
Fast Solving Maximum Weight Clique Problem in Massive Graphs

Shaowei Cai1∗ and Jinkun Lin2

1State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
caisw@ios.ac.cn; jkunlin@gmail.com

Abstract
This paper explores techniques for fast solving
the maximum weight clique problem (MWCP)
in very large scale real-world graphs. Because
of the size of such graphs and the intractability
of MWCP, previously developed algorithms may
not be applicable. Although recent heuristic
algorithms make progress in solving MWCP in
massive graphs, they still need considerable time
to get a good solution. In this work, we propose a
new method for MWCP which interleaves between
clique construction and graph reduction. We also
propose three novel ideas to make it efficient,
and develop an algorithm called FastWClq.
Experiments on massive graphs from various
applications show that, FastWClq finds better
solutions than state of the art algorithms while the
run time is much less. Further, FastWClq proves
the optimal solution for about half of the graphs in
an averaged time less than one second.

1 Introduction
The proliferation of massive data sets brings with it a series
of special computational challenges. Many data sets can be
modeled as graphs, and the research of massive real-world
graphs grew enormously in last decade. A clique of a graph
is a subset of the vertices that are all pairwise adjacent. Clique
is an important graph-theoretic concept, and is often used to
represent dense clusters. The maximum clique problem (M-
CP) is a long-standing problem in graph theory, for which the
task is to find a clique with the maximum number of vertices
in the given graph. An important generalization of MCP is
the maximum weight clique problem (MWCP), in which each
vertex is associated with a positive integer, and the goal is to
find a clique with the largest weight. MWCP has valuable
applications in many fields [Ballard and Brown, 1982; Bala-
sundaram and Butenko, 2006; Gomez Ravetti and Moscato,
2008].

The decision version of MCP (and thus MWCP) is one of
Karp’s prominent 21 NP-complete problems [Karp, 1972],
and is complete for the class W[1], the parameterized analog

∗Corresponding author

of NP [Fellows and Downey, 1998]. Moreover, MCP (and
thus MWCP) is not approximable within n1−ε for any
ε > 0 unless NP=P [Zuckerman, 2007]. Nevertheless, these
negative theoretical results have been established for “worst
case”, which does not often happen in practice. We still have
hope of solving MWCP problems which arise in specific
problem domains.

1.1 Related Work
Given their theoretical importance and practical relevance,
considerable effort has been devoted to the development of
various methods for MCP and MWCP, mainly including
exact algorithms and heuristic algorithms. Exact algorithms
can prove the optimality of their solutions, but they may fail
to solve large graphs within reasonable time. On the other
hand, various heuristic algorithms have been devised with
the purpose of providing sub-optimal solutions within an
acceptable time.

Almost all existing exact algorithms for MCP are branch-
and-bound (BnB) algorithms, and they differ from each other
mainly by their techniques to determine the upper bounds and
their branching strategies. A large family of BnB algorithm-
s use coloring to compute upper bounds [Tomita and Seki,
2003; Tomita and Kameda, 2007; Konc and Janezic, 2007;
Tomita et al., 2010; Segundo et al., 2013]. Another paradigm
encodes MCP into MaxSAT and then applies MaxSAT rea-
soning to improve the upper bound [Li and Quan, 2010; Li et
al., 2013]. There are also numerous works on heuristic algo-
rithms for MCP, most of which are local search algorithms [S-
ingh and Gupta, 2006b; Pullan and Hoos, 2006; Pullan, 2006;
Guturu and Dantu, 2008; Benlic and Hao, 2013].

MWCP is more complicated than MCP and some powerful
techniques for MCP are not applicable or ineffective for solv-
ing MWCP due to the vertex weights. This partly explains
the fact that there are relatively fewer algorithms for MWCP.
Some exact algorithms for MWCP come from and generalize
previous BnB methods designed for MCP [Östergård, 1999;
Kumlander, 2004]. The MaxSAT-based method is also gen-
eralized to MWCP, resulting in a state of the art exact MWCP
algorithm named MaxWClq [Fang et al., 2014]. More efforts
are devoted to heuristic algorithms for MWCP. Massaro et
al. propose a complementary pivoting algorithm based on the
corresponding linear complementarity problem [Massaro et
al., 2002]. Busygin presents a heuristic method using a non-

linear programming formulation for MWCP [Busygin, 2006].
A hybrid evolutionary approach is offered in [Singh and Gup-
ta, 2006a]. The Phased Local Search (PLS) algorithm is ex-
tended to MWCP [Pullan, 2008]. In [Wu et al., 2012], a local
search algorithm called MN/NT integrates a combined neigh-
borhood and a dedicated tabu mechanism, and shows better
performance than previous heuristic algorithms. A recent lo-
cal search algorithm based on the configuration checking s-
trategy [Cai et al., 2011] called LSCC further improves M-
N/NT on a wide range of benchmarks [Wang et al., 2016].

Traditional algorithms usually become futile on massive
graphs, due to their high space complexity and time
complexity. For example, most traditional algorithms utilize
adjacency matrix to facilitate fast computation of some
operations such as the query of whether two vertices are
adjacent. But the space requirement of this data structure
is prohibitive for massive graphs. Also, most commonly
used strategies do not have sufficiently low time complexity,
which severely limits their ability to handle massive graphs.

