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Abstract. Global query expansion techniques have long been proposed
as a solution to overcome the problem of term mismatch between a query
and its relevant documents. This paper describes a method which auto-
matically tackles the problems of how to find the best terms for the
expansion of a particular query and secondly, how to weight these terms
for use with the original query. Genetic Programming is used to evolve
schemes for term selection using global (collection-wide) co-occurrence
measures. The schemes evolved are also used to weight the term in the
expanded query as they are a measure of the term’s importance in rela-
tion to the query. As a result, the genetic program has to learn a suitable
scheme for identifying the best correlates for the query concept and also
a scheme that correctly weights these in relation to each other. These
schemes are tested on standard test collections and show a significant in-
crease in performance on the training data but only modest improvement
on the collections that are not included in training.

1 Introduction

Information Retrieval (IR) is concerned with the automatic retrieval of all rel-
evant documents given a user need (query). However, vocabulary differences
between the user and the supplier of information have often lead to a difficulty
in retrieving many documents. Query expansion techniques have long been pro-
posed as a means of overcoming term mismatch between the user’s vocabulary
and the vocabulary of the documents in the collection. Query expansion tech-
niques typically add a number of non-query terms to the original query based on
some heuristics in order to improve the performance of the original query. Typ-
ically, there are two types of query expansion methods; Local (pseudo-relevance
or blind feedback) and Global (automatic thesaurus construction) query expan-
sion techniques. This paper is concerned with the latter. In automatic thesaurus
construction, terms are added to the original query based on their co-occurrence
frequencies with query terms throughout the entire collection.

Recently there have been more and more attempts applying machine learning
techniques to the domain of IR. Genetic Programming (GP) has been adopted
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by some researchers as it has certain advantages over other machine learning
techniques. In particular, GP outputs a symbolic representation of a solution
which can be used in further analysis. As a result, GP solutions are often quite
general and are particularly suited to such problems. Developed in the early
1990’s, the GP area [1] has grown and helped to solve problems in a variety
of domains. GP is inspired by Darwinian theory of natural selection, where
individuals that have a higher fitness value will survive and produce offspring.
GP can be viewed as an artificial way of selective breeding.

This paper presents a Genetic Programming framework that artificially breeds
query expansion selection schemes for use in a standard vector space framework.
The next section introduces some background material in both query expansion
and GP. Section Three describes the system and experimental design. Results
and analysis are discussed in detail in section Four. Finally, our conclusions are
presented in section Five.

2 Background

2.1 Global Query Expansion approaches

Global query expansion approaches analyse the entire document collection and
use co-occurrence relationships between terms to build a matrix of term-term
relationships. Usually, term-term matrices of this type contain weights which
are a measure of how synonymous one term is with another. These matrices
are large and computationally expensive to compute. The matrices are used to
cluster terms based on their co-occurrence data in the hope that terms that
are closer together in this term-space are synonymous. Conceptually, the role of
documents and terms are interchanged in the retrieval model. In essence, docu-
ments become the features of the term. Thus, two terms that appear in the same
document are indexed by a similar feature and are deemed to have some type
of synonymous relationship. Many formulas have been proposed to measure the
association between two terms using co-occurrence data. The similarity between
two terms ti and tj can be determined by evaluating the difference between the
two-vectors

−→
ti = (di1, di2, ..., din) and

−→
tj = (dj1, dj2, ..., djn) in the document

vector space. A simple binary weighting on these document weights would lead
to the following cosine formulation of similarity between two terms:

cos(ti, tj) =
df(ti, tj)√
df(ti)df(tj)

(1)

where df(ti, tj) is the number of documents in which both ti and tj occur and
df(ti) is the number of documents in which ti occurs. There are many variations
of such formulas which aim to accurately find the best synonyms for a term.
Many approaches have attempted to add the best synonyms for each individual
term in the query to the original query. Many of these approaches have seen
relatively little or no improvement in the retrieval of relevant information over
the original query [2, 3].
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However, independently analysing each query term ignores the concept of the
query. Thus, terms that are selected for expansion based on this type of method
typically have no context related to them (i.e. a term maybe closely related to
one of the query terms but may not be related to the concept of the entire query).
A concept based approach to query expansion has previously been attempted
by promoting terms similar to the entire query by summing the individual as-
sociations for each term in the query [2]. Thus, terms that would be chosen for
expansion would be similar to many terms in the query and thus have a concept
associated with them. In this way the problem of term independence of query
terms is somewhat overcome. This approach was somewhat successful on certain
collections although the baseline weighting scheme used to weight the original
terms in the query was poor as shown by the results on the NPL collection [2, 4].
Other attempts at creating collection dependent automatic thesauri by limiting
the co-occurrence of terms to certain parts of text (e.g. paragraphs, sentences
and phrases) have shown to be somewhat effective [5, 4].

