constant, var(N) at &tit increases with 
II. This suggests that, except for small values of n, &it gives a point in the insoluble 
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E(N) and var( N) for (200,10,1) problems 

P2 E(N) WN) 

0.02 1 3.76 ~10’~ 1.06 1O35 x 

0.022 5.54 x10’ 4.07 x1019 

0.023 0.0798 8.98 x10’ 

0.024 1.13 x10-‘0 0.00127 

region, rather than the crossover point. On the other hand, the bounds on the crossover 

point and the mushy region for (n, 10, I) do appear to converge, though slowly, as n 
increases. For n = 10, they show that the crossover point occurs between 0.37 and 0.41 
(empirically, p2crit = 0.4, which is also the value given by (2)); when n = 200, the 
crossover point occurs between 0.01 and 0.03. 

Since the calculated bounds on the crossover point, which are converging slowly, 

include /?2critr and on the other hand fizcrit appears to become a worse predictor of 

the crossover point, there is an apparent contradiction. This can perhaps be explained 
by considering a particular case in more detail. Table 2 shows E(N) and var(N) 

for (200,10,1) problems, increasing p2 this time in steps of 0.001 (although this is 

unrealistic in terms of Model B). The calculated bounds on the crossover point are 
now 0.011 and 0.023; the predicted crossover point is at p2 = 0.0229. Both E(N) and 
var( N) are changing very rapidly at this point: it seems likely that the phase transition 
occurs over a very small range of values of p2 for these problems, and that &fit lies 
outside the mushy region (as it does for the (30,10,0.1) problems), where almost all 

problems have no solutions. In practice, given that with m = 10, p2 cannot be varied in 

steps of less than 0.01 with Model B, it may be impossible to generate problems in the 
mushy region for these parameter values. For still larger values of IZ, the crossover point 

will in theory fall below 0.01, so that, as already pointed out, almost all problems with 
p2 > 0 will be insoluble. 

The class (n, 10,O. I), an example of which was discussed in Section 5, is very badly- 
behaved: it combines the difficulties caused by sparse constraint graphs with those of the 

problems just discussed, in which m remains constant as n increases. The bounds on the 
crossover point only show that it lies between 0.61 and 0.8 when n = 30 (from Section 
5, p2crit = 0.73), and between 0.29 and 0.45 when n = 80. Together with the known 

inaccuracy of the predictor acrit when n = 30, this suggests that it will be difficult to 
predict the crossover point with any confidence for this class of problem, even for quite 

large values of IZ (and ignoring the complications caused by different constraint graphs). 
In the absence of experimental evidence about a class of CSPs of this type, there is little 
that can be said about the location of the crossover point, except that it lies within the 

broad limits given by the calculated bounds. 

7. Practical applications 

The ultimate aim in investigating phase transition phenomena is to be able to predict 
where an individual problem lies in relation to the phase transition, and hence to predict 
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Fig. 9. Comparison of n-queens and (n, n, 1) problems. 

whether it is almost certain to be insoluble (in which case there is probably no point 
in making the attempt), almost certain to be easily soluble, or (in the phase transition 
region) a hard problem which may or may not be soluble. 

It has been shown in this paper that for many classes of randomly-generated binary 
CSPs, described by the parameters n, m, PI and ~2, the crossover point marking the 
transition from soluble to insoluble problems can be accurately estimated, by calculating 
the value of p2 at which E(N) = 1, and it can be shown that the mushy region lies 
within a small range of values of ~2. Provided that a problem can be thought of as 
a random instance of one of these classes, it should be possible to make a prediction 
about whether or not it is likely to be soluble. 

Unfortunately, a great many CSPs that arise in practice do not fit the model, for 
instance non-binary CSPs. It is also not obvious whether the kinds of constraint that 
arise in practice can be expected to behave like randomly-generated constraints. A great 
deal more work will be required in order to establish whether the work described here 
can be applied to real cases. One practical difficulty is that a large number of problems, 
both soluble and insoluble, will be required in order to assess the accuracy of the 
prediction. 

A problem that appears frequently in the CSP literature is the n-queens problem,* 
partly because it does give an infinite number of instances (one for each n). It does 

’ The problem of placing n queens on an n x n chessboard in such a way that no queen can take any other. 
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also fit the model discussed in this paper reasonably well: the constraints are binary and 
every variable has the same number of values. The number of variables (the n queens) is 

equal to the number of values (the number of columns on the board), and every variable 

constrains every other variable, so that pt = 1. Every value for a variable conflicts with at 
most 3 values of any other variable, so the constraint tightness, p2. is roughly 3/n. More 
precisely, the constraint tightness varies to some extent, depending on the variables and 
values concerned: its average value can be calculated as (7n - 2)/3n2. Apart from the 
fact that p2 varies, and the constraints are far from random, since they reflect the rules 

of chess, the n-queens problem can be seen as an instance of a (n, n, 1, (7n - 2)/3n2) 

problem. It has been demonstrated in the previous section that for the (n, n, 1) class, the 
crossover point occurs at &ii given by Eq. (2) and the phase transition is very abrupt, 

even for small II. Fig. 9 compares the average constraint tightness for n-queens with the 
predicted crossover point for (n, II, 1) problems. Problems falling below the solid curve 
are therefore predicted to be soluble; problems above it are predicted to be insoluble. 