Recently, there have been some dedicated algorithms for
solving MCP in massive graphs. These MCP algorithms
[Rossi et al., 2014; Verma et al., 2015] heavily depend on
the concept of k-Core [Seidman, 1983], which is defined
as a subgraph where all vertices have degree at least k,
and can be computed in O(m) (m is the number of edges)
using bin sorting [Batagelj and Zaversnik, 2003]. However,
we are not aware of any work using the k-Core concept
to develop MWCP algorithms. Moreover, an analogous
concept in vertex weighted graphs requires prohibitive space
(O(w · m), where w is the average weight of vertices) for
bin sorting, and does not allow fast computation. As for
MWCP, a recent progress in solving massive graphs is made
in local search algorithms, by using a probabilistic heuristic
called Best from Multiple Selection (BMS) [Cai, 2015].
BMS was first applied to minimum vertex cover problem
[Cai, 2015], and then to MWCP, resulting in two efficient
local search algorithms for MWCP called MN/TS+BMS and
LSCC+BMS [Wang et al., 2016]. Seen from the literatures,
LSCC+BMS is currently the best algorithm for solving
MWCP in massive graphs.

1.2 Contributions and Paper Organization
Although recent works made progress in solving MWCP in
massive graphs, the improvements are limited to local search
and the performance is still not satisfactory. In many applica-
tions the time limit is very short, or the time resource is very
valuable. This calls for more practical algorithms for solving
MWCP in real-world massive graphs.

In this work, we propose an efficient method for solving
MWCP in massive graphs, which interleaves between clique
construction and graph reduction. In a graph reduction pro-
cedure, we reduce the size of the graph by removing some
vertices that are impossible to be in any clique of the opti-
mal weight. Most real-world massive graphs are power law
graphs [Eubank et al., 2004; Lu and Chung, 2006], and can
be reduced considerably by using a clique of certain quality
in hand as a lower bound. On the other hand, a smaller graph
presents smaller search space and the algorithm may find bet-
ter cliques more easily, which can then be used to further re-

duce the graph. As far as we know, this is the first algorithm
that interleaves between construction and reduction, although
some previous MCP algorithms reduce the graph before call-
ing an exact algorithm [Rossi et al., 2014; Verma et al., 2015].

Moreover, we propose three ideas to make the method ef-
fective and efficient. The fist one is a function for estimat-
ing the benefit of adding a vertex, which considers both the
weight of the vertex and the weight of its effective neigh-
borhood w.r.t the current clique. We also propose a dynam-
ic BMS heuristic, which is used in choosing the adding ver-
tex. Lastly but very importantly, we propose a fast and effec-
tive graph reduction algorithm, which relies on two reduction
rules, including a novel branching-based reduction rule.

Based on these ideas, we develop an algorithm called Fast-
WClq. Experiments on a wide range of real-world massive
graphs show that, FastWClq finds better solutions than state
of the art algorithms (including LSCC+BMS and MaxWClq)
for most of the graphs with less run time. More encouraging-
ly, FastWClq finds at least same-quality, sometimes better-
quality solutions than its competitors even when the time lim-
it for the competitors are 10 times and 36 times that for Fast-
WClq. Further, FastWClq finds and proves the optimal solu-
tion for about half of the graphs in one second on average.

In the next section, we introduce some necessary
background knowledge. Then, we describe our method
in Section 3, including the FastWClq algorithm and its
important components. Experimental evaluations of our
algorithm FastWClq are presented in Section 4. Finally, we
give some concluding remarks and outline the future work.

2 Preliminaries
Let G=(V ,E) be an undirected graph where V ={v1, v2, . . . ,
vn} is the set of vertices and E is the set of edges in G. We
use V (G) and E(G) to denote the vertex set and the edge
set of graph G. A vertex weighted undirected graph is an
undirected graph G = (V,E) combined with a weighting
function w so that each vertex v ∈ V is associated with a
positive integer number w(v) as its weight. We use a triple
to denote a vertex weighted graph, i.e., G = (V,E,w). For a
subset S ⊆ V , we let G[S] denote the subgraph induced by
S, which is formed from S and all of the edges connecting
pairs of vertices in S. The weight of S is w(S)=

∑
v∈S w(v).

The neighborhood of a vertex v is N (v)={u ∈ V |{u, v} ∈
E}, and we denote N [v] = N(v) ∪ {v}. The degree of v is
d(v) = |N(v)|.

A graph G=(V ,E) is complete if its vertices are pairwise
adjacent, i.e. ∀u, v ∈ V, {u, v} ∈ E. A clique C is a subset
of V such that the induced graphG[C] is complete. The max-
imum clique problem (MCP) is to find a clique of maximum
cardinality in a graph, and the maximum weight clique prob-
lem (MWCP) is to find a clique of the maximum weight in a
vertex weighted graph. A clique C is called a maximal clique
in G if there exists no clique C ′ in G such that C ′ ⊃ C.

3 A Novel Method for MWCP
In this section, we propose an algorithm for solving MWCP
called FastWClq, which interleaves between clique construc-

tion and graph reduction. We first describe the algorithm, and
then introduce the important components of the algorithm.

The pseudo code of FastWClq is shown in Algorithm 1. On
a top level, the algorithm works as follows. After some ini-
tializations, the algorithm executes a main loop until a limited
time is reached, or an exact solution is found and proved. In
each iteration of the loop, a clique is constructed by extending
from an empty set (lines 3-15). To avoid ineffective construc-
tion procedures, we use pruning techniques to stop construc-
tion procedures that are known not to form a better clique
than the best found clique. After the construction, if a better
clique is obtained, the best found clique C∗ is updated, and
then the graph is reduced (if possible) by iteratively applying
reduction rules. Additionally, if the graph becomes empty
after reduction, then the best found solution C∗ is proved to
be optimal (as will be discussed in Section 3.2).