Once terms have been chosen to be added to the original query by some
expansion algorithm, the weight of the terms to be added must be determined.
Term selection and re-weighting are the two main challenges that face global
thesaurus techniques.

2.2 Standard term-weighting approaches

The BM25 weighting scheme, developed by Robertson et al. ([6]), is a weighting
scheme based on the probabilistic model. The weight assigned to a term in the
BM25 scheme is a product of Okapi-tf and idf. Okapi-tf is calculated as follows:

Okapi-tf =
rtf

rtf + k1((1 − b) + b dl
dlavg

)
(2)

where rtf is the raw term frequency and dl and dlavg are the length and average
length of the documents respectively. k1 and b are tuning parameters. The idf
of a term as determined in the BM25 formula is as follows:

idft = log(
N − dft + 0.5

dft + 0.5
) (3)

where N is the number of documents in the document set and dft is the document
frequency of term t. The score for the document d can be calculated as followed:

BM25(Q, d) =
∑

t∈Q∩d

(Okapi-tf × idft × qrtft) (4)

where qrtft is the raw term frequency of t in the query Q. Thus, BM25(Q, d) is
a measure of the similarity between the document d and the query Q.

2.3 Genetic Programming

GP is a heuristic stochastic searching method that is efficient for navigating
large, complex search spaces. The advantage of this evolutionary approach is
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that it can help to solve problems in which the roles of variables are not correctly
understood. GP is often used to automatically derive functions whose variables
combine and react in complex ways.

Initially, a random population of solutions is created. The solutions are mod-
elled as tree-like structures with operators as internal nodes (functions) and
operands as leaf nodes (terminals). These nodes are often referred to as genes
and their values as alleles. Each solution is rated based on how it performs in its
environment. This is achieved using a fitness function. Once this is done, repro-
duction can occur. Solutions with a higher fitness will produce more offspring.
Goldberg uses the roulette wheel example where each solution is represented by
a segment on a roulette wheel proportionately equal to the fitness of the solution
[7]. Reproduction (recombination) can occur in variety of ways. The most com-
mon form is sexual reproduction where two different individuals (parents) are
selected and two separate children are created by combining the genotypes of
both parents. The coded version of a solution is called its genotype, as it can be
thought of as the genome of the individual, while the solution in its environment
is called its phenotype. The fitness is evaluated on the phenotype of a candi-
date solution while reproduction and crossover is performed on the genotype.
Once the recombination process is complete each individual’s fitness in the new
generation is evaluated and the selection process starts again. The algorithm
usually ends when a certain number of generations have been completed, when
convergence of the population has been detected or when an individual is found
with an acceptable fitness.

3 Design and Experimental Setup

3.1 Term-Selection

The GP approach adopted evolves the scheme used to select and weight terms
for use in the expanded query in order to improve the retrieval performance of
the system. For each query expansion scheme, each term in the corpus is rated
based on how close it is to the query concept. The following formula shows the
similarity (or Term Selection Value) between the term t and the entire query Q:

TSV (Q, t) =
∑

q∈Q

(correlationqt × qrtfq) (5)

where Q is the query, q is a query term, t is a non-query term in the corpus,
qrtfq is the raw term-frequency of term q in the query and correlationqt is the
query expansion scheme to be evolved. As a result, correlationqt is a measure
of the degree to which term t and the query term q are related by co-occurrence
measures. By extension, TSV (Q, t) represents the similarity between the entire
query Q and a non-query term t. For each query Q, a number of top terms are
chosen and added to the query vector. The number of terms added to the query
can easily be increased without any change to the formula as terms further down
the ranked list should have less significance in the expanded query as they are
weighted as a function of their TSV (Q, t) value.
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3.2 Term Re-Weighting

We assume that the weight of an expanded term is a function of TSV (Q, t) (i.e.
the similarity of that term to the query). It is also logical to assume that the
weight of the expansion term is also related to the weighting scheme applied to
the original query terms (i.e. a tf-idf type scheme). Thus, the following formula
is how our system scores the complete expanded query (EQ) in relation to a
document d:

sim(EQ, d) = BM25(Q, d) +
∑

t∈E

TSV (Q, t) × Okapi-tf × idft (6)

where EQ is the expanded query, Q is the original query, E is the set of
expansion terms. Thus, a weighting of 1 for TSV (Q, t) would indicate that the
expansion term t is as important as if it had occurred in the original query. In
this way the GP can also learn the correct weighting for expansion terms.

