
Measuring the Ability of Score Distributions to

Model Relevance

Ronan Cummins

Department of Information Technology
National University of Ireland, Galway

ronan.cummins@nuigalway.ie

Abstract. Modelling the score distribution of documents returned from
any information retrieval (IR) system is of both theoretical and practical
importance. The goal of which is to be able to infer relevant and non-
relevant documents based on their score to some degree of confidence.

In this paper, we show how the performance of mixtures of score dis-
tributions can be compared using inference of query performance as a
measure of utility. We (1) outline methods which can directly calculate
average precision from the parameters of a mixture distribution. We (2)
empirically evaluate a number of mixtures for the task of inferring query
performance, and show that the log-normal mixture can model more
relevance information compared to other possible mixtures. Finally, (3)
we perform an empirical analysis of the mixtures using the recall-fallout
convexity hypothesis.

1 Introduction

Analysing the document scores returned from information retrieval (IR) systems
is a very useful, yet challenging problem. Work in this area can be dated back to
the early days of IR [16]. Modelling the document scores returned for different
queries (and from different systems) is an important task because it has been
noticed that the distribution of relevant document scores is different than that
of non-relevant document scores. For example, if given the entire score distribu-
tion (SD) returned from a system, the distribution of relevant documents could
be accurately determined, it would be particularly useful for automatic query
performance prediction and/or meta-search (fusion) tasks [8, 4]. Regardless, the
problem of correctly modelling the distribution of relevant and non-relevant doc-
uments remains an open, and theoretically important, area in IR.

Over the last decade, the predominant distributions [1] for modelling rele-
vant and non-relevant document scores have been a normal and an exponential
respectively. There has been relatively little justification as to why relevant and
non-relevant document scores should be drawn from two different families of
distributions. Nevertheless, these distributions have best fit the data for many
years now. More recently, it has been suggested that the normal-exponential
mixture is not theoretically valid under certain assumptions [14], and in fact, a



more theoretically valid approach might be to model the scores using two gamma
distributions [9].

This paper deals with determining the best distribution for use in a mixture
model by using the inference of performance (i.e. average precision) as a measure
of utility, when relevance information is available. While the task of inferring
average precision might be viewed as only one measure of utility, it is one of the
most important tasks in IR. This measure of utility is very important as it is
linked to a model’s ability to accurately model the relevance contained within,
and is not only of practical concern but is of theoretical importance. We show
that the log-normal distribution is the best distribution to use in a mixture
model of score distributions for both goodness-of-fit and utilty.

The remainder of the paper is organised as follows: Section 2 reviews related
work on modelling document score distributions. Section 3 outlines four mixture
distributions used in this paper, before the formulae for calculating the average
precision from a mixture model are introduced. Section 4 presents empirical re-
sults comparing the four mixture models for a number of metrics when relevance
information is known. Section 5 presents an empirical analysis of the four mix-
tures based on Robertson’s recall-fallout convexity hypothesis. Finally, section
6 outlines our conclusions and future work.

2 Related Research

In this section, we review related work in document score distributions.

2.1 Related Work

Early work into SD modeling has shown that the distribution of relevant doc-
uments somewhat follows a normal curve [16]. Approaches over the years have
tried various curves and ‘fits’ to try and uncover the underlying distributions.
More recent work has shown that modelling relevant and non-relevant document
scores using a normal and exponential distribution respectively, fits for the scores
at the head of the ranked list (i.e. top 1000 documents) [1]. Indeed, this has been
the predominant trend over recent years [14].

Others have addressed more theoretical aspects of the underlying distribu-
tions, and have developed hypotheses under which certain distributions can be
theoretically rejected [14]. The aforementioned work develops a recall-fallout hy-
pothesis which states that the recall-fallout curve for good systems should be
upper convex and has shown that if the probability ranking principle [13] holds,
then certain distributions should be rejected on theoretical grounds. Further
work [2] has hypothesised that a theoretically valid distribution must be able to
approach the Dirac delta function (i.e. it must be able to approach an impulse
under which the entire mass of documents can reside).

