
Scalable Distributed Event Detection for Twitter

Richard McCreadie, Craig Macdonald and Iadh Ounis

School of Computing Science

University of Glasgow

Email: firstname.lastname@glasgow.ac.uk

Miles Osborne and Sasa Petrovic

School of Informatics

University of Edinburgh

Email: miles@inf.ed.ac.uk, s.petrovic@sms.ed.ac.uk

Abstract—Social media streams, such as Twitter, have shown
themselves to be useful sources of real-time information about
what is happening in the world. Automatic detection and
tracking of events identified in these streams have a variety
of real-world applications, e.g. identifying and automatically
reporting road accidents for emergency services. However, to
be useful, events need to be identified within the stream with a
very low latency. This is challenging due to the high volume of
posts within these social streams. In this paper, we propose
a novel event detection approach that can both effectively
detect events within social streams like Twitter and can scale
to thousands of posts every second. Through experimentation
on a large Twitter dataset, we show that our approach can
process the equivalent to the full Twitter Firehose stream, while
maintaining event detection accuracy and outperforming an
alternative distributed event detection system.

Keywords-System analysis and design, Event detection, Dis-
tributed processing, Large-scale systems, Scalability

I. INTRODUCTION

Real-time event detection involves the identification of

newsworthy happenings (events) as they occur. These events

can be mainstream, e.g. when a plane crashes into the

Hudson river, or local events, e.g. a house fire nearby.

Automatic online event detection systems use live document

streams to detect events. For instance, streams of newswire

articles from multiple newswire providers have previously

been used for event detection [1], [2]. However, the role

of the public in the online news space has changed, with

social media websites such as Twitter now being used to

report events as they happen [4], sometimes from the scene

using mobile devices. Intuitively, these new social streams

can be used to drive automatic event detection systems, po-

tentially providing real-time notifications of emerging events

of interest. For example, mobile users might register to be

pushed notifications of interesting events happening nearby;

similarly emergency services might wish to be notified of

fires or crimes as they happen.

Automatic online event detection belongs to a new class

of Big Data tasks that have emerged, requiring large scale

and intensive real-time stream processing. In particular, such

tasks require very high levels of data throughput, while

maintaining a low degree of response latency. Indeed, the

social Twitter stream generates more than 400 million tweets

each day. Other examples of real-time stream processing

tasks are stock market trading (approximately 10 billion

messages per day in trades) and fraud detection in mobile

telephony [6].

However, automatic online event detection on high vol-

ume streams is challenging, due to the high computational

costs of event detection and the need for very low response

latencies. Classical approaches to event detection involve for

each incoming document the equivalent of a linear search

over all of the documents previously seen [1], which quickly

becomes infeasible as the document stream grows over time.

Recent approaches to real-time event detection have im-

proved the per-post processing efficiency, leading to constant

time document processing [12]. However, such approaches

have so far been limited to single machine processing,

resulting in insufficient throughput to process high volume

social streams. Scaling such approaches without reducing

effectiveness is difficult, since obvious divide-and-conquer

approaches, such as partitioning the document stream can

result in events being spread across multiple partitions. This

reduces the local evidence available when making decisions

about whether an incoming post represents a new event or

otherwise, resulting in events being missed.

In this paper, we propose a new approach for auto-

matic distributed real-time event detection from high volume

streams that can scale efficiently to any volume of input

stream, while maintaining event detection performance. This

approach uses a novel lexical key partitioning strategy to

distribute the computational costs of processing a single

document across multiple machines without partitioning the

document stream itself. We implement both the proposed

approach and a document stream partitioning strategy using

the Storm distributed stream processing platform, paral-

lelising a state-of-the-art event detection algorithm [12] to

create two distributed event detection topologies. Through

experimentation on a large Twitter dataset, we evaluate the

effectiveness, efficiency, latency and scalability of the two

topologies. Our results show that unlike the document stream

partitioning strategy, our proposed approach is able to scale

up event detection to process the equivalent of the full Twit-

ter Firehose stream in real-time (4500 tweets each second)

without missing additional events (i.e. without degrading

effectiveness). Indeed, to the best of our knowledge, this

is the first event detection approach that has been shown to

be scalable to the full Twitter stream. Moreover, we show

that our approach scales close to linearly with processing

capacity allocated and maintains low processing latencies.