Now we describe the clique construction procedure. Let
us first introduce some notation and definitions. We use C to
denote the current clique under construction, and StartSet
is the set containing vertices candidate as a starting vertex to
construct a clique. CandSet = {v|v ∈ N(u) for ∀u ∈ C},
i.e., each vertex in CandSet is adjacent to all vertices in C;
this set consists of candidate vertices eligible to extend the
current clique. The effective neighborhood of vertex v is
defined as N(v) ∩ CandSet. The concept is very important,
as w(N(v) ∩ CandSet) is used in both pruning a procedure
and evaluating the quality of candidate vertices.

In a clique construction procedure, the algorithm first pops
a random vertex from StartSet to serve as the starting ver-
tex from which a clique will be extended, if StartSet is not
empty (line 6). If StartSet becomes empty, which means all
vertices have been used as the starting vertex, then another
round of clique constructions begins by resetting StartSet
to G(V), and we adjust our strategy parameter (lines 3-5).
After the starting vertex u is chosen, the clique is initialized
with the vertex, and CandSet is initialized as N(u) (lines
7-8). Then, the clique is extended iteratively by each time
adding a vertex v ∈ CandSet (lines 9-15), until CandSet
becomes empty. Also, we use a cost-effective upper bound to
prune the procedure (lines 11-12). Obviously, w(C)+w(v)+
w(N(v) ∩ CandSet) is an upper bound on weight of any
clique extended from C by adding v and more vertices.

Although tighter upper bounds can be obtained by using
more advanced techniques such as coloring, these bounds re-
quire much more time for computation. Our aim in this paper
is to compute a high-quality solution in short time, so we do
not use these techniques.

3.1 Choosing the Adding Vertex
An important component in FastWClq is the function
ChooseAddV ertex (Algorithm 2), which selects a vertex
from CandSet to extend the current clique. To this end, we
propose a novel function to estimate the benefit of vertices,
and a dynamic BMS heuristic to choose the adding vertex.

Benefit Estimation Function
We define the benefit of adding a vertex v as benefit(v) =

w(Cf)− w(C), where Cf is the final maximal clique grown
from C ∪ {v}. Note that we do not define benefit(v) as

Algorithm 1: FastWClq (G, cutoff)
Input: vertex weighted graph G = (V,E,w), the cutoff time
Output: A clique of G
StartSet = V (G), C∗ := ∅, k := k0;1
while elapsed time < cutoff do2

if StartSet = ∅ then3
StartSet = V (G);4
AdjustBMSnumber(k);5

u := pop a random vertex from StartSet;6
C := {u};7
CandSet := N(u);8
while CandSet 6= ∅ do9

v := ChooseAddV ertex(CandSet, k);10
if w(C) + w(v) + w(N(v) ∩ CandSet) ≤ w(C∗)11
then Break;
C := C ∪ {v};12
CandSet := CandSet \ {v};13
CandSet := CandSet ∩N(v);14

if w(C) > w(C∗) then15
C∗ := C;16
G := ReduceGraph(G,C∗);17
StartSet = V (G);18
if G becomes empty then19

return C∗; //exact solution20

return C∗;21

w(Cf) − w(C ∪ {v}), because at this moment we do not
know whether or not v will be selected to extend C.

An ideal strategy is to pick the vertex with the best benefit
at each iteration to extend C. However, we cannot know the
true benefit value of a vertex until we finish the construction
procedure. In order to compare candidate vertices at the cur-
rent iteration, we propose a function to estimate the benefit of
adding a vertex. The function is based on two considerations:

1) If a candidate vertex v is added into the clique C, the
weight of C is increased by w(v), which is a trivial lower
bound of benefit(v).

2) Suppose a candidate vertex v is selected to be added into
the clique C. The best possible weighted clique grown from
C ∪ {v} is C ∪ {v} ∪ (N(v) ∩ CandSet), for which the
weight is w(C) + w(v) + w(N(v) ∩ CandSet). Thus, an
upper bound of benefit(v) is w(v) + w(N(v) ∩ CandSet).

We consider an estimation function should take into ac-
count both the lower bound and upper bound of benefit(v).
A simple and intuitive function which embodies this principle
is to take the average over these two bounds.

b̂(v) =
w(v) + w(v) + w(N(v) ∩ CandSet)

2
= w(v) + w(N(v) ∩ CandSet)/2

Dynamic BMS Heuristic
We choose the adding vertex based on their b̂ values ac-

cording to a dynamic BMS (Best from Multiple Selection)
heuristic. The original BMS heuristic is a probabilistic strat-
egy which returns the best element from multiple samples. It
has been theoretically shown that BMS can approximate the
best-picking strategy very well inO(1) time [Cai, 2015]. An-
other advantage of the BMS heuristic is that, we can control

the greediness of the algorithm by adjusting the parameter k.
However, this has not been exploited previously, and previous
algorithms with BMS adopt a static BMS heuristic, that is, the
number of samplings k stays the same.

Algorithm 2: ChooseAddV ertex(CandSet, k)

if |CandSet| < k then1

return a vertex v ∈ CandSet with the greatest b̂ value;2

v∗ := a random vertex in CandSet;3
for iteration := 1 to k − 1 do4

v := a random vertex in CandSet;5

if b̂(v) > b̂(v∗) then v∗ := v;6

return v∗;7

In general, a greater k value indicates a greater greediness
and more computation time. Based on this observation, we
propose a dynamic BMS heuristic. In our algorithm, we start
from a small k value (k0), so that the algorithm works fast.
Whenever StartSet becomes empty, which means we do not
find a better clique with this k value, we adjust k by increas-
ing it as k := 2k, to make the algorithm construct cliques in a
greedier way. Also, when k exceeds a predefined maximum
value kmax, it is reset to k := ++k0. This is implemented in
the function AdjustBMSnumber (line 5 in Algorithm 1).