Some of the theoretical problems associated with the infinite support that
some distributions allow were addressed recently [1] using truncated forms of
distributions. Some novel approaches [10] to modelling the score distribution



have used multiple normal distributions for the relevant documents and a gamma
distribution of the non-relevant ones. This approach uses these distributions
because they are a good ‘fit’ given the data. Important work in analysing the
generation process (i.e. ranking functions) of document scores and their resultant
distributions has also been conducted [9]. On a practical note, research has been
conducted to use the score distributions for data fusion [12] and score threshold
optimisation [1].

2.2 Contributions

This work has a number of contributions. Firstly we show how average precision
can be inferred from a mixture distribution. Secondly, we conduct an extensive
evaluation of several mixture models for a number of metrics (one of which is
the task of inferring average precision accurately), and advocate the use of the
log-normal model in particular. Interestingly, we show that the best method of
estimating parameters for the task of inferring average precision, is the method of
moments (MME), rather than maximum likelihood estimates (MLE). Finally, we
show that the despite its superior performance the log-normal mixture does not
adhere to Robertson’s recall-fallout convexity hypothesis as well as the gamma
mixture.

3 Models

In this section, we present four mixture distributions used in this paper to model
the scores of both relevant and non-relevant documents.

3.1 Assumptions and Restrictions

Consider an IR system that retrieves a returned set of N documents, and thus N
scores given a query (Q). Firstly, we assume that an IR system ranks documents
independently of each other, in accordance with the probability ranking principle
(PRP) [13]. While this may not be true for certain systems (e.g. for those that
wish to promote diversity), it is a widely held principle in IR. Secondly, we
assume a binary view of relevance. While score distributions can be modelled
as mixtures of a multiple of differently graded relevance distributions, this work
only models a binary view of relevance.

We used the following two criteria to select the distributions that are pre-
sented in section 3.2. Firstly, under on the strong SD hypothesis [2], the distri-
bution of both relevant and non-relevant documents should be able to approach
Dirac’s delta function (these distributions are valid under that hypothesis). And
secondly, there is no theoretically valid reason why relevant and non-relevant
documents should be drawn from two different families of distributions, given
that the document score of relevant and non-relevant documents is generated
using the same process (ranking function) within an IR system.



3.2 Mixture Distributions

The distributions that we consider are the normal distribution (N), the expo-
nential distribution (E), the log-normal distribution (L), and the gamma distri-
bution (G) [11]. For most of the mixtures outlined in this section both relevant
and non-relevant documents are modelled using the same distribution. We only
include the normal-exponential (N1E0) mixture as it has been used in many
studies to model score distributions for various tasks. Therefore, the next step
is to outline the mixture model that can be used in conjunction with any dis-
tribution. For most mixtures, we model both sets of documents using the same
distribution, where P (s|1) is the pdf (probability density function) for the scores
(s) of relevant documents, and P (s|0) is the pdf for the scores of non-relevant
documents. Therefore, similar to previous approaches, the document score dis-
tribution can be thought of as a mixture of relevant and non-relevant documents
as follows:

P (s) = (λ) · P (s|1) + (1− λ) · P (s|0) (1)

where λ = R
N is the proportion of relevant documents R in the entire returned

set N . In practice, no form of document score normalisation is necessarily needed
for the upper limit for any of the distributions. Although, negative values are
not supported for the log-normal or gamma distributions, for the information
retrieval models used in this work, the issue of supporting negative scores is not
a problem in practice1.