The contributions of this paper are three-fold. First, we

propose a new approach for distributing event detection

across multiple machines that is both scalable and tackles

effectiveness degradation inherent to stream partitioning

strategies. Second, we describe a practical implementation of

this approach using Storm for the purposes of real-time event

detection on Twitter. Finally, we evaluate the effectiveness,

efficiency, latency and scalability of the proposed approach

and implementation on the high volume Twitter stream.

II. RELATED WORK

A. Event Detection

The task that we examine in this paper is event detection.

Event Detection is an application of online clustering, where

the objects to be clustered are text documents such as news

articles [2] or tweets [12]. Formally, event detection takes

as input an unbounded stream of documents, where each

document d has a unique id, arrival time and content. It

outputs clusters of documents [di...dj] representing events.

In practice, event detection can be seen as an incremental

decision function where a document d is considered to be

about a new event if the most similar document previously

seen is below a similarity threshold. Documents represent-

ing new events can then form the basis of clusters about

those events. However, finding the closest document to d

is difficult to calculate quickly. Traditional approaches to

event detection represent each document d as terms in vector

space [1]. The closest document is computed by iteratively

comparing d to each other document in the background D.

This type of approach has been shown to be effective on

low volume newswire streams during the Topic Detection

and Tracking workshop [1]. However, comparing against the

entire document space becomes infeasible for high volume

streams, where the size of D can be in the millions and

closest document needs to be found within milliseconds.

Later work by Petrovic et al. [12] improved the efficiency

of real-time event detection through the use of a locality

sensitive hashing (LSH) algorithm [10]. The idea is to

approximate the distance to the closest document quickly

and in constant time. In particular, they use LSH to group

textually similar documents together into clusters, and then

compare d to only those other documents in D that were

assigned with the same hash key (orders of magnitude fewer

documents). The advantage of this approach is that instead of

performing |D| document comparisons, each document just

needs to be processed by a constant-time hashing algorithm

and then compared to the other documents with the same

hash. On the other hand, while this approach is efficient

in comparison to traditional approaches, its throughput on a

single machine is far short of that is needed to process high-

volume streams such as Twitter. Moreover, as we will show

in our later experiments, the natural strategy of partitioning

the document stream and deploying this approach on each

partition results in reduced event detection effectiveness. It

is for this reason that event detection is not embarrassingly

parallelisable. Instead, inspired by Petrovic et al’s approach,

we makes use of hash key grouping to scale up event detec-

tion to high volume streams without harming effectiveness.

B. Big Data and Distributed Stream Processing

Traditional data intensive tasks involve the batch process-

ing of large static datasets using networks of multiple ma-

chines. To tackle these types of tasks, database management

systems (DMBS) [5] and distributed processing frameworks,

e.g. MapReduce [7] have proved to be popular. However, it

has been shown that traditional DBMSs that use a ‘store-

then-process’ model of computation cannot provide the low

latency responses needed for real-time stream processing [3].

Moreover, distributed processing frameworks like MapRe-

duce are not well suited to working with this form of

underlying data, due to their batch-orientated nature [7]

– leading to a lack of responsiveness [6]. Instead, new

distributed stream processing platforms have been proposed,

e.g. Storm and S4 [11].

In this paper, we build upon one of these platforms –

namely Storm – for real-time automatic event detection.

