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ABSTRACT

The automatic summarization of long-running events from
news steams is a challenging problem. A long-running event
can contain hundreds of unique ‘nuggets’ of information to
summarize, spread-out over its lifetime. Meanwhile, infor-
mation reported about it can rapidly become outdated and is
often highly redundant. Incremental update summarization
(IUS) aims to select sentences from news streams to issue
as updates to the user, summarising that event over time.
The updates issued should cover all of the key nuggets con-
cisely and before the information contained in those nuggets
becomes outdated. Prior summarization approaches when
applied to IUS can fail, since they define a fixed summary
length that cannot effectively account for the different mag-
nitudes and varying rate of development of such events. In
this paper, we propose a novel IUS approach that adap-
tively alters the volume of content issued as updates over
time with respect to the prevalence and novelty of discus-
sions about the event. It incorporates existing state-of-the-
art summarization techniques to rank candidate sentences,
followed by a supervised regression model that balances nov-
elty, nugget coverage and timeliness when selecting sentences
from the top ranks. We empirically evaluate our approach
using the TREC 2013 Temporal Summarization dataset ex-
tended with additional assessments. Our results show that
by adaptively adjusting the number of sentences to select
over time, our approach can nearly double the performance
of effective summarization baselines.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: Temporal Summarization, Adaptive Models,
Machine Learning

1. INTRODUCTION
When a significant event occurs, it is reported in a va-

riety of streams such as newswire, microblogs/blogs and
forums. However, given the large number of these media
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Figure 1: An illustration of Incremental Update
Summarization (IUS) task over a time-ordered doc-
ument stream.

streams and the vast quantities of articles/posts produced
each day, monitoring an event poses a challenging problem
for end-users. Multi-document summarization (MDS) tech-
niques have been proposed to tackle event summarization.
These techniques generate a concise, on-topic summary from
a set of related documents [21], often by extracting infor-
mative sentences from those documents [5, 7, 16, 20, 22,
27]. However, these approaches are designed to retrospec-
tively summarize an event given a (high-quality) set of on-
topic newswire articles about it and hence are not suitable
to summarize an ongoing event over time. Some MDS ap-
proaches were later extended to the task of update summa-
rization [10], where the aim is to produce a fixed-length ‘up-
date’ summary about the event given an initial summary and
a set of documents containing new information about the
event. However, due to the fixed-length nature of the update
summary produced, these approaches are not well equipped
to summarize long-running events, particularly for use-cases
that require updates to be issued in a timely manner.

For instance, consider a user that had heard about the gar-
ment factory fires that took place in Pakistan1 and wanted
to access a summary of that event, which automatically up-
dates over time with new content. For this event, we con-
sider there to be a set of unique pieces of information that
the user would like to know about e.g. that it was ‘Pak-
istan’s deadliest industrial disaster’, or that the ‘total killed

1http://en.wikipedia.org/wiki/2012_Pakistan_
garment_factory_fires



was 315’. However, this event ran over a 6-day period, with
many important nuggets emerging after the initial event,
e.g. that a ‘fake safety certificate had been obtained [by the
factory owners] to fulfil developed countries demands’. De-
ploying a traditional MDS system using only the first articles
would result in many missed nuggets, since they will occur
much later in the event timeline. Meanwhile, iteratively ap-
plying an update summarization system will result in update
summaries that contain irrelevant and/or redundant content
during periods when no new information emerged. Hence,
we need an alternative summarization approach that can
automatically extract novel updates from news streams in a
timely manner, while minimising irrelevant, uninformative
or redundant content.

In this paper, we introduce the task of Incremental Up-
date Summarization (IUS), which aims to produce a series
of sentence updates about an event over time to issue to an
end-user tracking the event. Figure 1 gives an example of an
IUS system. As we can see from Figure 1, documents pub-
lished over time relating to an event are first processed by a
traditional update summarization system at regular time in-
tervals, producing fixed-length update summaries comprised
of sentences. However, during periods when no new pieces
of information emerge, the update summary produced may
contain irrelevant or redundant sentences. The aim of an
IUS system therefore is to take the update summaries and
extract only those sentences from them that are on-topic and
provide new previously unseen information, such that they
can be issued to an end-user as updates about the event.
IUS is highly useful for users wanting short timely updates
pushed to them, for example in the form of an RSS feed or
updating timeline.

To tackle IUS, we propose a supervised approach, where
we treat sentence selection from the update summary as a
rank-cutoff problem. Here the aim is to predict – based upon
the current update summary and any sentences previously
issued as updates – how many sentences from the current
update summary to issue to the end-user. We train a re-
gression model that combines over 300 features, describing
the prevalence of the event, the novelty of content contained,
and overall sentence quality across the sentences in the in-
put update summary. These features are used to balance
the cost of selecting a deeper cutoff in terms of returning
redundant content against the risk of missing important in-
formation by selecting a shallower cutoff.

The contributions of this paper are three-fold. First, we
propose a new model for IUS that can adaptively adjust
the amount of summary content to select over time. Sec-
ond, through experimentation using the TREC 2013 Tem-
poral Summarization dataset – expanded with over 22,000
new assessments to combat incompleteness [3] in the original
dataset – we show that our proposed approach can improve
IUS performance by up-to 47% in comparison to the up-
date summarization baselines tested. Third, we provide an
in-depth analysis, identifying the most informative features
and highlighting directions for future enhancement.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a background into prior works examining
multi-document summarization and summarization over time.
In Section 3, we define the IUS task, while Section 4 details
our proposed approach to tackle it. Section 5 describes our
experimental setup in terms of the dataset, the development
of additional assessments, training regime and evaluation
measures, while in Section 6, we detail our results and anal-
ysis. Concluding remarks are provided in Section 8.

2. RELATED WORK
As described above, the IUS task that we introduce builds

upon traditional multi-document/update summarization sys-
tems from the literature, using them to produce intermedi-
ate summaries over time. In this section, we describe prior
works in the field of multi-document summarization (Sec-
tion 2.1) and update/temporal summarization (Section 2.2).