In this paper, we study four mixtures. Table 1 outlines the mixtures and the
parameters that need to be estimated for each model. For the parameters of
each model, we use the subscript 1 to imply that the parameter is used with the
distribution of relevant document scores, whereas we use the subscript 0 to imply
that the parameter is used with the distribution of non-relevant document scores.
For three of the mixtures, there are a total of five parameters (i.e. the mixture
parameter, two parameters to model the relevant scores and two parameters
to model the non-relevant scores), while the normal-exponential model (N1E0)
has only four parameters. This is important for comparison purposes, as models
(and distributions) with more parameters have more flexibility in modelling the
observed data. Therefore, some models may have less flexible in terms of their
ability to model scores from different systems. Although we have included the
normal-exponential (N1E0) model in this study, it is in the authors opinion that
document scores of relevant and non-relevant documents should not be drawn
from two different families of distribution. For the N1E0 and N1N0 mixtures, the
MME (method of moments estimates) and MLE (maximum likelihood) estimates
are equivalent. However, for the L1L0 and G1G0 mixtures, the MME and MLE
estimates will lead to different parameter settings.

1 The occurrence of negative score can easily be overcome in practice by simply shifting
all scores by some constant factor. In theory, as scores are generated from term-
frequency evidence (bounded by zero), there are some arguments as to why negative
scores should not occur in an IR model.



Table 1. Composition of Mixtures

Label Relevant Non-Relevant # of parameters parameters MME = MLE

N1E0 Normal Exponential 4 µ1,σ1,β0,λ yes

N1N0 Normal Normal 5 µ1,σ1,µ0,σ0,λ yes

L1L0 Log-Normal Log-Normal 5 µ1,σ1,µ0,σ0,λ no

G1G0 Gamma Gamma 5 k1,θ1,k0,θ0,λ no

3.3 Inferring Average Precision

In this section, we will show how average precision (a standard metric for the
effectiveness of a query) can be calculated directly from the mixture of continuous
distributions. Firstly, it is worth noting that average precision is an informative
measure. As average precision can be viewed geometrically as the area under
the precision-recall curve [3]2, we know that it summarises the performance over
a large portion of the ranked list, and therefore, conveys a broad view of the
effectiveness of a query. Secondly, it is a stable measure [5], and is probably
the most prevalent metric of both query and system performance used in IR
literature. The interested reader is referred to research which strongly outlines
the theoretical importance of average precision [15].

As recall is the proportion of relevant returned documents compared to the
entire number of relevant documents, the recall at score s can be defined as
follows:

recall(s) =

∫
∞

s

λ · P (s|1) · ds

λ
=

∫
∞

s

P (s|1) · ds (2)

which is the cumulative density function (cdf) of the distribution of relevant
documents (viewed from ∞). Under the distributions outlined earlier for our
model, we know that recall(s) will vary between 0 and 1, (i.e. when s = 0,
recall(s) = 1 as ensured by the cdf). Similarly, the precision at s (the proportion
of relevant returned documents over the number of returned documents) can be
defined as follows:

precision(s) =

∫
∞

s
λ · P (s|1)∫

∞

s
(λ) · P (s|1) + (1 − λ) · P (s|0)

(3)

Now that we can calculate the precision and recall at any score s in the range
[0 : ∞], we can create a precision-recall curve. Furthermore, as average precision
can be estimated geometrically by the area under the precision-recall curve [3],
the average precision (avg.prec) of a query can be calculated as follows:

avg.prec() =

∫ 1

0

precision(s) · dr(s) (4)

2 Preliminary experiments have shown that the linear correlation between the actual
average precision and the area under the interpolated precision-recall curve is greater
than 0.95



where r(s) = recall(s) which is in the range [0:1]. This formulation is an elegant
and intuitive way of calculating average precision using the score distributions.
As these expressions are not closed-form, they can be calculated using relatively
simple geometric numerical integration methods.

4 Mixture Performance

In this section we perform a comparative analysis of the four mixture models
across a number of different IR models (i.e. vector space, classic probabilistic,
language model, learned model, and axiomatic model). First, however, we will
motivate our choice of comparison metrics.

4.1 Goodness-of-Fit, Correlation, and RMSE

Usually, the performance of a mixture model is determined by how well the model
‘fits’ actual data. For different fields of study and for different problems, differ-
ent metrics may be applicable. Usually, goodness-of-fit tests (e.g. Kolmogorov-
Smirnov test) are used to either accept or reject certain models as a ‘good fit’.
However, in IR, it is well-known that documents, and therefore document scores,
at the head of a ranked list are more important than those further down the list
3. These goodness-of-fit tests do not make a distinction between observations
(i.e. scores) at various locations and they do not measure the amount of relevant
information that can be correctly maintained in the model.