Storm defines computation in terms of data streams flowing

through a graph of connected processing instances. These

instances are held in-memory, may be replicated to achieve

scale and can be spread across multiple machines. The graph

of inter-connected processes is referred to as a topology. A

single Storm topology consists of spouts that inject streams

of data into the topology and bolts that process and modify

the data. Topologies facilitate the modularisation of complex

processes into multiple spouts and bolts. By connecting

multiple spouts and bolts together, tasks can be distributed

and scaled.

III. DISTRIBUTED EVENT DETECTION

Scaling event detection systems for high-volume streams

is a challenging problem. A common method for distributing

stream processing tasks is to separate the high-volume input

stream into multiple smaller sub-streams, processing each

using different machines. However, in an event detection

context, such an approach can degrade event detection

effectiveness, i.e. cause additional events to be missed. This

is because these strategies spread the documents about an

event among multiple event detection instances, meaning

that no single instance has sufficient evidence to detect that

event. In particular, assume that we have a single stream

comprised of 5 tweets, three posts about one event and two

other unrelated posts. The event detection system will emit a

cluster of tweets as an event when it reaches size three. If we

process the tweets as a single stream, then the three related

tweets will be incrementally clustered together and then

Figure 1. Overview of the four phases of our event detection approach.

emitted. However, if we partition the stream into multiple

sub-streams, then we risk the three tweets being partitioned

between the two sub-streams, resulting in fragmentation

and reduced evidence for decision making. Hence, we need

an more advanced strategy for scaling event detection,

which does not compromise effectiveness as parallelism is

increased.

We propose a new event detection approach that aims to

provide effective scalable low-latency event detection over

Big Data streams, while avoiding effectiveness degradation

like that described above. We refer to this approach in

our later experiments as Distributed Lexical Key Parti-

tioning. This approach is based on two main concepts.

First, inspired by state-of-the-art event detection approaches

(see Section II-A), approximate strategies to estimate the

distance from the closest document to d should be used

to maintain constant time per-document processing. In par-

ticular, each document should be represented using one or

more lexical keys k and a single spacial representation v.

The closest document is then calculated first within local

key-partitioned document clusters, reducing the comparison

space and avoiding event detection latency increasing over

time. Second, the underlying distance estimation for a sin-

gle document should be partitioned and parallelised across

multiple machines, rather than partitioning the stream and

parallelising the processing of each subset. This facilitates

the scaling of event detection to big data streams without

degrading event detection effectiveness. Based upon these

two concepts, we propose four distinct processing phases

that describe a general event detection approach where each

phase can be independently parallelised, namely: Repre-

sentation; Local Clustering; Global Clustering; and Event

Detection. Figure 1 illustrates each of the four phases of

our approach.

A. Event Detection as a Storm Topology

Distributed Lexical Key Partitioning is generic and can

be implemented using a variety of platforms and/or pro-

gramming languages. For our subsequent experiments we

implemented it as a Storm topology as illustrated in Figure 2.

Observe that each phase of our approach is implemented

as one or more Storm bolts, which can be individually

replicated. Each copy of a bolt is referred to as a bolt

instance. In particular, the representation phase is spread

Figure 2. Our approach implemented as a Storm topology.

over two bolts, namely: Vectorisation that converts each

document into its spacial representation v; and the Key-

Grouped Hashing bolt that produces (70) hash keys for

each document (multiple keys are produced to improve

the accuracy of the distance estimation), emitting them as

< k′, docidi, timei, v > tuples. We use locality sensitive

hashing for key generation and represent documents in

vector-space, as these have been previously shown to be

effective for non-distributed event detection [12].

The local distance comparison phase of our approach

is represented by the Local Cosine Distance Calculation

(LCDC) bolt in Storm. The LCDC bolt receives all doc-

uments hashed to a subset of the possible hash keys κ. For

each hash key k′ ∈ κ, the bolt maintains a fixed-size first-

in-first-out (FIFO) bin of the most recent n (30) documents.

When a new document di arrives with key k′, it is textually

compared using cosine comparison to the other documents in

the bin for k′, returning the identifier of the closest document

docidj and the distance to that document distk
′

di→dj
.