2.1 Multi-Document Summarization
Multi-document summarization (MDS) approaches take

as input a set of documents about a topic to be summarized
and produce a (typically fixed length) summary of those doc-
uments. The MDS task was investigated at both the Docu-
ment Understanding Conference (DUC)2 and Text Analysis
Conference (TAC) [10]. MDS approaches can be categorised
as either extractive – where unmodified sentences from the
input documents are selected for inclusion into the sum-
mary [5, 7, 16, 20, 22, 31, 34, 37], or abstractive – where new
sentences are generated from the input documents, e.g. via
sentence compression or information fusion techniques [16,
33, 37]. Summarization approaches that also take as input
a query (in a similar way to a Web search engine) relating
to the topic are referred to as ‘query-focused’ approaches.
The IUS task that we introduce takes as input, summaries
produced by a query-focused multi-document summariza-
tion system and extracts sentences from them to produce
updates for long-running events, issuing them to users who
wish to track those events.

Extractive summarization techniques can be defined in
terms of three stages [21]: the generation of an intermediate
representation of the input documents, e.g. the identification
of key terms [18]; the scoring of each sentence with respect
to its preference for inclusion into the summary, e.g. by top-
icality [30], text quality [27] or aspect coverage [20]; and the
selection of sentences from the ranked list, e.g. selecting the
top n, or applying a redundancy sensitive technique such as
MMR [4]. One of the most widely used approaches to score
sentences for inclusion into a summary is clustering with re-
spect to the centroid of the sentences within the input docu-
ments [19, 24], thereby selecting those sentences most central
to the topic first. Early systems that take this approach in-
clude NeATS [19] and MEAD [24]. Other approaches score
sentences with respect to only highly informative terms [7,
18, 22] or based upon their coverage of latent sub-topics
extracted from the input documents [20]. More recent ap-
proaches have used graph-based methods that model tex-
tual/aspect overlap between sentences, and in some cases in-
fer sentence hierarchies from input documents [5, 11, 23, 34].
For example, LexPageRank [11] builds upon the well known
PageRank algorithm to identify the most important sen-
tences in the graph. Finally, machine-learned sentence rank-
ing approaches have been shown to be effective for MDS [16,
17, 27, 33]. For instance, the Pythy summarization system
proposed by Toutanova et al. [27] linearly combines a series
of weighted summarization features to score each sentence,
while Li et al. proposed a structural learner that jointly op-
timises diversity and coverage when scoring [16]. Most re-
cently, Wang et al. [33] used a learning-to-rank technique,
combining sentence features and the output scores of other
summarization approaches for sentence scoring. In our later
experiments, we leverage some of the extractive summariza-
tion approaches described above to produce the summaries
that our IUS approach takes as input, namely the learning-

2http://www-nlpir.nist.gov/projects/duc/



to-rank approach by Wang et al. [33] and the classical Sum-
Basic [22], SumFocus [27] and Classy [7] approaches.

2.2 Update Summarization and Timeline
Generation

One limitation of MDS is that it is retrospective in na-
ture, in that there is an assumption that all of the relevant
documents about the event are available as input before-
hand [1]. The task of update summarization was designed
to address this issue through the generation of further fixed-
length ‘update’ summaries from documents published later
in time [10]. An update summarization system takes as in-
put the original summary of the event and a new set of
documents, with the aim to produce an update summary
that contains only new information not already contained
within the original summary. Prior approaches to tackle up-
date summarization generally apply an existing MDS tech-
nique over the new documents to produce a candidate rank-
ing of summary sentences [10]. They then use a redun-
dancy removal technique to remove sentences that are simi-
lar to those already contained within the original summary.
Effective redundancy removal techniques include using an
upper-bound on the pair-wise sentence similarity [9] or using
MMR [29] to identify and filter out excessively similar sen-
tences. In our later experiments, we use a learning-to-rank
approach to produce an initial summary at periodic inter-
vals. Then, following [9], we employ an upper bound υ on
permissible similarity between sentences, removing any that
exceed this upper bound, forming the update summaries
that our IUS approach takes as input.

An alternative approach to event summarization over time
is timeline generation, where the aim is to produce a times-
tamped list of updates covering the most important nuggets
about that event. Swan and Allan [26] proposed an early
approach to timeline generation by extracting clusters of
named entities and noun phrases relating to events over
time. This approach was later extended to select related
sentences for each date [1]. Chieu et al. [6] also examined
the creation of sentence timelines for news events. They
studied the effect of using different centrality and bursti-
ness estimates to rank sentences for inclusion into a timeline.
Recently, Yan et al. [36] investigated evolutionary timeline
generation (ETS) for an event. They extracted sentences
from newswire articles crawled from the Web at 24 hour in-
tervals, using a combined utility function that incorporates
relevance, coverage, coherence and diversity (with respect
to sentences selected previously) for sentence scoring. A
timeline is iteratively updated over time by selecting sen-
tences from each interval based upon local and global opti-
misations aiming to maximise the summary utility. IUS is
similar to ETS in that both aim to produce a timeline of
sentences summarising an event. However, rather than pro-
ducing a high precision summary with respect to only the
most important updates at the end of each day, IUS focuses
on timely updating about the event throughout each day.

3. IUS TASK DEFINITION
In this paper, we tackle the problem of how to extract

sentences about a long-running event from news streams to
issue to a user wishing to track that event. However, avoid-
ing the selection of redundant or irrelevant content is chal-
lenging, since the amount of new content relating to an event
varies over time. For example, Hurricane Sandy3 started out

3http://en.wikipedia.org/wiki/Hurricane_Sandy
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Figure 2: The number of manually identified nuggets
about the Hurricane Sandy over time.

as a tropical storm in the Caribbean but grew into a huge
event as it strengthened and passed over densely populated
areas along the U.S. east coast. To illustrate, Figure 2 shows
the distribution of manually identified information nuggets
about Hurricane Sandy over the lifetime of the event. As
we can see, there is a large burst of updates around the
29th of October, when Sandy made landfall on the U.S. east
coast. Hence, to summarize long-running events effectively,
we need an approach that can adaptively alter the amount
of new sentences extracted over time.