We propose that better mixture models are better able to model the infor-
mation regarding relevance. An intuitive way of measuring this is by trying to
infer the average precision of a query using the model (and its known param-
eters). Average precision is a natural candidate for capturing the performance
(as discussed earlier). Therefore, over a set of topics, the correlation between the
inferred average precision from the mixture model and the actual average preci-
sion of the query from the IR system, gives us a measure of how much relevance
information is contained in each model. From an information theoretic point of
view, it also gives us an indication of how much relevance information is lost
when modelling each ranking with a particular mixture model.

Table 2. Test Collection Details

Collection # docs # topics range

AP 242,918 149 051-200
Test FT 210,158 188 251-450

WT2G 221,066 50 401-450
WT10G 1,692,096 100 451-550

3 Looking at only a part of the ranked list (e.g. documents up to rank 1000) does not
effectively solve this problem.



4.2 Comparative Analysis

We now compare the four mixture models introduced earlier (i.e. Table 1) over
a range of IR systems and settings. Different distributions may better be able
to model different IR systems and so for a broader comparison, we compared
the four mixtures across five IR models. We chose the vector space model using
pivoted document normalisation (PIV) [7], the probablistic model (BM25) [7], a
language modelling (LM) approach (Jelinek-Mercer smoothing) [17], a learned
approach (ES) [6], and the axiomatic approach (F2EXP) [7], as these represent
a broad range of classical and more modern ranking functions. Table 2 shows
the test collections used in this research.

Goodness-of-fit Table 3 shows the Kolmgorov-Smifnoff D-statistic4 (a mea-
sure of goodness-of-fit) on each of the collections averaged over the five systems.
The D-statistic measures the maximum distance between the cumulative den-
sity function of the theoretical distribution (i.e. one of the mixtures) and the
empirical distribution (i.e. the actual scores). Firstly, we can see that Table 3
shows that the log-normal model has a significantly5 better fit compared to the
gamma model on two collections for the entire returned set of document scores.
The results also show that the log-normal models fits non-web collections very
well, but the gamma model has a better fit for some IR systems on web col-
lections. The normal-exponential model is the third best model in terms of fit,
while the normal-normal model is particularly poor. We can also see from Table
3 that the MLE parameter estimation technique provides better fits, in general,
than MME.

Table 3. Average Kolmgorov-Smifnoff D-statistic for queries across all systems for
title queries using entire returned set of document scores

MME MLE

Collection N1E0 N1N0 L1L0 G1G0 L1L0 G1G0

AP 0.4580 0.7062 0.1676 †5 0.2096 0.1549 †5 0.1901

FT 0.3690 0.6946 0.1316 †5 0.1554 0.1181 †5 0.1405

WT2G 0.3058 0.7464 0.1197 †2 0.1172 †3 0.1225 †2 0.1126 †3

WT10G 0.3113 0.7517 0.1315 †1 0.1253 †4 0.1349 †1 0.1241 †4

4 As the parameters of the model are estimated from the observed samples, the critical
values of the Kolmgorov-Smifnoff test are invalid. However, we use the D-statistic as
a relative measure to compare the mixtures, and not as a statistical test to accept
or reject the validity of the distribution.

5 †x denotes that the statistic is significantly lower than the next best model using
the same parameter estimation technique for x of the five systems.