Each of the potential closest documents identified are

emitted, grouped by their id docidi and then sent to the

global clustering phase of our approach. This phase is

represented by the Global Cosine Distance Calculation &

Error Correction bolt, which finds the closest of all of the

documents (based on the emitted distances). Following [12],

this bolt also performs a further error correction function by

checking whether any of the most recent m documents are

closer that those previously found.

The final phase of our proposed approach; Event Clus-

tering, is represented by the K-Means Clustering bolt. This

bolt maintains clusters of documents based upon the closest

document found. A threshold θ is used to determine whether

each incoming document should be added to an existing

cluster or should form a new cluster. If a document has

been added to an existing cluster, that cluster is emitted as

a new event if its size is greater than τ (5). Old document

clusters are deleted if they have not been emitted after an

hour since their creation.

B. Optimisations for Storm

Notably, using a distributed stream processing platform

like Storm to process high-volume data streams can incur

additional overheads. In particular, each bolt maintains input

and output message queues and messages from different

Figure 3. Event Detection using sub-stream partitioning in Storm.

bolts on a variety of machines that need to be routed across

the network and grouped at their destinations. Moreover,

since multiple bolts are chained together, a single document

will be processed sequentially by each bolt (and possibly

by multiple instances of a single bolt as well). As a result,

the number of messages traversing a topology processing

thousands of documents each second can be in the tens or

hundreds of thousands. Hence, to avoid excessive overheads

from message passing, we introduce two optimisations to

the topology.

First, we introduce buffering and aggregation of messages

at the representation phase. In particular, rather than emitting

once per key k′ produced for a document, we instead

buffer documents for each key, emitting them as compressed

messages multiple times each second. By producing fewer

messages, we can reduce the size of the message queues

and enable each message to be better compressed. Second,

at the local distance calculation phase, we pre-calculate the

global distance calculation instance that each document will

be grouped at. We use this to group multiple documents and

the calculated distances for those documents together. This

optimisation is similar to the role that a combiner plays in

MapReduce; reducing the number of emits and hence the

time spent sorting/shuffling messages between bolts.

IV. AN ALTERNATIVE EVENT DETECTION TOPOLOGY

Recall that one of the main motivations for our proposed

approach was to avoid effectiveness degradation while scal-

ing, which can occur when approaches that partition the

document stream are used. In this section, we describe an

alternative event detection approach and associated Storm

topology that implements such a stream partitioning strategy,

which we use as a baseline in our later experiments. In

particular, given a high-volume input stream, a natural

approach would be to arbitrarily partition that stream into

smaller sub-streams. Given an event detection approach with

a maximum throughput x, that approach can be replicated

and deployed on each sub-stream so long as the rate at which

documents arrive on a single sub-stream does not exceed x.

The events detected from each effective sub-stream can then

be merged into a global event stream as a final step.

Figure 3 illustrates how this approach can be implemented

as a Storm topology (assuming the same event detection

approach by [12] is used, as before). Observe that the

high volume document stream is partitioned (evenly) into

Table I
COMPARISON OF THE INPUT AND OUTPUT FORMATS OF THE TWO

EVENT DETECTION APPROACHES.

Bolt In/Out Sub-stream Partitioning Distributed Lexical Key Partitioning

Vectorisation In < docidi, doci, ti >

Out < docidi, vi, ti >

Document-Grouped Hashing / In < docidi, vi, ti > < docidi, vi, ti >

Key-Grouped Hashing Out < docidi, vi, k
′[], ti > < k′, [vi, docidi, ti] >

Collision Detection and In (1) < docidi, vi, k
′[], ti > < k′, [vi, docidi, ti] >

Distance Calculation / Out (1) < docidi, vi, ti, docid[] >

Local Distance Calculation In (2) < docidi, vi, ti, docid[] >

Out (2) < docidi, ti, docidj , distj > < docidi, [ti, docidj , distj] >

Error Correction / In < docidi, ti, docidj , distj > < docidi, [ti, docidj , distj] >