To tackle this issue, we introduce the task of incremental
update summarization (IUS), which aims to issue periodic
updates about an event to a user in a timely manner. In
particular, we use the following definitions:

Long-running Event e: A newsworthy happening in the
world that was significant enough to be reported on over
multiple days.
Event representation (Query) Q: A short textual repre-
sentation of the long-running event provided by an end-user.
For example, a user wanting to track the progress of Hurri-
cane Sandy might issue the query ‘hurricane sandy’.
Time Interval t: A period of time during the lifetime of
an event e. An event is split into a series of equal size time
intervals t = {t0, t1, t2...}.
Update Summary St: A fixed length query-focused up-
date summary for the time interval t and event representa-
tion Q, produced by an update summarization system like
those described in Section 2.2. Each update summary St

is comprised of a ranked list of sentences s ∈ St published
during time interval t. The ranking criteria for sentences in
St is relevance with respect to Q and the intrinsic informa-
tiveness/quality of those sentences.
Sentence Update u: A sentence to be issued to the end-
user about the event from an update summary St.
Issued Updates Ut: The timeline of all sentence updates
issued to the user before t.

Using these definitions, we formalise the IUS task as fol-
lows. Given a query Q issued by a user about a long-running
event e to be tracked, for each time interval t over the life-
time of e, the IUS system takes as input an update summary
St about e and selects sentences from it to issue as a series
of sentence updates u (given the previous selections Ut).

4. UPDATE SENTENCE SELECTION
We propose a new approach that treats IUS as a rank-

cutoff problem, inspired by prior work in the Web search do-
main on determining when to stop reading a ranked list [2].
Assuming that we are at time interval t within an event
e. If there is new information available in the current up-
date summary St, then an IUS system should select multiple
sentences to issue as updates, achieved by selecting a deep
rank-cutoff for sentences within St. However, during time in-
tervals with low activity, the update summary St will mostly
contain redundant or irrelevant sentences, particularly in the



Figure 3: Illustration of how prevalence and novelty
relates to different event states.

lower ranks. Hence, in this case, an IUS system should select
a shallow (or in the extreme a zero-rank) cutoff. The aim
of our proposed approach therefore is to predict the optimal
rank-cutoff for St, denoted as θt.

To accurately predict the optimal θt for a given update
summary St, we leverage two concepts: prevalence – the
proportion of a population found to belong to a class; and
the novelty – the degree to which a population is similar
to a second population. In the context of IUS, we define
prevalence to be the proportion of the update summary St to
a rank r (in St) that relates to the event. Meanwhile, novelty
is the proportion of sentences in the update summary St to
a rank r that are similar to sentences previously issued as
updates, i.e. in Ut. The idea is that a large (deep) rank-
cutoff should only be selected if the update summary St

exhibits a high degree of both prevalence and novelty. To
illustrate, Figure 3 shows how prevalence and novelty map
to different states of an event. As we can see from Figure 3,
only in the case of high prevalence and novelty is there likely
to be new information available that we would want to issue
as updates to the user.

From a user perspective, θt is a prediction of where to stop
reading the update summary St produced for time interval t

given the sentence updates read previously (Ut). A non-zero
θt value indicates that there is new content the user would
like to read. In contrast, a predicted θt value of 0 indicates
that no new information is available and hence, no sentence
updates should be issued. To illustrate, consider the follow-
ing update summary St containing four sentences about the
aforementioned Pakistan factory fire disaster, assuming that
we have not issued any sentence updates so far:

Rank Sentence Prevalence Novelty
1 The fire is being described as the deadliest in-

dustrial accident in Pakistan’s 65-year history,

and highlighted the woeful safety conditions

that exist at many factories around the coun-

try.

High High

2 Buildings regularly lack fire exits and basic

safety equipment like alarms and sprinklers.

High High

3 Fire safety induction for new staff running at

10:30am.

Medium High

4 Such safety issues are common through Pak-

istan, where buildings also lack emergency

equipment

Medium Medium

The first sentence in this ranking contains two useful pieces
of information, namely that the event was Pakistan’s dead-
liest industrial accident and that Pakistan has poor safety
conditions. Hence, up-to rank 1, the event is prevalent (1/1
sentences are on-topic) and the summary is novel (1/1 sen-
tences contain new information). The second sentence also
provides more new on-topic information about the safety
conditions, i.e. up-to rank 2, the event is prevalent (2/2 sen-
tences) and the summary is novel (2/2 sentences). On the
other hand, the third sentence, while containing novel infor-
mation, is not on-topic. As a result, up-to rank 3, we can

characterise the update summary as having medium preva-
lence (2/3 sentences) and high novelty (3/3 sentences). Fi-
nally, the fourth sentence is on-topic but redundant given
sentence 2. Hence, up-to rank 4, we describe the summary
as having medium prevalence (3/4 sentences) and medium
novelty (3/4 sentences). Given that we want high prevalence
and novelty, the optimal θt for this ranking would therefore
be 2. Of course, during subsequent time intervals when we
have already issued updates to the user, these would also
need to be considered when estimating the novelty of an
update summary.

4.1 Methodology
To perform the actual prediction of θt we use a supervised

regression model that combines multiple features extracted
from the update summary St and the previously issued sen-
tence updates Ut, describing the event prevalence and nov-
elty within St. Under this approach, a series of training
instances – each comprised of an update summary St, pre-
viously issued sentence updates Ut and a pre-calculated op-
timal θt value – are used to learn a model that predicts θt

on a continuous scale. This model can then be applied to
predict θt values for each time interval t for unseen events.

To produce this supervised model, there are two prereq-
uisites. First, a set of prediction features about each update
summary St, used to distinguish between intervals contain-
ing new information (for which we should predict a large θt

value) and those without (where a low or zero θt should be
predicted). Second, a loss function that balances the redun-
dancy cost of issuing the top r sentences from an update
summary as sentence updates, against the added value in
terms of new information contained (the best r value found
then becomes θt). We describe each prerequisite in the fol-
lowing two sections.