Table 4. Average Spearman (and Pearson in parentheses) correlation between mixture
model’s inferred average precision and actual average precision across five IR systems
for title queries using entire returned set of documents

MME MLE

Mixture N1E0 N1N0 L1L0 G1G0 L1L0 G1G0

AP 0.47 (0.26) 0.56 (0.32) 0.89 (0.84) 0.84 (0.76) 0.80 (0.71) 0.77 (0.66)
FT 0.33 (0.24) 0.55 (0.30) 0.89 (0.81) 0.86 (0.75) 0.83 (0.75) 0.80 (0.67)
WT2G 0.45 (0.32) 0.49 (0.35) 0.83 (0.83) 0.81 (0.81) 0.72 (0.67) 0.73 (0.70)
WT10G 0.39 (0.33) 0.40 (0.07) 0.74 (0.61) 0.66 (0.55) 0.62 (0.46) 0.58 (0.44)

Correlations and RMSE Now we analyse the amount of relevance informa-
tion that can be correctly contained within each mixture model across the five
IR systems using correlation measures. Using the MME and MLE approaches
we can estimate the five parameters in each mixture model assuming relevance
information is known (i.e. labelled data). We then compare the correlation of the
inferred average precision (calculated from equation 4) for the mixture model
with the actual average precision from the IR system in question.

Table 4 shows the average Spearman and Pearson correlation of the four
mixture models averaged across the five systems6. Firstly, it is worth noting that
the correlation coefficients for some of the mixtures are quite high, indicating that
much of the information regarding average precision (relevance) are correctly
modeled by some of the mixtures. We can also see that the mixture model
comprised of a normal and exponential (i.e. the predominant model over the
last decade) is the lowest performing model of the four that we have studied.
The normal-normal model outperforms the exponential-normal model in terms
of utility despite having a worse fit (see Table 3). In general, we can also see that
the log-normal mixture model tends to outperform the gamma model across a
variety of settings and parameter estimation techniques (i.e. for both MME and
MLE estimates). In general, the results show that the log-normal model is the
more general and consistent model for preserving relevance information across a
variety of IR systems.

Table 5 shows the root mean squared error (RMSE)7 of the inferred average
precision compared to the actual average precision for a set of queries for both the
BM25 and LM systems (the other systems tested showed comparable results).
We can see that the actual average precision predicted by the log-normal model is
closer to the true average precision. While the RMSE is not of major importance
in terms of the predictive quality of a model, it does inform us that the raw
output of the log-normal mixture model is closer to the actual average precision

6 The bold font indicates that the average correlation is higher than the next highest
across all five systems. Statistical tests do not show any difference between the top
two performing mixture models. Statistical tests do show a higher correlation for the
gamma and log-normal models compared to the other mixtures.

7 The † denotes that the reduced error is significant compared to the gamma mixture.
A Wilcoxon ranked sign test at the 0.01 level was used.



of a query. The RMSE results of all other IR systems are comparatively similar
to those in Table 5. One reason for this error is that the formulae given for
inferring average precision from score distributions (Section 3.3) will actually
over-estimate the actual average precision value on TREC data due to the fact
that recall is calculated as the number of relevant documents in the returned
set, rather than the total number of relevant documents in the collection.

Table 5. RMSE of Inferred Average Precision (using MME) compared to two System’s
(BM25 and LM) Actual Average Precison for title queries using entire returned set of
document scores

Mixture N1E0 N1N0 L1L0 G1G0 N1E0 N1N0 L1L0 G1G0

BM25 LM

AP 0.227 0.176 0.115 † 0.232 0.207 0.159 † 0.170 0.275
FT 0.315 0.270 0.143 † 0.179 0.303 0.361 0.182 † 0.260
WT2G 0.310 0.263 0.159 0.122 † 0.309 0.235 0.091 † 0.141
WT10G 0.234 0.209 0.164 † 0.220 0.214 0.167 0.113 † 0.239

MME vs MLE Another interesting point is that the MME approach to param-
eter estimation consistently outperforms the MLE approach in terms of utility
(i.e. for the task of inferring performance as measured by the correlations in
Table 4). However, when all sample observations are treated equally (as for
goodness-of-fit tests), the D-statistic in Table 3 shows that models derived from
MLE are closer to the observed samples. This provides further proof that the
correlation coefficients and goodness of fit tests measure different aspects. As we
are dealing with IR systems, and models of relevance, we argue that a standard
measure of utility is more apt.