Global Distance Calculation Out < docidi, ti, docidj , distj > < docidi, ti, docidj , distj >

Event Clustering In < docidi, ti, docidj , distj >

Out < docid[] >

multiple sub-streams. Documents assigned to each sub-

stream are converted into their vector representation v within

the vectorisation bolt, as before. The vectorised documents

are then hashed locally (creating bins local to each sub-

stream) within the document-grouped hashing bolt. Each

document is then emitted along with all of its hash keys

(grouping by document rather than grouping by key). The

most recent documents that received the same hash keys

are identified and emitted by the collision detection bolt

and subsequently compared to find the closest within the

distance calculation bolt. This is followed by Petrovic et al’s

error correction step [12] as a separate bolt. The resultant

distance is then used to determine whether an existing local

event cluster for the current sub-stream would be updated or

a new event cluster for that sub-stream created, as per our

proposed approach. All local events are then merged into a

global event stream. We refer to this approach in our later

experiments as Sub-stream Partitioning.

Table I illustrates the differences between the sub-stream

partitioning and our distributed lexical key partitioning

topologies in terms of the input and output formats for their

bolts. From Table I, we see that sub-stream partitioning

differs from our approach in two critical ways. First, the

stream is partitioned into multiple sub-streams rather than

partitioning on the coarse-grained (hash) key, i.e. the output

of the hashing bolt changes from one emit per document

in the sub-stream partitioning topology containing multiple

hash keys for that document, to periodic emits of multiple

documents per hash key under our approach. Second, rather

than spreading the distance computation of a single doc-

ument over multiple machines by having each bolt process

individual hashes, documents are processed fully using a pair

of bolts, namely collision detection and distance calculation.

V. EXPERIMENTAL SETUP

Dataset: To evaluate the effectiveness, efficiency, latency

and scalability of event detection, we require a large stream

of documents covering an extended time-period covering

multiple noteworthy events. Twitter is currently one of the

largest social media sources – producing over 160 billion

posts each year – and has been shown to be a good

source of information about events as they happen [4].

Hence, we use a Twitter dataset containing a sample of 51

million tweets from the period of the June 30
th 2011 to

Table II
MAXIMUM PER-BOLT THROUGHPUT AND AVERAGE PROCESSING LATENCY OF THE TWO EVENT DETECTION TOPOLOGIES. † INDICATES THAT THE

THROUGHPUT IS ESTIMATED BASED UPON THE NUMBER OF HASHES NEEDED TO PROCESS ONE TWEET.

Topology Measure Storm Bolts

Sub-stream Partitioning Vectorisation Document-Grouped Collision Distance Error K-Means
Hashing Detection Calculation Correction Clustering

Throughput (tweets/sec) 4617.05 623.32 340.45 332.71 266.34 3198.34
Latency <0.05ms <2ms <5ms <5ms <5ms <0.05ms

Distributed Lexical Vectorisation Key-Grouped Local Distance Global Dist. Calculation K-Means
Key Partitioning Hashing Calculation + Error Correction Clustering

Throughput (tweets/sec) 4617.05 563.63 117.07† 414.23 3198.50
Latency <0.05ms <10ms <100ms† <5ms <0.05ms

September 15
th 2011 (77 days). All tweets were collected

using the public streaming API. From an effectiveness

evaluation perspective, although this dataset represents only

a fraction of the full Twitter stream, it still covers multiple

noteworthy events, including the death of Amy Winehouse

and the Moscow Airport Bombing among others. From an

efficiency/scalability perspective, high volume streams can

be simulated by controlling the rate at which tweets are

ingested by the topology.

Events: From the above dataset, we manually identified 27

major events, which we use as the ground truth for our

system to detect. For each event, we manually searched the

dataset starting from the time when each event occurred with

the aim of finding tweets about each. From this search, we

found a total of 117,983 tweets over the 27 events.