Since the n-queens problem is soluble for n > 3, and has an increasingly large 

number of solutions as n increases, it is gratifying that, as Fig. 9 shows, its behaviour 
agrees with the prediction given by &+rti. What is more interesting, however, is that 
for large n, Fig. 9 shows that almost all (n, n, 1) problems have no solutions; only 
problems with very loose constraints are soluble. To some extent, this counters one of 
the objections sometimes made to using n-queens as a benchmark problem, namely that 

it is unrepresentative because the constraints become looser as n gets larger (see Tsang 

[ 121, for example); Fig. 9 shows that if this were not the case, the problem would 
not remain soluble. However, the constraint tightness for the n-queens problem as a 
proportion of &c-ii does become smaller as n increases, so that it is an increasingly easy 

example of (n, n, 1). 

8. Conclusions 

It has been demonstrated that in randomly-generated binary CSPs defined by the 

parameters n, m, pl and ~2, as described in Section 2, there is a phase transition as 
the constraint tightness, ~2, increases, from a region in which almost all problems are 
soluble to a region in which almost all are insoluble. Between these two regions, in 
the mushy region, the average cost of finding a solution or proving that the problem is 

insoluble, is greatest. It is assumed that the peak in average cost occurs at the crossover 

point, pzcrit, where 50% of problems have solutions. 
By considering a sample class of problems, (8,10, l), it has been shown that the 

phase transition is also a transition from a partial search, which terminates as soon as 

the first solution is found, to a complete search, which is required to prove that there 
are no solutions. Hence, if all solutions are required, necessitating a complete search in 
all cases, the transition from solubility to insolubility does not correspond to a peak in 
average cost. 

Experimental evidence and theory indicate that the crossover point occurs at the value 

of p2 for which the expected number of solutions, E(N), is 1, and that as the size 
of problems increases the phase transition should become increasingly abrupt, SO that 
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asymptotically there is an instantaneous phase transition. The accuracy of j&it as a 

predictor of pzcrit has been investigated. 
Although it has been demonstrated that &it is an accurate estimate of &tit for some 

classes of CSP, even when n is small, for instance for (&lo, l), it is very inaccurate, 

and indeed does not even give a point in the mushy region, for some sparse problems 
when n is small. Detailed consideration of (30,10,0.1) problems has shown that the 
phase transition also depends on the constraint graph for these problems, so that a more 

accurate predictor of the crossover point would have to be based on the constraint graph 
topology as well as on the other parameters. Although this is true in theory for any CSP 
with pI < 1, it is unlikely to be important unless the mushy region is wide (i.e. for 
small n and small pI ) . For larger problems, the phase transition will happen sufficiently 

quickly that the effect of different constraint graphs will be insignificant. It was shown 
that for the (30, 10,O.l) problems, the reason for the poor performance of the actit 
predictor is the very large variance in the number of solutions when E(N) = 1, so that 

almost all problems are insoluble, giving a point outside the mushy region, rather than 

the crossover point. 
By calculating var( N) , the variance of the number of solutions, as well as E(N), it is 

possible to derive bounds on the mushy region and the crossover point, and to determine 

whether &it is likely to be an accurate estimate at the crossover point. Assuming that 
the trends seen in the calculated values continue as n increases, four classes of CSP 

have been identified: 
l Problems with high constraint density and m increasing with n, of which (n, n, 1) 

is typical. Even for small n, &it is an accurate estimate of the crossover point and 

there is an abrupt phase transition. 
l Sparse problems in which m increases with n, e.g. (n,n,O.l). For small values 

of n, the calculated bounds on the crossover region are very wide and var(N) at 

@2crit is extremely large, indicating that it is likely to be an over-estimate of the 
crossover point. There are indications that the situation improves, but only for very 
large values of n. 

l Dense problems in which m is constant as n increases, e.g. (n, 10,l). For large 
enough n, the crossover point will be below the smallest possible value of p2 

allowed by the model, so that almost all of these problems are insoluble. The 

calculated bounds on the crossover point appear to converge as n increases, but 
var( N) at &it is increasing, indicating that it is becoming more unreliable as an 

estimate of the crossover point. It is suggested that as the phase transition becomes 

increasingly abrupt, j&tit may become numerically closer to the crossover point for 
these problems, although in the insoluble region. 

l Sparse problems in which m is constant as n increases, e.g. (n, 10,O.l). This class 
compounds the difficulties of the previous two classes. It is difficult to see how 
to locate the crossover point with any precision for these problems, other than by 
experimentation. 