5 Recall-Fallout Convexity Analysis

Of the mixtures studied in this paper, we have empirically determined that the
mixture of two log-normals is one of the better mixtures for modelling document
scores for a number evaluation metrics. Furthermore, our results suggest that it
is very robust and can accurately model rankings returned from many systems.
However, it is unclear if this mixture adheres to useful theoretical properties.
In this section, we analyse all of the mixtures using the recall-fallout convexity
hypothesis [14]. Interestingly, we show that the gamma mixture violates the
recall-fallout hypothesis less often than the log-normal mixture near the head of
the ranked list (i.e. where it is more important).

5.1 Locating Points of Non-Convexity

The recall-fallout hypothesis states that as we traverse a ranked-list, the recall
should always be greater than fallout. This seems theoretically justifiable, as



IR systems should at least provide a better than random ranking. Therefore,
when modelling document rankings as continuous distributions, the recall-fallout
hypothesis can be more formally stated as

∫
∞

s P (s|1) · ds >
∫
∞

s P (s|0) · ds for
all s. A detailed analysis of the recall-fallout convexity hypothesis for all of
the mixtures studied in this paper (except the two log-normal mixture) can be
found in the original work [14]. Using notation similar to the original work, the
convexity condition that must be satisfied to ensure that recall is greater than
fallout for all scores, can be written as follows:

g1(s) > g0(s) (5)

where

g(s) =
1

f(s)

df(s)

ds
(6)

where f(s) is the probability density function of a particular distribution. Now
assuming this hypothesis to be valid, it would be interesting to see how closely
the better mixture models adhere it.

Gamma Mixture Therefore, as g(s) = ((k−1)/s)−1/θ for the gamma mixture
[14], the score at which the condition is violated is found by simplifying the
following:

k1 − 1

s
−

1

θ1
=

k0 − 1

s
−

1

θ0
(7)

which simplifies to

s =
θ1θ0k0 − θ1θ0k1

θ1 − θ0
(8)

We can see that if θ1 = θ0, there are no roots for s, and so no violations occur.
Furthermore, if k1 = k0, s = 0 and so, the violation occurs at the point at which
both recall and fallout are 1 (which is acceptable). For the two-gamma mixture,
if s > 0, the violation occurs at a score that can be encountered by the mixture,
otherwise the violation does not occur.

Log-Normal Mixture For the log-normal mixture g(s) = (µ− log(s)− σ2)/(s · σ2),
and therefore, the score at which the convexity condition is violated is found at:

s = e(µ1σ
2

0
−µ0σ

2

1
)/(σ2

0
−σ2

1
) (9)

by following a similar simplification process as the gamma mixture. We can see
that if σ1 = σ0, the function has no roots, and therefore, no violations (similar to
the normal distribution [14]). If the variances are not exactly equal, a violation
of the convexity condition, will occur at a score above zero. The score at which
a violation occurs can be translated to a point of recall using equation (2).



5.2 Empirical Results and Discussion

We analysed the four mixtures models by calculating the points of recall at which
the convexity condition was violated for each query on the test collections. It
is reasonable to assume that a violation at the head (i.e. low point of recall) of
the ranked list is more serious than if it occurs at high recall. However, if the
convexity condition is violated at a score that is rarely, or never, encountered
by an IR metric (at high recall), it is deemed less serious. Table 6 reports the
average point of recall at which a violation of the convexity condition occurs for
a set of queries averaged across the five IR systems. The results in Table 6 are
from the four models when using MME as the parameter estimation technique.

In general, we can see that the two-gamma model is the more theoretically
sound as violations occur, on average, at a higher point of recall (e.g. at a lower
score s). Surprisingly, violations occur at a low point of recall for the log-normal
model (even lower than the two-normal model), which suggests that it is theo-
retically less sound that either the two-gamma model or the two-normal model.
The exponential-normal mixture has violations at both ends of the relevant dis-
tribution (i.e. both high and low recall) 100% of the time, and therefore, we can
see from Table 6 that the violations occur very early on in the ranking (i.e. low
point of recall). The results from Table 6 confirm previous analysis [14] with
regard to many of these models.