4.2 Prediction Features
To facilitate accurate predictions of θt, we define 333 pre-

diction features. For clarity, we describe each feature with
respect to three distinct properties of that feature, namely:
the aspect modelled; the input source; and the feature depth.
We summarize these three properties below.

Aspect Modelled: Represents the property of the input
that the feature aims to capture. Our features each belong to
one of three broad aspects, namely: prevalence features; nov-

elty features; or quality features. Prevalence features mea-
sure the degree to which the event (as specified in the query)
is represented in the input, while novelty features estimate
the extent to which the input contains previously unseen
information. On the other hand, quality features measure
the writing quality and cohesiveness of the input. The idea
of using quality features for rank-cutoff prediction is that
should the sentences within the input be of poor quality,
then they are less valuable for inclusion and hence a smaller
θt should be selected.

Input Source: Denotes whether the feature is calculated
using the update summary St, the previously issued sentence
updates Ut, or both.

Feature Depth: Each feature is defined at the level of the
update summary St to a rank r. However, there are two
ways that a feature can be calculated: via aggregation of
sentence-level evidence; or when considering all terms from
sentences between rank 1 and r as belonging to a single
document. For instance, consider the tf-idf similarity of a
sentence with respect to the user query. The average of



Aspect Input Depth Description Count
Prevalence St AVG[1-10] Sentence contains entire topic 10

St AVG[1-10] Unigram/Bigram/Skip Bigram
(4-word window) overlap

30

St AVG[1-10] Unigram/Bigram tf/tf-idf simi-
larity

40

St AVG[1-10] Topic overlap with sentence
subject/object

20

St AVG[1-10] Topic term over-
lap that are Foreign
words/Adjectives/Nouns/Verbs/
Cardinal Numbers

50

St VD[|Ut|] Overlap (ex-
act/unigram/bigram) between
the query Q and topic mod-
els [12] extracted from St

(count/weight/max)

9

Novelty St and Ut AVG[1-10] Levenshtein/Cosine/Monge
Elkan pairwise distance to
sentences in Ut (max/min/avg.)

90

Ut VD[|Ut|] Overlap (ex-
act/unigram/bigram) between
the query Q and topic mod-
els [12] extracted from Ut

(count/weight/max)

9

Quality St or Ut AVG[10] Relative/Absolute position
within the document

4

St or Ut AVG[10] Is among the first 1/3/5 sen-
tences

6

St or Ut AVG[10] The sentence length
with/without stopwords

4

St or Ut AVG[10] The number of sentences in ex-
cess of 5/10 with/without stop-
words

8

St or Ut AVG[10] Unique unigram/bigram count 4
St or Ut AVG[10] Average/total unigram/bigram

tf/tf-idf
16

St or Ut AVG[10] Cosine similarity with batch
centroid

2

St or Ut AVG[10] Average/sum of SumBasic
scores using all/content-only
terms [22]

8

St or Ut AVG[10] Average/sum of SumFocus
scores [27]

4

St or Ut AVG[10] Total/Proportion/Coverage of
the number of topic signature
words contained [18]

6

St or Ut AVG[10] tf-idf Mutual information be-
tween the document and sen-
tence

2

St or Ut AVG[10] Basic/improved sentences scor-
ers from [7]

4

St or Ut AVG[10] Contains URL/Verb/Phone
Number

6

St or Ut AVG[10] Contains/Proportion of content
in brackets

4

Total 333

Table 1: Features used to predict θt.

these similarities over all sentences in the update summary
St yields an estimate of the relatedness of that summary as a
whole to the event (in this case, producing a feature similar
to a post-retrieval query performance predictor [14]). Fea-
ture depth indicates whether a feature is calculated as the
average of the scores for each sentence to a rank depth r

(denoted ‘AVG[1..r]’), or calculated from the virtual docu-
ment produced by combining the sentences to rank depth r

(denoted ‘VD[1..r]’).

Table 1 summarizes the features that we use to predict θt,
separated by the feature aspects. Note that during learning,
features calculated from different events and time periods
will be compared. Hence, to make these features compara-
ble, we apply a standard feature normalisation at the gran-
ularity of each time interval as follows:

norm(f, St) =
f −min(f, St)

max(f, St)−min(f, St)
(1)

where f is a feature and min(f, St) and max(f, St) are the
minimum and maximum observed scores for f across the
sentences within St, respectively.

1: Input
Q, St = {St0 , St1 , St2 ...}

2: Output
Training instances to use for learning Ie

define sentences previously selected, Ut={∅}
define training instance set, Ie={∅}
for each time interval t loop

θt ← argmax
r∈{0..|St|}

ℓ(St, U, r)
St[0..θt]← Crop St to rank θt

Ie ← Add predictionFeatures(St,Ut,Q) and optimal θt

U ← Add sentences St[0..θt]
return Ie

Figure 4: Training instance generation pseudo-code.

4.3 Loss Function
To train the regression model using the features described

above, we define a loss function ℓ that balances the redun-
dancy cost of issuing the top r sentences from an update
summary as sentence updates, against the added value in
terms of new information contained. ℓ takes as input the
update summary St, the previously issued updates Ut and a
r value to try. It estimates the expected loss for issuing the
top r sentences from St (denoted St[1..r]) as follows:

ℓ(St, Ut, r) =

Hmean (Gain(U ∪ St[1..r]), Coverage(U ∪ St[1..r]))
(2)

where Gain measures the amount of new information added
by each sentence in St[1..r] and Ut. Coverage measures
the total number of information nuggets that are covered by
St[1..r] and Ut together out of all the information nuggets
that an effective summary of the event should cover. Hmean

is the harmonic mean between these two performance mea-
sures. Notably, Gain and Coverage can be considered anal-
ogous to the information retrieval precision and recall met-
rics, respectively within the context of summarization. Gain

measures the number of ‘relevant’ updates (where relevance
incorporates additional novelty, quality and timeliness com-
ponents) issued over all updates, while Coverage measures
the number of ‘relevant’ updates issued over the total num-
ber of ‘relevant’ updates available. Hence, the cost function
can be seen as playing a similar role to the popular F1 mea-
sure [28], penalising systems that place too much focus on
either Gain or Coverage. For our later experiments, we use
the official TREC 2013 Temporal Summarization track [13]
measures, namely Expected Latency Gain (ELG) for the
Gain component and Latency Comprehensiveness (LC) for
the Coverage component. The optimal r value for the cur-
rent update summary can then be calculated as follows:

θt = argmax
r∈{0..|St|}

ℓ(St, Ut, r) (3)

Having defined the feature set and loss function that we use,
given an event e we can generate a set of training instances
Ie, where each instance represents a time interval within e.
Importantly, since the loss function is dependant upon the
previously selected sentences Ut to calculate the optimal θt,
we generate training instances in a greedy manner. In this
case, we assume that at each time interval, the optimal θt

is selected. Figure 4 illustrates the training instance genera-
tion process, while in the next section we define the dataset,
training data and measures we use within our evaluation.