As discussed in the previous section, a great deal of further work is needed to see 
whether it is possible to apply these results to real, rather than randomly-generated, 
CSPs. If so, it might be possible to avoid wasting time trying to solve problems which 
can be predicted to be almost certainly insoluble. Alternatively, if a problem falls in the 
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mushy region and so is likely to be hard, with a good chance of being insoluble, a small 
relaxation of the constraints would move it into the region where problems are almost 

certainly soluble and much easier to solve; the lower bound on the mushy region, given 

by the variance and expectation of the number of solutions, indicates by how much the 

constraints would need to be relaxed. Although the evidence provided by the n-queens 
problem is far from conclusive, it is at least an indication that this might be possible. 

Appendix A 

The derivation of E(N) and E( IV*) for problems generated according to Model B is 

as follows. 
Let c = (i)pt . Define the following indicator variables. 

Wij = 
{ 

1, if edge {i, j} is present in the constraint graph, 

0, otherwise, 

{ 

1, if variable i = yi and variable j = vj 

Zi?; ,.j!j = is an inconsistent assignment, 

0, otherwise. 

Thus, in particular, E( Wii) = PI and E( Ziy,,jyj ) = ~2. We will use the following notation 

for sums and products. Let 

c=kF...e and n=fifi, 

x x,=1 xz=l .X,,=l i,j i=l j=i+l 

with the understanding that different symbols replace all occurrences of the dummies. 
Thus, for example, n,,, = nz=, n”,,,,. Then we have 

(A.11 
x i,i 

To determine E(N), note that there are m” terms in the summation, each having the 

same expectation. Thus we only need to determine the expectation of the product for 

a fixed assignment xi (i = 1,2,. . . , n). However, only c terms in the product will be 

different from 1, those corresponding to W, = 1, and these will be independent with 

expectation (1 - ~2) since they arise from different edges. Thus 

E(N) =mn(l -p2)‘, 

as claimed. To determine E( N*), we have 

N2 = C C n( 1 - WijZix;,jx, ) n( 1 - wrszr!;,vs ) 

x y i.j r,s 

(A.21 =ccrI ( 1 - WijZixf,,jX, ) ( 1 - Wijzin.jYj ) ’ 

x y i.j 
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Consider the product in (A.2). Again only c terms in the product will be different from 
1, those corresponding to W, = 1. If Wij = 1, the term is ( 1 - Z~~i,j~j) ( 1 - Ziyi,jyj), 
and these are independent for different edges {i,j}. If Xi = yi and Xj = yj, then 
( 1 - ZiX,,,iX,) ( 1 - Ziy;,i\i) = ( 1 - Zix,,jxj), which has expectation ( 1 - ~2). Otherwise, 
if xi # y; or Xj # yj* then E( ( 1 - Ziq,jxj) ( 1 - Z,,,)) is the probability 4 that 
two successive observations, drawn without replacement from a population of size m2 
containing m2p2 successes, are both failures. Clearly 

4 ( = m* - ~2;;;$~-$2Pz - l) = (1 _ p2) 
( $FJ 

1 _ 

Thus the expectation of the product is determined only by the number of edges {i, j} 
such that xi = yi and Xj = yj. Thus, let S = {i : Xi = Yi}. The number of ways of 
choosing XI, x2,. . . , xn and yr , ~2,. . . ,yn SO that exactly s pairs match, i.e. xi = yi for 
exactly s values of i, is 

0 n m”(m - l)‘-‘. 
s 

Hence, this is the number of terms in the summation of (A.2) with IS1 = s, for s = 
o,t,... , n. Now for given S, the probability that we choose t edges with both vertices in 
S is the probability of t successes in samples of size c drawn without replacement from 
a population of (i) containing (;) successes. This has the hypergeometric probability 

($1) (W,(i)) 

(“‘) ’ 
‘ 

for t = 0, 1,. . . , c. Given S, the product in (A.2) has expectation ( 1 - p2)‘qc-’ by the 
argument above. Putting all this together, 

and so, as claimed: 

E(N2) = 

” 

m” 
10 s=o 

: (m _ l)fl-s 2 c(e);;,;;i’)) (1 _ p2)c (1 _ &)‘-‘. (A.3) 

t=o 2 
c 

A similar analysis can be done for Model A. For the expectation, since all terms 
in (A.1 ) are independent, we obtain 

E(N) =mn(l -p,p2)(;). 