3.2 Graph Reduction
By applying sound reduction rules (which usually depend on
a clique in hand), a graph can be reduced to a smaller graph
while keeping the optimal solution. This is desirable as al-
gorithms can solve the original instance by solving a smaller
and easier instance. In this subsection, we introduce a graph
reduction algorithm, which relies on two reduction rules, in-
cluding a novel branching-based reduction rule.
Definition 1 Given a vertex weighted graph G = (V,E,w),
for a vertex v ∈ V (G), an upper bound on the weight of any
clique containing v is an integer, denoted asUB(v), such that
UB(v) ≥ max{w(C)|C is a clique of G, v ∈ C}.

Now, we consider the following reduction rule.
Rule: Given a vertex weighted graph G = (V,E,w) and

a clique C0 in G, ∀v ∈ V (G), if there is an upper bound
UB(v) such that UB(v) ≤ w(C0), then delete v and its in-
cident edges from G.

The above rule indeed represents a family of reduction
rules, and in order to obtain an applicable concrete rule,
we need to specify the upper bound function and the input
clique. We use the notation Rule(UB,C0) to denote a
concrete rule where UB is the upper bound function and C0

is the input clique.
Proposition 1 Let G be a vertex weighted graph, G′ the
resulting graph by applying Rule(UB,C0) on G, and let
w∗ be the weight of the maximum weight clique of graph
G, and C∗G′ the maximum weight clique of G′. Then,
w∗ = max{w(C0), w(C

∗
G′)}.

Proof: If w(C0) = w∗, then the proposition obviously holds.
Now we consider the case w(C0) < w∗. For graph G and a
vertex v ∈ V (G), let C∗(v) be the clique s.t. v ∈ C∗(v) and

w(C∗(v)) ≥ w(C) for any clique C containing v. By Defini-
tion 1, we have w(C∗(v)) ≤ UB(v). On the other hand, any
vertex deleted by Rule(UB,C0) satisfies UB(v) ≤ w(C0),
and thus w(C∗(v)) ≤ UB(v) ≤ w(C0) < w∗, meaning that
v cannot be contained in any clique with weight w∗. Thus,
any vertex that is in a clique with weight w∗ remains in G′,
so w∗ = w(C∗G′). �

The above proposition shows that any rule in family Rule
is sound w.r.t. keeping the optimal solution of the instance.
Additionally, the proposition leads to the following corollary.
Corollary 1 Let G′ be the resulting graph by applying
Rule(UB,C0) on vertex weighted graph G, if V (G′) = ∅,
then C0 is the maximum weight clique of G.

Given a clique in hand (by construction as shown in Algo-
rithm 1), in order to apply reduction rules, the focus is how
to compute an upper bound. Since any clique grown from
vertex v can only contain vertices in N(v), a trivial upper
bound function is

UB0(v) = w(N [v])

To get a tighter bound for vertex v, we consider its neigh-
boring vertex with the maximum weight (denoted as n∗). The
idea is that, for any clique C containing v, it either contains
n∗ or it does not. For either case, we can have a tighter upper
bound than UB0(v), and finally we get the larger (worse) one
as the upper bound. We divide the cases on n∗ in order to
balance the bounds of the two cases. Formally, we propose a
branching-based upper bound as follows:
UB1(v)

=max{w(N [v])− w(n∗), w(v) + w(n∗) + w(N(v) ∩N(n∗))}

Note that we use adjacency list instead of adjacency matrix
for the purpose of saving space. So, checking whether a ver-
tex y ∈ N(v) is in N(n∗), i.e., whether y and n∗ are neigh-
bors, requires O(min{d(y), d(n∗)}) time, which indicates a
square time complexity for computingN(v)∩N(n∗) by each
time checking whether a vertex in N(v) is in N(n∗). In this
work, rather than use the above implementation, we use a lin-
ear implementation to compute N(v)∩N(n∗) (two scans on
the smaller set and one on the larger one), by using indicators.

The graph reduction algorithm is depicted in Algorithm 3.
Both upper bounds are used. UB0 requires little overhead,
while UB1 requires more computation time but is tighter.
Therefore, when considering a vertex, we first use the UB0

based reduction rule, and if this cannot delete the vertex then
we apply the rule based on UB1

1.
Our reduction algorithm works in an iterative fashion, with

a queue calledRmQueuewhich contains vertices to be delet-
ed. In the beginning, the algorithm enqueues all vertices sat-
isfying at least one of the reduction rules into RmQueue.
Then, a loop is carried out until RmQueue becomes empty.
Each iteration of the loop pops a vertex u from RmQueue,
and deletes u and all its incident edges fromG. After a vertex
u is deleted, we check its remained neighborhood Nr(u) (the
set containing all neighbors of u that have not been removed
from the graph yet), and add all vertices in Nr(u) that satisfy
at least one of the reduction rules into RmQueue.