Hardware: For our experiments, we use a cluster of ma-

chines, where each machine contains two 64bit quad-core

2.13GHz processors (8-core), 32GB of RAM, and one 1TB

hard disk. All machines are connected together by a gigabit

Ethernet switch on a single rack. Another machine outside

this cluster is used for Storm topology control.

Measures: We evaluate the efficiency of our topologies and

the individual bolts that comprise them by measuring their

throughput in terms of the maximum number of tweets that

they can process per second, denoted tweets/sec. Due to

small variances in the maximum throughout, we report the

average throughput over three runs. Topology scalability is

measured in comparison to linear scaling, i.e. when doubling

the number of processing cores doubles the throughput. The

aim is to achieve as close to linear scaling as possible.

Since our topologies are complex and bolts have different

throughput rates, the replication factor of multiple bolts

need to be increased concurrently to avoid bottlenecking

on those bolts that were not replicated. Hence, the linear

scaling factor (gradient) that we compare against reflects the

number of processing cores needed to increase throughput

in a stable manner. Finally, we measure the effectiveness of

event detection in terms of event detection recall, i.e. how

many of the 27 events were identified by our system. In this

case, an event is considered identified if the system emits a

cluster that contains 3 or more tweets about the event.

Baselines: We compare our distributed lexical key partition-

ing approach in terms of effectiveness, efficiency, latency

Figure 4. Event detection recall over the 27 identified events for the two
topologies at different degrees of parallelism.

and scalability against the sub-stream partitioning approach

described in Section IV. All event detection parameters were

set as per the single stream approach that both topologies

were based upon [12].

VI. RESULTS

Through experimentation, we investigate three research

questions in relation to our approach for real-time event

detection, each in a separate section:

• How is effectiveness impacted by parallelisation in

comparison to the baseline topology?

• How efficient is our event detection approach in com-

parison to our baseline topology and are low levels of

processing latency maintained?

• Does our approach facilitate event detection that scales

close to linearly with processing capacity and can it

keep-up with the full Twitter Firehose stream?

A. Effectiveness

We begin by evaluating our first research question, i.e.

how is effectiveness impacted by parallelisation under both

our approach and the alternative sub-stream partitioning

topology. Recall from Section III that we noted that sub-

stream partitioning approaches may cause event detection

effectiveness to degrade when parallelism is increased, since

the aggregate of events detected from parts of the stream

are not equivalent to events detected from the whole steam.

An effective event detection topology will maintain its per-

formance regardless of the degree of parallelism employed.

As such, we evaluate the topology generated using our

proposed event detection approach in comparison to the

baseline topology described in Section IV.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 15 20 25 30 35

T
h
r
o
u
g
h
p
u
t

(
t
w
e
e
t
s
/
s
e
c
)

Processing Cores Allocated

Linear (7-core scaling factor)
Sub-Stream Partitioning

(a) Sub-stream Partitioning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35

T
h
r
o
u
g
h
p
u
t

(
t
w
e
e
t
s
/
s
e
c
)

Processing Cores Allocated

Linear (8-core scaling factor)
Distributed Lexical Key Partitioning

(b) Distributed Lexical Key Partitioning

Figure 5. Scalability of the two event detection topologies in terms of tweets/sec as we increase the number of processing cores allocated in comparison
to linear scaling (using a scaling factor of 7 cores and 8 cores per increment, respectively)

Figure 4 reports the event detection recall of both topolo-

gies when as we increase the degree to which the process

is parallelised across multiple machines. N degrees of paral-

lelism indicates that each bolt within the topology is repli-

cated N times. From Figure 4, we see the following. First,

that for both topologies, an event recall of approximately

55% is achieved when only one degree of parallelism is

used, i.e. 15 of the 27 events in our dataset were identified.

