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Abstract. The task of predicting query performance has received much
attention over the past decade. However, many of the frameworks and
approaches to predicting query performance are more heuristic than not.
In this paper, we develop a principled framework based on modelling the
document score distribution to predict query performance directly.

In particular, we (1) show how a standard performance measure (e.g. av-
erage precision) can be inferred from a document score distribution. We
(2) develop techniques for query performance prediction (QPP) by auto-
matically estimating the parameters of the document score distribution
(i.e. mixture model) when relevance information is unknown. Therefore,
the QPP approaches developed herein aim to estimate average precision
directly. Finally, we (3) provide a detailed analysis of one of the QPP
approaches that shows that only two parameters of the five-parameter
mixture distribution are of practical importance.

1 Introduction

Query performance prediction (QPP) has become an important problem in the
area of information retrieval (IR). These predictors aim to automatically esti-
mate the performance of queries so that different strategies (e.g. query expansion
or reduction) can be applied based on their estimated performance. The perfor-
mance of these predictors are usually compared by measuring the correlation
between the output of the predictor and query performance (e.g. average preci-
sion). However, many approaches to QPP are unprincipled, and it is unclear how
to improve their performance, or if their performance can even be improved.

In this paper, we develop a principled framework based on modelling docu-
ment score distributions that aims to predict query performance directly. Fig. 1
shows an example of a document score distribution returned for a query (when
relevance information is known). We (1) develop formulae that directly infer av-
erage precision from a document score distribution, (2) develop simple heuristics
that can estimate the important parameters of the score distribution when rel-
evance information is unknown, and (3) provide an analysis that informs us of
the most important parameters in the distributional model. This analysis helps
in narrowing the focus of future research.



The remainder of the paper is organised as follows: Section 2 reviews related
work on score distributions and query performance prediction (QPP). Section
3 outlines our principled model, before the formulae for calculating the average
precision from a mixture are introduced. In section 4, we outline three approaches
to automatically predict the performance of a query from the score distribution
when relevance information is unknown. Furthermore, we present an analysis
that shows that only two parameters of the model are crucial in the estimation
of average precision. Section 5 presents comparative results of the newly devel-
oped QPP approaches versus existing predictors. Finally, section 6 outlines our
conclusions and future work.
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Fig. 1. A Typical Distribution of Scores Returned from a Classical IR System

2 Related Work

Modelling the distribution of document scores returned from IR systems has
been studied from a theoretical perspective since the early days of IR [13]. More
recently renewed interest has led to research that uses score distributions for
data fusion [14]. Other researchers have modelled document score distributions
for threshold filtering [1]. Others [9] have studied the generation process of the
score distribution and have provided reasons for the typical shape (Fig. 1) of the
distribution.

Automatically predicting query performance can aid information retrieval
systems by enabling these systems to apply different strategies (e.g. query ex-
pansion) to queries of varying difficulty. One of the earliest approaches to QPP
has been that of the clarity score [4], which measures the KL-divergence between
the query and collection model in a language modelling framework. Some ap-
proaches [15] have measured the robustness of a ranking to perturbations and



have developed novel predictors from this, while others [7] have investigated the
clustering ability of similarly ranked documents to develop predictors.

Recent research has shown that the standard deviation (σ) (i.e. dispersion)
of scores in a ranked-list is a good predictor of query performance [10, 12, 5].
These approaches are more heuristic based and lack a deeper theoretical un-
derstanding. The performance of predictors are usually measured by calculating
the correlation (i.e. linear and/or non-parametric) between the output of the
predictor and the performance of the query (i.e. usually average precision) over
a set of queries.

However, to the authors knowledge, to date there has been no research that
has directed aimed to estimate the performance of a query (either using score
distributions or other methods). While some predictors use document scores
returned from a system, and use various measures of the dispersion of such
scores to develop their predictors, the methods are unprincipled and do not aim
to directly predict performance, rather some surrogate of performance.

3 Explicitly Modelling Query Performance

In this section, we present a mixture distribution that is used in this paper to
model the scores of both relevant and non-relevant documents.

3.1 Assumptions and Mixture Model

Consider an IR system that retrieves a returned set of N documents, and thus
N scores given a query (Q). We assume that a system ranks documents inde-
pendently of each other, in accordance with the probability ranking principle
(PRP) [11] and that the relevance judgments are binary.

The log-normal distribution has been used successfully [14] to model scores
for fusion tasks in IR, and therefore, we adopt this distribution1. The probability
density function (pdf) of the log-normal distribution is as follows:

P (x) =
1

xσ
√
2π

e−
(ln(x)−µ)2

2σ2 (1)

where µ and σ are the parameters. This distribution is supported from 0 to
∞ and the cumulative density function (cdf) is again simply the integral of this

function from 0 to ∞. The mean of the distribution is eµ+σ2/2, while the variance
is (eσ

2 − 1) · (e2µ+σ2

). Therefore, by rewriting these equations the method-of-
moments estimates (MME) are as follows:

µ̂ = ln(m)− 1
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v
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v

m2
) (2)

where m and v are the sample mean and variance respectively. Therefore, similar
to previous approaches, the document score distribution can be thought of as a
mixture of relevant and non-relevant documents as follows:
1 Noting that any reasonable choice of distribution can be substituted into the mixture



P (s) = (λ) · P (s|1) + (1− λ) · P (s|0) (3)

where P (s|1) is the probability density function (pdf) for the scores (s) of relevant
documents, P (s|0) is the pdf for the scores of non-relevant documents, and where
λ = R

N is the proportion of relevant documents R in the entire returned set N .