For the variance computation, however, c = tl -I- t2 is now a random variable, where tl 
is the number of edges with both endpoints in S. We now obtain 

q=E((l -~2)“(1 -p2)“) =E((l -p2)")E((l -p2)'*), 
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since tt, t:! are independent. But these are binomial random variables with parameters 

(l), PI and (i) - (3, P 1 respectively. Since for a binomial variable t with parameters 
V, p we have ,?.?(A’) = (1 - p( 1 - A))“, we obtain 

q=(l -p,p2$)(1 -p,(l -(I -p#)(:)-(;) 

=(l -p*p2)(;)(1 -p1p2(2-p2))(I;)-(X 

This gives 

E( N2) = m” 2 (y) (m - l)“-‘(1 -plp2)(;)(1 -PIP~(~-P~))(;)-(;). (A.4) 

J=o 

A detailed asymptotic analysis of these variance formulas appears tricky, so we will 
consider only two special cases with m = n. 

First, consider the case of Model B and p1 = 1. Then c = (z) and if E(N) z 1, we 
require p2 z 2logn/(n - 1). Since then m2p2/(m2 - 1) = p2( 1 + 0( l/n2)), we may 
approximate ( 1 - m2p2/(m2 - 1) > by ( 1 - ~2). The inner sum in the expression for 
E( N2) in (A.3) reduces to a single term, with t = (;), giving 

E(N2) ~2 (1) (n- ly-(l _,,)WG) 
s=a 

n 

ze -1 c() so 

: (n - l)-s( 1 -pz)-(i) 

z5e -1 

n 
-1 n 

We 
c(> 

es/nns(n-s)l(n-l) 

.s=o 
s 

using the values of E(N) and ~2. Examination of the final sum shows that the terms 
are negligible unless s is near zero or s is near n. Then 

E(N’)=(l+e-‘)gl/s!=(l+e), 
s=o 

giving var( N) M e. 
By contrast, in Model A, for any constant p1 we require 

P2 z 2logn/(n - 1)pt. 

Taking only the term of E( N2) for s = 0, from (A.4)) gives 



B.M. Smith, M.E. Dyer/Artijcial Intelligence 81 (1996) 155-181 181 

using the value of E(N). This is at least 

for large n. This clearly diverges to infinity. Thus in this case the variance is unbounded, 
even when pl = 1. Thus the two models are not equivalent. 

References 

1 11 B. Bollobtis, Random Graphs (Academic Press, New York, 1985). 
(21 P. Cheeseman, B. Kanefsky and W. Taylor, Where the Really Hard Problems are, in: Proceedings 

IJCAI-91, Sydney, Australia (1991) 331-337. 
( 3 ( J.M. Crawford and L.D. Auton, Experimental results on the crossover point in satisfiability problems, 

in: Proceedings AAAI-93, Washington, DC (1993) 21-27. 
14 I R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artif: Intell. 34 

(1988) l-38. 
15 I R. Haralick and G. Elliott, Increasing tree search efficiency for constraint satisfaction problems, Artif: 

Intell. 14 (1980) 263-313. 
16 ) S. Kirkpatrick and B. Selman, Critical behaviour in the satisfiability of random Boolean expressions, 

Science 264 (1994) 1297-1301. 
171 D.G. Mitchell, B. Selman and H.J. Levesque, Hard and easy distributions of SAT problems, in: 

Proceedings AAAI-92, San Jose, CA ( 1992) 459-465. 
I 8 I E.M. Palmer, Graphical Evolution (Wiley, New York, 1985). 
19 1 I? Presser, Hybrid algorithms for the constraint satisfaction problem, Compur. Intell. 9 (3) ( 1993) 

268-299. 
I 10 1 I? Presser, Binary constraint satisfaction problems: some are harder than others, in: A. Cohn, ed., 

Proceedings ECAI-94 (Wiley, New York, 1994) 95-99. 
I I 11 F? Presser, An empirical study of phase transitions in binary constraint satisfaction problems, Art$ Intell. 

81 (1996) 81-109 (this volume). 
I I2 I E. Tsang, Foundations of Constraint Satisficfion (Academic Press, New York, 1993). 
I 13 1 C. Williams and T. Hogg, Using deep structure to locate hard problems, in: Proceedings AAAI-92, San 

Jose, CA ( 1992) 472-477. 
I 141 C. Williams and T. Hogg, Extending deep structure, in: Proceedings AAAI-93, Washington, DC ( 1993) 

152-158. 
[ 15 1 C. Williams and T. Hogg, Exploiting the deep structure of constraint problems, Artif: Intell. 70 ( 1994) 

73-l 17. 