The average results across the five IR systems in Table 6 are highly represen-
tative of each individual system. More work is needed to understand the reasons
for the apparent shortcoming in the theoretical behaviour of the two log-normal
model (especially as it outperforms other mixtures in terms of goodness-of-fit
and utility).

Table 6. Average recall at which convexity violations occur for different models

Mixture N1E0 N1N0 L1L0 G1G0

AP 0.001 0.401 0.178 0.540
FT 0.003 0.309 0.199 0.556
WT2G 0.000 0.236 0.159 0.695
WT10G 0.000 0.309 0.147 0.594

6 Conclusion

In this work, we have performed a comparative analysis of different distributions
that comprise mixtures for document score distributions in IR systems. We have
determined that the log-normal distribution is the best performing model in
terms of both its accuracy in inferring average precision, and its goodness-of-fit.
The log-normal model has been used in relatively few practical works. Interest-
ingly, we have shown despite its good performance the log-normal model is the-
oretically less sound than the two-gamma model towards the head of a ranking.



Interesting future work would be to create mixture models that unconditionally
adhere to the recall-fallout convexity hypothesis (e.g. by ensuring σ1 = σ0 for
the two log-normal model) and then compare the utility of those valid models.

References

1. Avi Arampatzis, Jaap Kamps, and Stephen Robertson. Where to stop reading a
ranked list?: threshold optimization using truncated score distributions. In SIGIR,
pages 524–531, 2009.

2. Avi Arampatzis and Stephen Robertson. Modeling score distributions in informa-
tion retrieval. Inf. Retr., 14(1):26–46, 2011.

3. Javed A. Aslam and Emine Yilmaz. A geometric interpretation and analysis of
r-precision. In CIKM, pages 664–671, 2005.

4. Christoph Baumgarten. A probabilistic solution to the selection and fusion problem
in distributed information retrieval. In ACM SIGIR conference on Research and

development in information retrieval, SIGIR ’99, pages 246–253, New York, NY,
USA, 1999. ACM.

5. Chris Buckley and Ellen M. Voorhees. Evaluating evaluation measure stability. In
SIGIR, pages 33–40, 2000.

6. Ronan Cummins and Colm O’Riordan. Learning in a pairwise term-term proximity
framework for information retrieval. In SIGIR, pages 251–258, 2009.

7. Hui Fang and ChengXiang Zhai. An exploration of axiomatic approaches to infor-
mation retrieval. In SIGIR, pages 480–487, 2005.

8. Ben He and Iadh Ounis. Query performance prediction. Inf. Syst., 31(7):585–594,
2006.

9. Evangelos Kanoulas, Keshi Dai, Virgiliu Pavlu, and Javed A. Aslam. Score distri-
bution models: assumptions, intuition, and robustness to score manipulation. In
SIGIR, pages 242–249, 2010.

10. Evangelos Kanoulas, Virgiliu Pavlu, Keshi Dai, and Javed A. Aslam. Modeling
the score distributions of relevant and non-relevant documents. In ICTIR, pages
152–163, 2009.

11. N Hastings M Evans and B Peacock. Statistical distributions, third edition. Mea-

surement Science and Technology, 12(1):117, 2001.
12. R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for combining

the outputs of search engines. In Proceedings of the 24th annual international

ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’01, pages 267–275, New York, NY, USA, 2001. ACM.

13. C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition, 1979.

14. Stephen Robertson. On score distributions and relevance. In Proceedings of the 29th

European conference on IR research, ECIR’07, pages 40–51, Berlin, Heidelberg,
2007. Springer-Verlag.

15. Stephen E. Robertson, Evangelos Kanoulas, and Emine Yilmaz. Extending average
precision to graded relevance judgments. In Proceeding of the 33rd international

ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’10, pages 603–610, New York, NY, USA, 2010. ACM.

16. John A. Swets. Information retrieval systems. Science, 141(3577):245–250, 1963.
17. Chengxiang Zhai and John Lafferty. A study of smoothing methods for language

models applied to information retrieval. ACM Trans. Inf. Syst., 22:179–214, April
2004.