3.3 Document collections and preprocessing

The document collections used in this research are the Medline, CISI, Cranfield,
NPL, LISA and OHSUMED collections1. Only the first 30 queries for the CISI
and Cranfield collections are used as efficiency is of prime concern. The largest
collection (OHSU88) is a subset of document of the full OHSUMED collection.
It consists of half of the documents from the 1988 collection. All documents
and queries are pre-processed by removing standard stop-words and stemmed
using Porter’s stemming algorithm [8]. The weighting scheme applied to the
query terms is a relative term frequency weighting scheme. All queries with no
relevant documents are ignored by the system.

Global query expansion techniques are computationally intensive. We reduce
the number of terms in the collection by using a feature selection technique which
reduces the number of the terms in each corpus to roughly 25%. We eliminate
all dilute terms (i.e. terms whose document frequency equals its collection fre-
quency). This has been shown to be a characteristic of evolved weighting schemes
on both small and large collections [9]. Typically, this eliminates terms of a low
frequency and variations have been used in other feature extraction techniques
like document frequency thresholding. Table 1 shows the characteristics of the
document collections after preprocessing and feature selection.

3.4 Terminal and Function set

To determine the terminal and function set, it is neccessary to consider the char-
acteristics of the documents in which the query terms and possible expansion
terms co-occur in the entire corpus. It is also important to consider the charac-
teristics of each query term and each possible expansion term independently in
the entire corpus. Table 2 shows the terminal set chosen. This set is divided into

1 http://www.dcs.gla.ac.uk/idom/ir resources/test collections/
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Table 1. Characteristics of document collections

Collection Docs Terms Reduced Terms Avg Len Qrys Avg len

Medline 1,033 10,975 3,614 56.8 30 11
Cranfield 1,400 9,014 2,518 59.6 30 8.3
CISI 1,460 8,342 2,110 47.8 30 7.56
LISA 6,004 16,168 4,411 36.3 35 6.78
NPL 11,429 7,759 2,468 18.78 93 6.78
OSHU88 35,412 113,145 31,496 48.03 61 5.05

two parts in order to draw attention to the source of information for the chosen
terminals. The top half of the table shows collection-wide statistics for both the
query term q and the possible expansion term t independently of each other.
The bottom part of the terminal set shows measures of the set of documents in
which both the query term q and possible expansion term t co-occur. We will
define the set of documents in which both t and q occur as Cqt.

Table 2. Terminal Set

Terminal Description

1 the constant 1
0.5 the constant 0.5
cfq frequency of a query term (q) in the collection
cft frequency of a non-query term (t) in the collection
dfq no. of documents a query term (q) appears in
dft no. of documents a non-query term (t) appears in
N no. of documents in a collection
S no. of words in the collection
|Q| no. of terms in the query Q

binqt no. of documents in Cqt

prodqt sum of the product of the term-frequencies in Cqt

minqt sum of the minimum of the term-frequencies in Cqt

sumqt sum of the sum of the term-frequencies in Cqt

cofq sum of the term-frequencies for q in Cqt

coft sum of the term-frequencies for t in Cqt

Wqt total no. of words in Cqt

For the set of documents in which two terms co-occur, we combine the within-
document (local) measures for those terms in an intiutive manner. For example
the prodqt measure is often used to measure the correlation between two terms
and is calculated as follows:

prodqt =
∑

d∈N

(tfdq × tfdt) (7)
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where tfdt is the term-frequency of t in document d. The binqt measure is
calculated similary assuming a binary weighting on the within-document term-
frequencies. The minqt measure is the sum of the intersection (or minimum) of
the term-frequencies.

Table 3. Function Set

Function Description

+, ×, /, - standard arithmetic functions
log the natural log√

square-root function

sq square

3.5 Fitness Function

The mean average precision (MAP), used as the fitness function, is calculated
for each scheme by comparing the ranked list returned by the system for each
query expansion scheme against the human determined relevant documents for
each query. Mean average precision is calculated over all points of recall and is
frequently used as a performance measure in IR systems as it provides a measure
of both the accuracy and recall of the retrieval system.