Second, we see that as we increase the degree of parallelism,

the effectiveness of our proposed approach remains stable,

while the sub-stream partitioning topologies effectiveness

degrades. Indeed, over 18% absolute recall is lost moving

from one to three degree’s of parallelism, which represents

only a fraction of the parallelism that we would need to

process the entire Twitter Firehose stream (as we show later

in Section VI-C). This shows the advantage of using a lex-

ical key-based partitioning scheme for attaining parallelism

rather than partitioning over the tweets themselves. Hence,

in answer to our first research question, we conclude that

our proposed approach is more effective than the baseline

approach as it maintains event detection recall while scaling.

B. Efficiency and Latency

Having shown that our approach is more effective than

the baseline approach, we next evaluate the efficiency of it

in comparison to the baseline topology. Indeed, for a real-

time event detection system to be useful, the topology needs

to be sufficiently efficient, i.e. such that it can be scaled

using relatively few machines. To evaluate how efficient our

two topologies are, we simulate high-volume streams by

feeding a 1 million tweet sub-sample of our dataset through

each at very high input rates (up to 5000 tweets/sec). We

measure the maximum rate at which each individual bolt

can process tweets (when no bottlenecks are present), i.e.

their maximum throughput over three tests, reporting the

average. Table II reports the throughput of each Storm

bolt within both topologies. A higher throughput indicates

that the bolt is more efficient. Note that for our proposed

approach, the data is partitioned by hash rather than by

document (tweet), hence we cannot directly measure tweets

processed each second for the local distance calculation bolt

(where each buffered emit represents one hash and multiple

documents). Instead, we report an estimate based upon the

number of hashes needed to process a single tweet.

From Table II, we observe the following. First, the

throughput of the bolts can vary greatly within a single

topology. For instance, under our proposed approach, the

fastest bolt was vectorisation; processing over 4000 tweets

every second, while the slowest was the local distance

calculation bolt, processing just over 100 each second. This

is important, since in a deployment scenario we would

want to best utilise the available compute resources, i.e. not

replicate bolts more than needed to serve the input stream

(with some spare capacity to deal with fluctuations in load).

Comparing the two topologies, we see that as expected,

they differ mainly in terms of the bolts that perform the

distance calculations and subsequent error correction (addi-

tional distance computations). The sub-stream partitioning

topology spreads its computation over three bolts, each able

to process between 340 and 266 tweets each second. In

contrast, under our proposed event detection approach, the

same computation is performed using just two bolts; local

distance calculation which is more computationally expen-

sive and global distance calculation, which is less expensive.

Overall, the throughput for both topologies are close to

equal, although sub-stream partitioning does demonstrate a

slight advantage in overall throughput.

Finally, since the aim of event detection is to identify

events as quickly as possible, it is important to minimise

latency within the topology. Table II also reports the average

per-bolt processing latency for a single tweet within each

topology. From Table II, we observe that the processing

time a tweet spends within each single bolt is 1-5ms. The

exceptions are the key-grouped hashing and local distance

calculation bolts from our proposed approach, which buffer

tweets to minimise network traffic as described in Sec-

tion III-B and hence have longer latencies between emits

(10-100ms). To answer our second research question, we

find that both topologies are approximately equivalent in

terms of efficiency and maintain very low processing laten-

cies for event detection.

C. Scalability

Having shown that unlike the baseline approach, our

proposed approach maintains event detection effectiveness,

Table III
SAMPLE TOPOLOGY CONFIGURATIONS THAT CAN PERFORM EVENT DETECTION OVER THE ENTIRE TWITTER FIREHOSE STREAM.