Event e 2012 Aurora shooting
Representation (Query) Q ‘colorado shooting’
Time Range Start: 20 Jul 2012 06:38:00

End: Mon, 30 Jul 2012 06:38:00

Nuggets Nugget Time Nugget Text
1 20 Jul 2012 13:06:05 At least 12 people were shot in the

city of Aurora near Denver, Colorado.
2 20 Jul 2012 13:17:46 One person has been arrested but police

did not have any other immediate details.
3 20 Jul 2012 13:39:19 The gunman is believed to have killed 14

people and injured 50.
4 20 Jul 2012 15:13:39 the suspect identified as a 24-year old

male is believed to have acted alone
5 21 Jul 2012 06:09:03 Holmes bought approximately 6,000 rounds

of Ammunition in last 60 Days.
6 22 Jul 2012 13:50:02 Many police departments and theatres

across the country increased security
after the attack.

Table 2: Example event ‘2012 Aurora shooting’
(6/205 nuggets shown).

5. EXPERIMENTAL SETUP
Dataset: To evaluate our approach for IUS, we use the
TREC 2013 Temporal Summarization sequential update sum-
marization (SUS) task dataset. Notably, SUS is a stream
processing task, where the aim is to select sentences from
the stream. This contrasts with IUS, which focuses on se-
lecting sentences from update summaries already produced
from the underlying stream. The SUS 2013 dataset uses the
2013 Knowledge-Based Acceleration (KBA) stream corpus –
containing over 1 billion timestamped Web documents (e.g.
news articles, blogs and forum posts) spanning the period of
Oct 2011 to Feb 2013.
Events: The dataset also contains 10 topics representing
long-running events from during this period, along with a
user query Q representing each. Each event has a pre-defined
10-day timespan. A typical 10-day period contains around
8-9 million documents. Each event also has a predefined
set of information nuggets (describing key pieces of infor-
mation that a summary about the event should cover) and
nugget timestamps (indicating approximately when that in-
formation emerged) that were manually extracted from the
updates made to the Wikipedia page about each event. Ta-
ble 2 illustrates an example event.
Update Summary Generation: In contrast to the SUS
task, our IUS approach takes as input ‘update’ summaries
produced over time intervals from the underlying document
stream. These update summaries are produced as follows.
First, we cluster the 8-9 million documents published from
each 10-day event period into 1 hour intervals, i.e. our in-
tervals t = {t0, t1, t2...}. This results in 240 intervals t per
event. We index each document cluster, creating 240 doc-
ument indices. Stopword removal and Porter stemming is
applied. For each document index, we use the event rep-
resentation Q as a query, retrieving the top 10 documents
relating to the event using the BM25 document weighting
model, and applying query expansion with the Kullback-
Leibler (KL) term weighting model to improve search effec-
tiveness. For each set of 10 documents retrieved, we process
them using an update summarization approach to produce
an update summary comprised of 10 sentences. As they have
previously been shown to be effective [27], we adopt a state-
of-the-art learning-to-rank approach for update summariza-
tion. In particular, we train a LambdaMART [35] list-wise
learning-to-rank model separately from our IUS approach,
using the 63 events from the Document Understanding Con-
ference (DUC) datasets from 2005/2006/2007 that have Se-
mantic Content Unit (SCU) marked sentences [8].4 We use

4These DUC datasets total 45,683 labelled sentences.

57 sentence features based on those reported in [33], using
NDCG as the target measure. Finally, to remove redun-
dancy and following [9], we then employ an upper bound υ

on the permissible similarity between sentences, removing
any sentences that exceed this upper bound. We calculate
the pairwise similarity between each sentence in a greedy
time-ordered manner against those ranked above it. Simi-
larity is calculated via matching terms, weighted using the
tf-idf term weighting model. A Wikipedia snapshot pre-
dating the events is used to obtain the background term fre-
quencies. Sentences with similarity scores exceeding υ are
discarded. υ was optimised for NDCG on a separate corpus
using 0.1 increments, resulting in an upper bound tf-idf sim-
ilarity of 0.5. We then take the top 10 remaining sentences
to form each update summary (i.e. summary length is 10
sentences).
Sequential Update Summarization Evaluation: For
the SUS task, participants performed an extractive summa-
rization for each event over that event’s timespan, returning
a timeline of sentences from the corpus summarising that
event with confidence scores for each. Unlike prior summa-
rization tasks such as MDS [10], the identification of on-topic
documents from the stream was left to the participants. The
top 60 sentences (by confidence score) returned by each par-
ticipating system were then sampled to form an assessment
pool. TREC assessors manually compared each sentence
against the information nuggets extracted for the event, cre-
ating a matching between each sentence and zero or more
nuggets. Assessors were also allowed to define new nuggets
from sentences they assessed, if a sentence was on-topic but
no existing nugget matched. A sentence returned by a par-
ticipant system is only considered relevant if it covers infor-
mation nuggets not already covered by previously returned
sentences, i.e. the update contains new information.
Tackling Assessment Incompleteness: Importantly, we
observed little (<1%) overlap between the top sentences
identified by our system and those assessed as matches dur-
ing the TREC task, i.e. assessment completeness [3] was low.
To counteract this, we used crowdsourcing to generate an ad-
ditional set of assessments to augment those created by the
TREC assessors. In particular, for each of the 10 events, we
pooled the 10 sentences contained within the update sum-
maries we take as input for each 1 hour interval over the 10
days, resulting in 22,424 sentences (10 events * 240 hours
* 10 sentences5). Next, we assessed the 22,424 sentences in
three stages. First, an IR expert manually labelled each sen-
tence as relevant or not to the event that they summarised,
based upon the information nuggets defined by the TREC
task. 6,073 of the 22,424 sentences were labelled as relevant
(27.1%). Second, the 6,073 relevant sentences were subject
to duplicate detection. If multiple sentences were textu-
ally identical, only the earliest was kept, resulting in 4,463
unique sentences. For later evaluation, the assessment la-
bels obtained for each unique sentence are propagated to its
duplicates. Third, the remaining 4,463 relevant and unique
sentences were matched against the information nuggets for
their respective events (as per the TREC task) using crowd-
sourcing. For example, for the event illustrated in Table 2,
the sentence ‘theatres across the country are increasing se-
curity after 12 people were shot in Denver’ would be labelled
as covering nugget 1 and 6.
Crowdsourced Assessments: For each of the 4,463 sen-
tences, three crowdsourced assessors matched that sentence