1In practice, a trick to accelerate the procedure (slightly) for
large-sized graphs is to first use UB0 to reduce the graph to a certain

Algorithm 3: ReduceGraph (G, C0)
Input: vertex weighted graph G = (V,E,w), a clique C0

Output: A simplified graph of G
foreach v ∈ V (G) do1

if UB0(v) ≤ w(C0)||UB1(v) ≤ w(C0) then2
RmQueue := RmQueue ∪ {v};3

while RmQueue 6= ∅ do4
u := pop a vertex from RmQueue;5
delete u and its incident edges from G;6
foreach v ∈ Nr(u) do7

if UB0(v) ≤ w(C0)||UB1(v) ≤ w(C0) then8
RmQueue := RmQueue ∪ {v};9

return G;10

According to Corollary 1, if the ReduceGraph algorithm
returns an empty graph, that means the found clique is an
optimal weighted clique of the input graph. However, there
are cases that FastWClq finds an optimal weighted clique but
ReduceGraph cannot reduce the graph to empty, because the
reduction rules are incomplete.

4 Experimental Evaluation
We carry out experiments to evaluate FastWClq on a broad
range of real-world massive graphs. We compare FastWClq
against the currently best heuristic MWCP algorithm
LSCC+BMS [Wang et al., 2016], and the currently best exact
algorithm MaxWClq [Fang et al., 2014].

4.1 Experimental Preliminaries
The benchmarks in our experiments were originally from the
Network Data Repository online [Rossi and Ahmed, 2015],2
including biological networks, collaboration networks,
facebook networks, interaction networks, infrastructure
networks, amazon recommend networks, retweet networks,
scientific computation networks, social networks, techno-
logical networks, and web link networks. The original
benchmarks are unweighted, and we transformed them into
a vertex weighted version: For the ith vertex vi, w(vi)=(i
mod 200)+1.There are totally 102 graphs. Many of these
real-world graphs have millions of vertices and dozens of
millions of edges. These benchmarks have been used in
evaluating MWCP algorithms [Wang et al., 2016], as well
as algorithms for Maximum Clique [Rossi et al., 2014],
Coloring [Rossi and Ahmed, 2014] and Minimum Vertex
Cover problems [Cai, 2015].

FastWClq is implemented in C++. Parameters k0 and
kmax for dynamic BMS heuristic are set to 4 and 64 (=26).
LSCC+BMS and MaxWClq were implemented in C++ by
their authors. All algorithms are complied with g++ version
4.7 with -O3 option.

The experiments are carried out on a workstation under
Ubuntu Linux 14.04, using 2 cores of Intel i7-4710MQ CPU
@ 2.50 GHz and 32 GByte RAM. We run FastWClq and

size, after which UB1 will be used.
2http://www.graphrepository.com/networks.php

LSCC+BMS 10 times on each graph. The cutoff time (”ct”)
for FastWClq is 100 seconds per run. For LSCC+BMS, we
test it under two cutoff time, 100 and 1000 seconds. This is to
justify that the solutions found by FastWClq are sufficiently
good even compared with those found by LSCC+BMS under
10 more time limit. For the exact algorithm MaxWClq, we
run it once on each graph with a cutoff time of one hour.

For each graph, we report the best clique weight (”Best”)
found by each algorithm, and the average clique weight over
all runs (”Avg”) if a 100 percent success rate is not reached.
If an algorithm fails to provide a solution for an instance, then
the corresponding column is marked as ”N/A”. If an algorith-
m proves the optimal solution, the corresponding column is
marked with a ”*”. Due to the limited space, we do not report
the run time for each graph; instead, we report the averaged
run time for each graph family (Table 3).

4.2 Experimental Results

Part 1: We first compare the algorithms in terms of solution
quality. The results are presented in Tables 1 and 2. To make
the comparison between FastWClq and other algorithms
more clear, for a comparing algorithm, if the solution quality
is worse than that found by FastWClq, then we mark it with
”↓”, and if it is better we mark it with ”↑”.

There are 12 graphs that have less than 1000 vertices,
where all the algorithms find the optimal solution within
a few seconds, and thus they are not reported.For the
remaining 90 instances, FastWClq always finds a better or
equal-quality solution compared to its competitors, with only
one exception. FastWClq performs better on 47 instances
than LSCC+BMS under the same cutoff time (100s), and
performs better on 27 instances when the cutoff time for
LSCC+BMS extends to 1000s. The exact solver MaxWClq
fails on most of these graphs, yet it proves the optimal
solution for 29 instances (including the 12 small instances),
all of which have less than 12 thousand vertices. FastWClq
proves the optimal solution for 46 instances, including 7
instances with millions of vertices, and the largest one that
has 24 million vertices (inf-road-usa). The local search
algorithm LSCC+BMS is essentially unable to prove the
optimality of the solution.

Part 2: We now compare run time of the algorithms, which
is summarized in Table 3. For each family, we calculate av-
erage run time over all runs for each instance, and report the
average value of these average run time. If an algorithm fails
to find a solution in all runs (marked with ”N/A”), its run time
is considered to be the cutoff time on that instance.

FastWClq is usually orders of magnitude faster than the
other two algorithms. Indeed, if we run LSCC+BMS with
longer time to get the same quality solution by FastWClq (if
possible), the run time of LSCC+BMS would be much longer.
Moreover, FastWClq proves the optimal solution for 46 in-
stances with the averaged time of 0.902 second, and exactly
solves the largest instance with 24 million vertices (inf-road-
usa) in 5.67 seconds. To summarize, FastWClq finds optimal
or sub-optimal solutions for theses graphs within a few sec-
onds on average, and solves many graphs in one second.