Topology Storm Bolts Total Throughput
Vectorisation Hashing Collision Distance Error K-Means

Detection Calculation Correction Clustering

Sub-stream Partitioning 2 12 18 18 18 2 70 4864

Distributed Lexical Key Partitioning 2 14 40 14 2 72 4518

while using similar levels of processing power. We next

investigate our third research question, i.e. is our approach

scalable to high volume streams. To this end, we report

the maximum overall throughput observed as we increase

the number of processing cores allocated to perform event

detection. A scalable event detection topology should scale

close to linearly with processing power allocated, i.e. dou-

bling the processing cores should also double the topology

throughput. The linear scaling factor indicates how many

cores are needed to double the throughput from the first

data-point. Note that since each bolt in a topology can not

achieve the same throughput, it is expected that some bolts

may be under-utilised in each configuration. In all cases, the

replication factor of each bolt is chosen to minimise under-

utilisation (based upon the per-bolt throughputs observed in

Section VI-B). Figures 5 (a) and (b) show the maximum

overall throughput of the two event detection topologies in

terms of tweets/sec as we increase the number of processing

cores allocated in comparison to linear scaling.

From Figure 5, we observe that both topologies scale in a

close to linear fashion, i.e. the throughput of both topologies

increases in a consistent manner to the number of processing

cores allocated. This indicates that both topologies would

be suitable for processing of high volume streams (although

we showed previously that event detection recall degrades

when using the sub-stream partitioning topology). We also

observe that the scaling factor of the sub-stream partitioning

topology is slightly lower (7) than our proposed approach

(8). This indicates that sub-stream partitioning is slightly

more efficient, i.e. fewer cores are needed to double the

throughput, supporting our observations from Section VI-B.

Finally, to illustrate a practical deployment of these

topologies, we perform an additional scaling experiment to

determine how many processing cores would be needed to

process the entire Twitter Firehose stream (4500 tweets/sec).

Table III reports one sample configuration for each of the

two topologies and the resultant throughput. From Table III,

we observe that approximately 70 processing cores are

needed to process the entire Twitter Firehose stream, or

approximately 9 8-core machines.

VII. CONCLUSIONS

We introduced a new scalable event detection approach

to tackle the difficult task of online event detection using

embarrassingly high volume social streams. This approach

uses a novel lexical key partitioning strategy to spread the

event detection process across multiple machines, while

avoiding divide-and-conquer strategies that partition and

process the stream as a series of sub-sets. We described an

implementation of this approach within Storm, distributing

a state-of-the-art event detection system. Through experi-

mentation of a large Twitter dataset, we showed that the

proposed approach is able to efficiently scale to big data

streams providing thousands of tweets every second, without

degrading event detection effectiveness.

ACKNOWLEDGEMENTS

The authors acknowledge financial support for the ReD-

ites Project from EPSRC grant EP/L010690/1.

REFERENCES

[1] J. Allan, V. Lavrenko, and H. Jin. First story detection in
TDT is hard. In Proc. of CIKM, 2000.

[2] J. Allan. Topic detection and tracking. Springer, 2002.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. of
SIGMOD/PODS, 2002.

[4] R. Bandari, S. Asur, and B. Huberman. The pulse of news
in social media: Forecasting popularity. In Proc. of ICWSM,
2012.

[5] E. Bertino, K.-L. Tan, B. C. Ooi, R. Sacks-Davis, J. Zobel, B.
Shidlovsky, et al. Indexing techniques for advanced database
systems. Kluwer Academic Publishers, 1997.

[6] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker,
S. Weigert, and C. Fetzer. Scalable and low-latency data
processing with Stream MapReduce. In Proc. of CloudCom,
2011.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proc. of OSDI, 2004.

[8] P. Hart. Nearest neighbor pattern classification. Transactions
on Information Theory, 13(1):21 – 27, 1967.

[9] J. A Hartigan. Clustering algorithms. John Wiley & Sons,
Inc., 1975.

[10] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proc. of
STOC, 1998.

[11] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In Proc. of ICDMW,
2010.

[12] S. Petrovic, M. Osborne, and V. Lavrenko. Streaming first
story detection with application to Twitter. In Proc. of
NAACL, 2010.