5Not all hours returned 10 sentences, hence the total number
of sentences is less than 24,000.



Figure 5: Sentence assessment interface (only a sub-
set of the information nugget options are shown).

against the list of information nuggets for the event, in a
similar manner to the TREC assessors. Crowdsourced as-
sessors were also able to specify new information nuggets,
when the existing nuggets did not provide a good match to
the information provided in a sentence. Finally, each as-
sessor also rated the quality of each sentence for inclusion
into a summary about the event on a 5-point Likert scale.
A sentence is considered to match a nugget if two or more
assessors select that nugget. A sentence’s quality rating is
the average of the ratings assigned. Figure 5 illustrates the
sentence assessment interface used.
Crowdsourcing Setup and Statistics: We use the Crowd-
Flower crowdsourcing service to recruit workers for our eval-
uation. Following best practices in crowdsourcing [25], we
have three individual assessors match a sentence against the
information nuggets. Each assignment involves the assess-
ment of 5 sentences. We paid US $0.08 for each assignment.
To detect bots and spammers, for each sentence, the assessor
enters a word from a specified position within that sentence
into a pre-provided text box (acting as a form of captcha).
Workers who fail this test more than three times are barred
from completing more assignments. Workers are also sub-
ject to an entry test where they perform a single assignment,
their performance is measured against a gold standard [15].
A worker’s agreement with the gold standard must exceed
70% to qualify for the task. The total crowdsourcing cost
was US $305.64. Automatic validation resulted in the rejec-
tion of 2.45% of assignments. Inter-worker agreement was
50.4% under Fleiss κ, indicating that the resultant work was
of reasonably good quality.
Measures: We report the IUS performance using the of-
ficial TREC 2013 Temporal summarization track (TREC-
TS) measures – Expected Latency Gain (ELG) and Latency
Comprehensiveness (LC). ELG measures for each update is-
sued to the user, the sum of latency-discounted relevance of
the nuggets for which that update is the earliest issued, in
doing so it accounts for the proportion of updates that con-
tain new information (nuggets) and the timeliness of that
content with respect to when those nuggets emerged. LC
measures the coverage of an event by the updates issued
with an additional timeliness component, i.e. it measures
nugget recall over all updates issued, where the score for a
nugget is discounted if it is reported late. Finally, we also
report the macro harmonic mean of ELG and LC, denoted
ELG/LC Macro F1, as a combined measure.
Retrospective vs. Live: Since IUS is a time-oriented task,
there are two settings under which the above measures can

be calculated. First, in a retrospective manner, where per-
formance is calculated at the end of each 10-day period based
upon the final aggregated output, denoted Retrospective.
This provides a measure of summary effectiveness at the
close of the event. However, retrospective effectiveness may
not reflect the performance that the end-user sees, since they
will access the summaries produced while the event is ongo-
ing. Hence, we also report summary effectiveness as an av-
erage of the performance calculated incrementally each hour
across the 10-days, denoted Live and examine how summary
performance varies over time in more detail in Section 6.3.
Training Regime: We train our IUS approach using a 10-
fold-cross validation.6 We test both the model produced by
a classical linear regression learner and that produced by
a learner based on Model Trees [32]. When reporting the
most influential features using a feature ablation study, we
average the performance loss observed across all 10 folds.
Baselines: We compare our IUS approach with traditional
update summarization approaches that produce fixed-length
summaries. In particular, we compare against SumBasic [22],
SumFocus [27], and the Classy [7] sentence scorers config-
ured as per their original papers, in addition to the update
summaries produced by the learning-to-rank model used
as input for our proposed IUS approach, denoted Lamb-
daMART. For these baselines, we report performance when
selecting one or three sentences from each time interval.7 For
reference, the TREC 2013 best system under the ELG/LC
Macro F1 measure has a reported performance of 0.1673.
However, in contrast to the TREC systems, it is of note
that performance under our approach is reported using the
expanded assessment set. Hence, it is not possible to directly
compare performances.

6. RESULTS
In this section, we investigate whether by adaptively alter-

ing the number of updates to issue about an event over time
we can enhance the effectiveness of IUS over the baselines
described earlier. In particular, we examine the following
three research questions, each in a separate (sub)section:

• How does our adaptive IUS approach compare with
baseline update summarization approaches that pro-
duce a fixed length summary? (Section 6.1)

• What are the most effective types of feature for pre-
dicting the rank-cutoff? (Section 6.2)

• How does summary effectiveness vary over time? (Sec-
tion 6.3)

6.1 Adaptation using Prevalence and Novelty
We begin by evaluating the performance of our proposed

IUS approach against a series of traditional update summa-
rization systems from the literature. If our proposed IUS
approach outperforms these baselines, then we will be able
to conclude that predicting the number of sentences to se-
lect from each update summary is more effective than select-
ing a fixed number of top sentences only. Furthermore, we
will have shown that our machine learned approach is able
to learn how to predict an effective cutoff based upon the
event prevalence and novelty within the update summaries
produced over time.