Table 1: Comparison of solution quality (I)
Graph FastWClq LSCC+BMS LSCC+BMS MaxWClq

ct=100s ct=100s ct=1000s ct=3600s
Best (Avg) Best (Avg) Best (Avg) Best

bio-dmela 805 805 805 805*
Bio-yeast 629* 629 629 629*
ca-AstroPh 5338* 5338 5338 5338
ca-citeseer 8838* 8838(8502.5) ↓ 8838 N/A ↓
ca-coauthors-dblp 37884* 37884(26987.9) ↓ 37884(37003.5) ↓ N/A ↓
ca-CondMat 2887* 2887 2887 N/A ↓
ca-CSphd 489* N/A ↓ N/A ↓ 489*
ca-dblp-2010 7575* 7456(7031.4) ↓ 7575(7491.7) ↓ N/A ↓
ca-dblp-2012 14108* 14108(9305.4) ↓ 14108 N/A ↓
ca-Erdos992 958* 958 958 958*
ca-GrQc 4279* 4279 4279 4279*
ca-HepPh 24533* 24533 24533 24533*
ca-hollywood-2009 222720* 222720(122957.6) ↓ 222720 N/A ↓
ca-MathSciNet 2792* 2611(2257) ↓ 2611(2556.2) ↓ N/A ↓
socfb-A-anon 2872 2602(1902.5) ↓ 2728(2429.7) ↓ N/A ↓
socfb-B-anon 2662 2058(1789.4) ↓ 2513(2035.2) ↓ N/A ↓
socfb-Berkeley13 4906 4906(4839.6) ↓ 4906 N/A ↓
socfb-CMU 4141 4141 4141 4141*
socfb-Duke14 3694 3694 3694 3694*
socfb-Indiana 5412 5412(5274.8) ↓ 5412 N/A ↓
socfb-MIT 3658 3658 3658 3658*
socfb-OR 3523 3523(3459.8) ↓ 3523 N/A ↓
socfb-Penn94 4738 4738(4668.6) ↓ 4738 N/A ↓
socfb-Stanford3 5769 5769 5769 5769*
socfb-Texas84 5546 5546(5545.2) ↓ 5546 N/A ↓
socfb-uci-uni 1045 N/A ↓ N/A ↓ N/A ↓
socfb-UCLA 5595 5595 5595 N/A ↓
socfb-UConn 5733 5733 5733 N/A ↓
socfb-UCSB37 5669 5669 5669 4621 ↓
socfb-UF 6043 6043 6043 N/A ↓
socfb-UIllinois 5730 5730(5685.6) ↓ 5730 N/A ↓
socfb-Wisconsin87 4239 4239 4239 N/A ↓
inf-power 888* 888 888 N/A ↓
inf-roadNet-CA 752* 668(604.5) ↓ 668(640.5) ↓ N/A ↓
inf-roadNet-PA 669 599(598.2) ↓ 599 ↓ N/A ↓
inf-road-usa 766* N/A ↓ N/A ↓ N/A ↓
ia-email-EU 1350 1350 1350 N/A ↓
ia-email-univ 1473* 1473 1473 1473
ia-enron-large 2490 2490 2490 N/A ↓
ia-fb-messages 791 791 791 791*
ia-reality 374* 374 374 374*
ia-wiki-Talk 1884 1884 1884 N/A ↓
rec-amazon 942* 942 942 N/A ↓
rt-retweet-crawl 1367 1367(1349.8) ↓ 1367 N/A ↓

5 Conclusions and Future Work
This paper presented a novel method for Maximum Weight
Clique problem (MWCP), which aims to solve massive
graphs within short time. The method interleaves between
clique construction and graph reduction. Three ideas were
proposed to improve the algorithm, including a benefit
estimation function, a dynamic BMS heuristic, and a graph
reduction algorithm. The resulting algorithm is called
FastWClq. Experiments on real-world massive graphs show
that, FastWClq finds better solutions than state of the art
algorithms while the run time is much less, even when the
time limit for the competitor is much more. Also, FastWClq
proves the optimal solution for about half of the tested graphs
in one second, including graphs with millions of vertices.

A significant direction is to apply this “Construction and
Reduction” method and the ideas to other graph problems.

Acknowledgement
This work is supported by 973 Program 2014CB340301 and
National Natural Science Foundation of China 61502464.

Table 2: Comparison of solution quality (II)
Graph FastWClq LSCC+BMS LSCC+BMS MaxWClq