3.6 GP Parameters

All experiments are run for 70 generations with an initial population of 2000.
Populations of less than 500 for this problem converge prematurely as the ter-
minal set is quite large. Experimental analysis shows us that the population
converges before 70 generations when using the largest terminal and function
set. The solutions are trained on an entire collection and query set. They are
then tested for generality on the collections that were not included in training.
Trees are limited to a depth of 10. The aim is to discover general natural lan-
guage characteristics for query expansion that will aid retrieval performance. We
evolve these term-selection schemes by adding the top 8 terms to the original
query.
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4 Results and Analysis

4.1 Evolved Term Selection Schemes

We evolved solutions on the three smaller collections. The best solution for each
collection was chosen for evaluation on previously unseen data. These solution
will be refered to as the Medline, CISI and Cranfield solutions for the remainer
of this paper. The CISI solution (8) and Cranfield solution (9) evolved are shown
as an example of the solutions found.

correlationqt =
minqt

(rdft × log(cft)) +
√

sumqt × cfq

(8)

correlationqt =
scfq + binqt

(((((binqt/Wqt) × (0.5 + rdft)) × N) + scfq)/(log(prodqt))) + Wqt

(9)
Table 4 shows the MAP for the original query and the expanded queries on

all the collections included in this research. From an evaluation perspective the
most important collections are those which are not included in training.

Table 4. MAP for expanded queries using best evolved solutions

Solution

Collection Docs Qrys BM25 CISI Medline Cranfield

CISI 1,460 30 19.51% 23.37% 20.18% 20.40%
Medline 1,033 30 53.51% 55.63% 65.37% 56.50%
Cranfield 1,400 30 38.43% 36.60% 39.73% 41.61%

LISA 6,004 35 35.01% 36.43% 35.37% 34.25%
NPL 11,429 93 28.75% 29.01% 28.74% 28.77%
OHSU88 35,412 63 23.25% 24.33% 21.78% 23.43%

Firstly we can see that there is a significant increase in MAP on the Med-
line collection when using the solution specific to that collection. This confirms
previous concept-based approaches [2] which also show a similar increase on this
collection. However, this Medline solution seems to be specific to the collec-
tions as there is no substantial improvement on other collections. The CISI and
Cranfield solutions do not achieve as high an average precision on the Medline
collection as the Medline solution does on its own training data. The solution
found on the CISI collection is the only solution that increases average precision
on all three larger collections.

4.2 Increasing Terms added to Queries

To determine whether adding only 8 terms to each query is sufficient to learn
a general term clustering algorithm, we calculated the MAP for the evolved
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formulas for expanded queries of various lengths. This is investigated as previous
research recommends expanding the query by up to 100 terms [2]. This amount
of expansion is computationally very expensive and rather unrealistic in a real IR
setting. Table 5 shows the MAP of the evolved formulas tested on their training
data adding a varying number of terms. We see that, in general, adding more
terms does not significantly increase or decrease the MAP of the queries.

Table 5. MAP for different length expanded queries

Terms Added to each query

Collection Docs Qrys BM25 Top 8 Top 16 Top 24 Top 32 Top 40 Top 48 Top 96

CISI 1,460 30 19.51% 23.37% 23.68% 23.77% 23.35% 23.43% 23.41% 22.40%
Medline 1,033 30 53.51% 65.37% 65.62% 66.36% 66.46% 66.38% 66.32% 66.30%
Cranfield 1,400 30 38.43% 41.61% 41.56% 41.17% 40.79% 40.62% 40.96% 38.23%

Table 5 indicates that the schemes learned for the respective collections cor-
rectly weight the quality of each expanded term. As an example, we take two
queries from the Medline collection and look at the weights assigned to the top
8 most similar terms according to the Medline solution. The 21st Medline query
which is stemmed to the following stems:

Medline Query 21: {languag develop infanc pre-school ag}

and has its 8 most similar terms, according to the Medline solution, shown in
Table 6. Similarly, the 23rd query which is preprocessed to the following:

Medline Query 23: {infantil autism}

is also shown in Table 6.

Table 6. Scores for Expansion terms for two sample queries

Query 21 Query 23

Terms TSV Score Terms TSV Score

deaf 0.891525 autist 2.12915
children 0.659627 mental 1.17509
learn 0.645482 child 0.733794
speech 0.497686 children 0.606834
word 0.356095 schizophrenia 0.569791
impair 0.323454 contact 0.407135
spoken 0.314593 symptom 0.324127
teach 0.302923 situat 0.27934
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From these tables we can see that the evolved schemes can promote terms
which seem to be related to the query concept and provides a weighting which is
related to the quality of the expansion term. It can also promote different forms
of query terms that Porter’s stemming algorithm has failed to conflate. However,
although solutions can be evolved that correctly find good expansion terms for
a query, these solutions seem to be domain specific.

5 Conclusion

The results of this approach seem to confirm many previous approaches in that
global co-occurrence data is unlikely to bring about a substantial general increase
in the performance of IR systems [3]. However, we have learned domain specific
formulas for finding good expansion terms. Importantly, the approach adopted
also learns a mechanism for weighting these terms in relation to the original query
without having to develop the weighting of such expansion terms analytically.
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