Table 3 reports the performance of the SumBasic [22];
SumFocus [27]; Classy [7] and learning-to-rank-based [33]

6Equivalent to a leave-one-out setting over the 10 events.
7Selecting more than 3 sentences reduces overall perfor-
mance for this task due to decreased ELG.



Row Approach TREC-TS 2013 Dataset+
Update summarization IUS Statistics Retrospective Live

Ranking Training Cut-off Selection Training Avg. Summary Length ELG LC ELG/LC Macro F1 ELG LC ELG/LC Macro F1

4 SumBasic None Top 1 None 240 0.0260 0.0683 0.0376 0.0246 0.0489 0.0327
5 SumBasic None Top 3 None 685 0.0215 0.1050 0.0356 0.0381 0.0797 0.0516
6 SumFocus None Top 1 None 240 0.0267 0.0721 0.0390 0.0255 0.0519 0.0342
7 SumFocus None Top 3 None 685 0.0176 0.1134 0.0304 0.0315 0.0878 0.0464
8 Classy None Top 1 None 240 0.0665 0.1891 0.0984 0.1420 0.1608 0.1508
9 Classy None Top 3 None 685 0.0417 0.3606 0.0748 0.0960 0.3132 0.1470
10 LambdaMART DUC Top 1 None 240 0.0479 0.0590 0.0529 0.0928 0.0450 0.0607
11 LambdaMART DUC Top 3 None 685 0.0245 0.1317 0.0414 0.0516 0.1071 0.0696
12 LambdaMART DUC IUS Adaptive Linear Regression (10-folds) 591 0.0224 0.5163△ 0.0429 0.0412 0.3888△ N 0.0745△
13 LambdaMART DUC IUS Adaptive Model Trees (10-folds) 260 0.1292 0.3289△ 0.1856△ 0.1321△ 0.2643△ 0.1762△ N

14 LambdaMART DUC Oracle N/A 60 0.3113 0.6231 0.3867 0.3440 0.5970 0.4365

Table 3: Temporal summarization performance for the baseline approaches and our proposed adaptive models
under Expected Latency Gain (ELG), Latency Comprehensiveness (LC) and the ELG/LC mean. Statistically
significant improvements over LambdaMART (Top 3) and the best baseline (for each measure) under the
paired t-test p<0.05 are denoted △ and N, respectively.

extractive MDS approaches with redundancy removal based
upon a per-sentence upper-bound similarity threshold, where
the top 1 or 3 sentences are selected during each time inter-
val to issue as updates. Table 3 also reports the perfor-
mance of our proposed IUS approach (denoted IUS Adap-
tive) when selecting sentences from the learning-to-rank-
based update summaries and trained using the Linear Re-
gression and Model Trees learners when trained using 10-fold
cross validation. The oracle performance (where the opti-
mal rank-cutoff was selected) is also reported. Performance
is measured in terms of Expected Latency Gain (ELG), La-
tency Comprehensiveness (LC), and the combined ELG/LC
Macro F1 measure under both retrospective/live settings.

From Table 3, we observe the following three points of in-
terest. First, comparing the baseline approaches that select
a fixed number of sentences to issue as updates (rows 4-11),
we see that the most effective underlying update summa-
rization approach under ELG/LC Macro F1 is Classy [7].
Indeed, it is interesting to note that the generative Classy
model outperforms the LambdaMART model trained on
DUC data (when using a fixed cutoff). This would indicate
that the effective sentence ranking features differ between
the DUC newswire documents and the Web documents re-
trieved from the KBA corpus being summarized here. Sec-
ond, comparing the LambdaMART baseline (rows 10-11)
with our proposed IUS approach when trained using Lin-
ear regression (row 12) under ELG/LC Macro F1, we see
that our approach marginally under-performs the baseline
when evaluating retrospectively, but outperforms that base-
line by a small (but statistically significant) margin under
the live setting. This lack of substantial improvement over
the baseline indicates that a simple linear function is not
sophisticated enough to predict an effective rank-cutoff for
IUS. However, comparing the LambdaMART baseline (rows
10-11) with our approach when the Model Trees learner
is used (row 13), we see that our approach outperforms
LambdaMART by a large margin under both retrospective
(13.7% absolute ELG/LC Macro F1) and live (11.6% abso-
lute ELG/LC Macro F1) settings. Indeed, the performance
of the Model Trees learner is over 47%/14.4% more effec-
tive under retrospective/live ELG/LC Macro F1 than the
best baseline (Classy Top 1 - row 8). Third, comparing the
baselines (rows 4-11) with the oracle performance (row 14),
we observe that improvements over the best baseline of up-
to 28.8%/30.6% absolute ELG/LC Macro F1 are possible -
highlighting the promise of the approach and the scope for
future improvement.

To answer our first research question, as illustrated by
the performance of our proposed IUS adaptive approach, by
adaptively altering the number of sentences to select from

the update summaries, we are able to outperform the best
baseline by up-to 47% (under ELG/LC Macro F1). This
shows that it is possible to predict the number of sentences
to issue as updates to the end-user over time. In the next
section, we analyse the most influential feature subsets.

6.2 Top Prediction Features
We next examine the features subsets that contribute most

to the prediction of an effective rank-cutoff. Identifying the
most influential features can provide insights into what prop-
erties an update summary should have if we are going to
select sentences from it to issue to the user as updates. To
identify the most influential features, we perform an abla-
tion study, where we remove a subset of the features and
re-evaluate the performance of the model produced. When
an influential feature subset is removed, we would expect
performance to decrease. In contrast, when an uninfluential
feature subset is removed, we would expect performance to
remain approximately unchanged.