ct=100s ct=100s ct=1000s ct=3600s
Best (Avg) Best (Avg) Best (Avg) Best

sc-ldoor 4081 4060(3806.8) ↓ 4074(3999.8) ↓ N/A ↓
sc-msdoor 4088 4074(3947.2) ↓ 4088(4059.3) ↓ N/A ↓
sc-nasasrb 4548 4548(4540.8) ↓ 4548 N/A ↓
sc-pkustk11 5298 5298(4860.1) ↓ 5298(5215.2) ↓ N/A ↓
sc-pkustk13 6306* 5877(5759.7) ↓ 6306(5958) ↓ N/A ↓
sc-pwtk 4620 4596(4518) ↓ 4620(4610.4) ↓ N/A ↓
sc-shipsec1 3540 3540(3073.7) ↓ 3540(3336.7) ↓ N/A ↓
sc-shipsec5 4524* 4500(3997.2) ↓ 4524(4504.8) ↓ N/A ↓
soc-BlogCatalog 4803 4803 4803 N/A ↓
soc-brightkite 3672 3650(3643.7) ↓ 3672(3663.2) ↓ N/A ↓
soc-buzznet 2981 2981(2980) ↓ 2981 N/A ↓
soc-delicious 1547 1547(1511.8) ↓ 1547(1545.6) ↓ N/A ↓
soc-digg 5303 4675(4645.7) ↓ 5303(4800.6) ↓ N/A ↓
soc-douban 1682* 1682 1682 N/A ↓
soc-epinions 1657 1657 1657 N/A ↓
soc-flickr 7083 7083(6161) ↓ 7083 N/A ↓
soc-flixster 3805 3805(3036.9) ↓ 3805 N/A ↓
soc-FourSquare 3064 3064(2991.9) ↓ 3064(3061.4) ↓ N/A ↓
soc-gowalla 2335 2335(2193.5) ↓ 2335(2291.8) ↓ N/A ↓
soc-lastfm 1773 1773(1753.6) ↓ 1773 N/A ↓
soc-livejournal 21368* 3589(2046.9) ↓ 15599(4640.6) ↓ N/A ↓
soc-LiveMocha 1784(1775) 1784 ↑ 1784 ↑ N/A ↓
soc-orkut 5452 N/A ↓ N/A ↓ N/A ↓
soc-pokec 3191 2341(1788.1) ↓ 2341(2214.8) ↓ N/A ↓
soc-slashdot 2811 2811 2811 N/A ↓
soc-twitter-follows 808 808 808 N/A ↓
soc-youtube 1961 1961 1961 N/A ↓
soc-youtube-snap 1787 1787(1711.4) ↓ 1787 N/A ↓
tech-as-caida2007 1869 1869 1869 N/A ↓
tech-as-skitter 5703 5611(4033.1) ↓ 5703(5540.9) ↓ N/A ↓
tech-internet-as 1692 1692 1692 N/A ↓
tech-p2p-gnutella 703* 703 703 N/A ↓
tech-RL-caida 1861 1861 1861 N/A ↓
tech-routers-rf 1460* 1460 1460 1460*
tech-WHOIS 6154 6154 6154 6154*
web-arabic-2005 10558* 10558 10558 N/A ↓
web-BerkStan 3249* 3249 3249 3249
web-edu 2077* 2077 2077 2077*
web-google 1749* 1749 1749 1749*
web-indochina-2004 6997* 6997 6997 6997
web-it-2004 45477* 45477(44373.5) ↓ 45477 N/A ↓
web-sk-2005 11925* 11925(9501.4) ↓ 11925 N/A ↓
web-spam 2503 2503 2503 2503*
web-uk-2005 54850* 54850 54850 N/A ↓
web-webbase-2001 3574* 3574(3339.4) ↓ 3574 3574
web-wikipedia2009 3891 3455(1370) ↓ 3455(2405.3) ↓ N/A ↓

Table 3: Comparison of averaged run time on graph families
Graph FastWClq LSCC+BMS LSCC+BMS MaxWClq

ct=100s ct=100s ct=1000s ct=3600s
Biology 0.001 0.024 0.024 1.118
Collaboration 4.543 32.237 318.852 1804.262
Facebook 6.338 30.838 198.568 2801.899
Infrastructure 1.573 40.932 377.693 N/A
Interaction 0.135 0.616 0.616 1200.642
Recommend 0.017 3.165 3.165 N/A
Retweet 0.027 12.133 21.852 1200.014
Science 0.437 47.751 406.918 N/A
Social Network 18.281 29.216 243.498 3130.438
Technique 1.763 8.898 74.298 2572.473
Web Link 0.241 17.512 116.081 1504.651
All 3.032 21.211 160.142 2274.136

References
[Balasundaram and Butenko, 2006] Balabhaskar Balasundaram

and Sergiy Butenko. Graph domination, coloring and cliques
in telecommunications. In Handbook of Optimization in
Telecommunications, pages 865–890. 2006.

[Ballard and Brown, 1982] DH Ballard and CM Brown. Computer
vision. New Jersey: Prentice Hall, 1982.

[Batagelj and Zaversnik, 2003] Vladimir Batagelj and Matjaz Za-
versnik. An O(m) algorithm for cores decomposition of
networks. CoRR, cs.DS/0310049, 2003.

[Benlic and Hao, 2013] Una Benlic and Jin-Kao Hao. Breakout
local search for maximum clique problems. Computers &
Operations Research, 40(1):192–206, 2013.

[Busygin, 2006] Stanislav Busygin. A new trust region technique
for the maximum weight clique problem. Discrete Applied
Mathematics, 154(15):2080–2096, 2006.

[Cai et al., 2011] Shaowei Cai, Kaile Su, and Abdul Sattar. Local
search with edge weighting and configuration checking heuristics
for minimum vertex cover. Artificial Intelligence, 175(9):1672–
1696, 2011.

[Cai, 2015] Shaowei Cai. Balance between complexity and quality:
Local search for minimum vertex cover in massive graphs. In
Proceedings of IJCAI 2015, pages 747–753, 2015.

[Eubank et al., 2004] Stephen Eubank, V. S. Anil Kumar, Mad-
hav V. Marathe, Aravind Srinivasan, and Nan Wang. Structural
and algorithmic aspects of massive social networks. In Proc. of
SODA-04, pages 718–727, 2004.

[Fang et al., 2014] Zhiwen Fang, Chu-Min Li, Kan Qiao, Xu Feng,
and Ke Xu. Solving maximum weight clique using maximum
satisfiability reasoning. In Proc. of ECAI 2014, pages 303–308,
2014.

[Fellows and Downey, 1998] M. R. Fellows and R.G. Downey.
Parameterized Complexity. Springer, 1998.

[Gomez Ravetti and Moscato, 2008] Martı́n Gomez Ravetti and
Pablo Moscato. Identification of a 5-protein biomarker molec-
ular signature for predicting alzheimer’s disease. PloS one,
3(9):e3111, 2008.

[Guturu and Dantu, 2008] Parthasarathy Guturu and Ram Dantu.
An impatient evolutionary algorithm with probabilistic tabu
search for unified solution of some NP-hard problems in graph
and set theory via clique finding. IEEE Trans. Systems, Man, and
Cybernetics, Part B, 38(3):645–666, 2008.

[Karp, 1972] RM Karp. Reducibility among combinatorial prob-
lems. Complexity of Computer Computations, pages 85–103,
1972.

[Konc and Janezic, 2007] Janez Konc and Dušanka Janezic. An
improved branch and bound algorithm for the maximum clique
problem. Communications in Mathematical and in Computer
Chemistry, 58:569–590, 2007.

[Kumlander, 2004] D. Kumlander. Fast maximum clique algo-
rithms for large graphs. In Proceedings of the fourth conference
on engineering computational technology, pages 202–208, 2004.

[Li and Quan, 2010] Chu Min Li and Zhe Quan. An efficient
branch-and-bound algorithm based on maxsat for the maximum
clique problem. In Proc. of AAAI, pages 128–133, 2010.

[Li et al., 2013] Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining
maxsat reasoning and incremental upper bound for the maximum
clique problem. In Proc. of ICTAI 2013, pages 939–946, 2013.

[Lu and Chung, 2006] L. Lu and F. Chung. Complex Graphs and
Networks. American Math. Society, New York, USA, 2006.

[Massaro et al., 2002] Alessio Massaro, Marcello Pelillo, and Im-
manuel M. Bomze. A complementary pivoting approach
to the maximum weight clique problem. SIAM Journal on
Optimization, 12(4):928–948, 2002.

[Östergård, 1999] Patric R. J. Östergård. A new algorithm for the
maximum-weight clique problem. Electronic Notes in Discrete
Mathematics, 3:153–156, 1999.

[Pullan and Hoos, 2006] Wayne Pullan and Holger H Hoos. Dy-
namic local search for the maximum clique problem. Journal of
Artificial Intelligence Research, pages 159–185, 2006.

[Pullan, 2006] Wayne Pullan. Phased local search for the maximum
clique problem. J. Comb. Optim., 12(3):303–323, 2006.

[Pullan, 2008] Wayne Pullan. Approximating the maximum ver-
tex/edge weighted clique using local search. J. Heuristics,
14(2):117–134, 2008.

[Rossi and Ahmed, 2014] Ryan A Rossi and Nesreen K Ahmed.
Coloring large complex networks. Social Network Analysis and
Mining (SNAM), pages 1–52, 2014.

[Rossi and Ahmed, 2015] Ryan A Rossi and Nesreen K Ahmed.
The network data repository with interactive graph analytics and
visualization. In Proceedings of AAAI 2015, 2015.

[Rossi et al., 2014] Ryan A Rossi, David F Gleich, Assefaw H
Gebremedhin, and M. Patwary. Fast maximum clique algorithms
for large graphs. In Proc. of WWW, pages 365–366, 2014.

[Segundo et al., 2013] Pablo San Segundo, Fernando Matı́a, Diego
Rodrı́guez-Losada, and Miguel Hernando. An improved bit
parallel exact maximum clique algorithm. Optimization Letters,
7(3):467–479, 2013.

[Seidman, 1983] S. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269–287, 1983.

[Singh and Gupta, 2006a] Alok Singh and Ashok Kumar Gupta.
A hybrid evolutionary approach to maximum weight clique
problem. International Journal of Computational Intelligence
Research, 2(4):349–355, 2006.

[Singh and Gupta, 2006b] Alok Singh and Ashok Kumar Gupta. A
hybrid heuristic for the maximum clique problem. Journal of
Heuristics, 12(1-2):5–22, 2006.

[Tomita and Kameda, 2007] Etsuji Tomita and Toshikatsu Kameda.
An efficient branch-and-bound algorithm for finding a maximum
clique with computational experiments. J. Global Optimization,
37(1):95–111, 2007.

[Tomita and Seki, 2003] Etsuji Tomita and Tomokazu Seki. An
efficient branch-and-bound algorithm for finding a maximum
clique. In Discrete mathematics and theoretical computer
science, pages 278–289. 2003.

[Tomita et al., 2010] Etsuji Tomita, Yoichi Sutani, Takanori Hi-
gashi, Shinya Takahashi, and Mitsuo Wakatsuki. A simple
and faster branch-and-bound algorithm for finding a maximum
clique. In Proceedings of WALCOM 2010, pages 191–203, 2010.

[Verma et al., 2015] Anurag Verma, Austin Buchanan, and Sergiy
Butenko. Solving the maximum clique and vertex coloring
problems on very large sparse networks. INFORMS Journal on
Computing, 27(1):164–177, 2015.

[Wang et al., 2016] Yiyuan Wang, Shaowei Cai, and Minghao Yin.
Two efficient local search algorithms for maximum weight clique
problem. In Proceedings of AAAI 2016, 2016.

[Wu et al., 2012] Qinghua Wu, Jin-Kao Hao, and Fred Glover.
Multi-neighborhood tabu search for the maximum weight clique
problem. Annals of Operations Research, 196(1):611–634, 2012.

[Zuckerman, 2007] David Zuckerman. Linear degree extractors
and the inapproximability of max clique and chromatic number.
Theory of Computing, 3(1):103–128, 2007.