Table 4 reports the ELG/LC Macro F1 performance of our
IUS approach using the Model Trees learner when leveraging
the feature subsets described previously in Table 1. In par-
ticular, we report performance when we ablate each feature
subset for both the live and retrospective settings. From
Table 4, we observe the following. First, as a sanity check,
comparing the performance of the models produced under
the two evaluation settings, we observe that performance de-
creases when features are removed in all cases, following our
expectations. Indeed, the performance decreases observed
as features are ablated are statistically significant (paired
t-test p<0.01) with respect to using all features under the
live evaluation setting.

In terms of the most influential feature subsets divided
by aspect, we see that the quality features contribute the
most, followed by the novelty and prevalence features. To
illustrate why this is the case, Figure 6 shows the number of
sentences selected by the ablated models produced for the
Pakistan factory fires event during the first 24 hours of that
event. As we can see from Figure 6, in comparison to using
all features (front-most curve), using a model without qual-
ity features (rear-most curve) follows the same pattern of
selection (sentences are selected during the same hour inter-
vals). However, it selects many more sentences during each
interval. This results in irrelevant or redundant sentences
being issued as updates from deeper within the update sum-
maries (see the example from earlier in Section 4).

To answer our second research question, all of the feature
groups that we proposed in Section 4.2 are influential, since
all reduce prediction performance when removed. The most
influential of these were the quality features, followed by



Property Feature Sub-set Retrospective Live
ELG/LC Macro F1 ELG/LC Macro F1

All Features 0.1856 0.1762
Aspect Prevalence 0.1694 0.1457H

Novelty 0.1249 0.1279H

Quality 0.0977 0.1085H

Input Features from St 0.1469 0.1338H

Features from Ut 0.0856 0.1021H

Depth AVG Features 0.0917 0.0957H

VD Features 0.1287 0.1218H

Table 4: Influential IUS features identified. H in-
dicates a statistically significant decrease (paired t-
test p<0.01) with respect to using all features.

the prevalence and novelty features. In the next section, we
analyse how IUS performance varies as an event evolves.

6.3 Evaluating Performance Over Time
In Section 6.1, we reported the combined performance of

our IUS system under both retrospective and live settings.
However, it is also important to examine how summary per-
formance varies over time. To evaluate this, we report the
ELG/LC Macro F1 performance of our proposed approach
in comparison to the oracle system at each hour interval t,
on a per-event basis. Importantly, ELG/LC Macro F1 for a
time interval t measures summarization performance based
upon sentences emitted both prior to and during t. Perfor-
mance will increase as sentences covering new relevant in-
formation nuggets are emitted, but will decrease if off-topic
or redundant sentences are emitted. Due to space limita-
tions, we report only two of the ten events that illustrate
two common performance distributions observed.

Figure 7 (a) and (b) report the performance distribution of
our approach (Model Trees with leave-one-out training) and
the oracle under ELG/LC Macro F1 for each hour interval.
The events reported are the Wisconsin Sikh Temple shooting
and the Buenos Aires Rail Disaster. From Figure 7 (a) and
(b), we make the following observations. Considering the
oracle performance, for both events, we see a sharp increase
in performance within the first few hours of the event. This
shows that a large proportion of the important information
appears during the first few hours. Next, examining the per-
formance of our approach, we see that for the Wisconsin Sikh
Temple shooting example (Figure 7 (a)), starting from the
second day, IUS performance begins to degrade. This shows
that the model is continuing to issue more sentence updates
over time even though little new information is available.
From this, we can make two conclusions. First, the predictor
appears to make the most prediction errors when the optimal
rank-cutoff θt is 0. Second, the learned model is more effec-
tive early-on in an event’s lifetime than later in that lifetime.
The performance distribution of Figure 7 (a) is common to 6
of the 10 events in our dataset. Hence, assuming that users
are more interested in tracking an event early in that event’s
lifetime, the performance of our approach reported earlier in
Table 3 – that considers all updates issued over the 10 days
– may be an under-estimate. In contrast, from Figure 7 (b),
we see a different performance distribution. In this case,
performance increases early as initial sentence updates are
issued. However, after around 12 hours, no new updates are
issued. Contrasting this distribution to the oracle for the
same event, we see that new information is still emerging
for this event after the 12 hour period, albeit at a slow rate.
This indicates that the learned model lacks sensitivity when
new information arrives slowly, i.e. when rank-cutoff θt val-
ues in the range 0-1 are predicted. In answer to our third

Figure 6: The number of selected sentences over
time using our approach when Prevalence, Novelty
and Quality features are ablated.

research question, we conclude that our IUS approach can
be effective over time, as illustrated by its overall effective
performance of the Buenos Aires Rail Disaster event and its
early performance for the Wisconsin Sikh Temple shooting
event. However, we also observed that IUS performance can
degrade once an event ends, as for some events, redundant
sentences continue to be selected. To illustrate the qual-
ity of the summaries produced by our approach over time,
Table 5 shows an extract from the summaries produced for
the Wisconsin Sikh Temple shooting and Buenos Aires Rail
Disaster events discussed above.

7. CONCLUSIONS
In this paper, we introduced the task of incremental up-

date summarization (IUS), which aims to select sentences
from update summaries about an event over time to be is-
sued to a user tracking that event. We proposed a new
approach to this task that treats IUS as a rank-cutoff selec-
tion problem from the update summaries. We trained a re-
gression model comprised of over 330 features that balances
the cost of selecting a deeper cutoff in terms of returning
redundant content, against the risk of missing important in-
formation by selecting a shallower cutoff. Through empirical
evaluation using the TREC 2013 Temporal Summarization
dataset expanded with over 22,000 additional assessments,
we show that our proposed approach can improve the IUS
performance by 47% in comparison to effective update sum-
marization baselines from the literature. Hence, we conclude
that adaptively altering the number of top sentences to select
from the update summaries over time is critical to achieve
an effective IUS performance.

From the results of this evaluation as a whole, we believe
that the generation of timely updates about long-running
events is still a challenging problem. To effectively summa-
rize events over time, approaches need to adapt to changes
at the rate at which events are reported, accounting for pe-
riods when no new information emerges. For future work,
we aim to investigate how to increase the sensitivity of the
supervised prediction model when small amounts of new in-
formation arrive over time, as well as to further examine IUS
from an information filtering perspective.
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