3.2 Inferring Average Precision

We will now show how average precision (a standard metric for the effectiveness
of a query) can be calculated directly from the mixture of continuous distribu-
tions. As recall is the proportion of relevant returned documents compared to
the entire number of relevant documents, the recall at score s can be defined as
follows:

recall(s) =

∫
∞

s

λ · P (s|1) · ds
λ

=

∫
∞

s

P (s|1) · ds (4)

which is the cumulative density function (cdf) of the distribution of relevant
documents (viewed from ∞). Under the distributions outlined earlier for our
model, we know that recall(s) will vary between 0 and 1, (i.e. when s = 0,
recall(s) = 1 as ensured by the cdf). Similarly, the precision at s (the proportion
of relevant returned documents over the number of returned documents) can be
defined as follows:

precision(s) =

∫
∞

s λ · P (s|1)∫
∞

s
(λ) · P (s|1) + (1 − λ) · P (s|0) (5)

Now that we can calculate the precision and recall at any score s in the range
[0 : ∞], we can create a precision-recall curve. Furthermore, as average precision
can be estimated geometrically by the area under the precision-recall curve [2],
the average precision (avg.prec) of a query can be calculated as follows:

avg.prec() =

∫ 1

0

precision(s) · dz(s) (6)

where z(s) = recall(s) which is in the range [0:1]. As these expressions are not
closed-form, they can be calculated using relatively simple geometric numerical
integration methods. It is worth noting that the formulae given for calculating
average precision can over-estimate the actual average precision value calculated
from TREC runs. This is due to the fact that recall is calculated as the number of
relevant documents in the returned set, rather than the total number of relevant
documents in the collection.

4 Estimating Parameters Without Relevance Information

In this section, we develop approaches to automatically estimate (i.e. when no
relevant information is known) the five parameters of the mixture model (i.e. λ,



µ1, σ1, µ0, σ0) using a number of different methods. The section is comprised
of three approaches to estimating the parameters of the mixture models. The
first two approaches are based on heuristics and the MME of parameters. The
third approach makes use of the standard EM algorithm for mixture models. We
perform an analysis to find the most important parameters in one of the new
parameter estimation approaches. Firstly Table 1 outlines the TREC2 datasets
used in this paper.

Table 1. Test Collection Details

Collection # docs # topics range

Tuning LATIMES 131,896 144 301-450

AP 242,918 149 051-200
Test FT 210,158 188 251-450

WT2G 221,066 50 401-450
WT10G 1,692,096 100 451-550

4.1 Estimating Moments and Mixture

In this section we aim to estimate the sample moments so that the parameters
of the model can, in turn, be automatically calculated using method of moment
estimates (MME) from equations (2) (i.e. Section 3.1). Therefore, to estimate
the five parameters of the log-normal model using MME, we must estimate the
sample mean (m1 and m0) and variances (v1 and v0) for the relevant and non-
relevant document scores and the mixture parameter (λ).

Firstly, as the number of non-relevant documents (NR) is usually much larger
than the number of relevant documents (R) in the entire returned set (i.e. NR ≫
R), we can estimate the sample mean (m0) and sample variance (v0) of the non-
relevant documents by using the mean and variance of the scores in the entire
returned set (i.e. N ≃ NR), as this seems a rather sound heuristic. However,
the estimation of the mean and variance (m1 and v1) of relevant documents is
more problematic.

Recent research has posited that a theoretically valid distribution should be
able to approach Dirac’s delta function under the strong SD hypothesis [1]. Fun-
damentally, as IR systems are striving to separate the set of relevant documents
(R) from the set of non-relevant documents (NR), we estimate the mean (m1)
and variance (v1) of the relevant set by assuming that all documents over a
certain threshold score (min-max normalised for convenience) are relevant. Fig.
2 shows the tuning3 of this threshold on a separate tuning collection collection
(i.e. the LATIMES for both title and desc queries) averaged over five different
IR systems (i.e BM25, LM, Pivoted Normalisation, F2EXP [8] and ES [6]). We

2 http://trec.nist.gov/
3 During this tuning process, the actual mixture value (λ) is assumed to be known.



can see that a common stable performance (i.e. average Spearman correlation
with average precision) for both title and desc queries, can be achieved at a
min-max normalised score of around 0.5 (i.e. midway between the minimum and
maximum score of a ranked list). Therefore, the sample mean (m1) and variance
(v1) of the relevant document scores are estimated by calculating the mean and
variance of all scores that lie in the top half of a min-max normalised score range.
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Fig. 2. Estimating m1 (and v1) threshold by tuning on LA Times collection averaged
over five IR systems

At this stage, we have estimates of the mean and variance of both relevant and
non-relevant document scores, and consequently, from these we can calculate four
parameters of the mixture model using MME. However, the final parameter that
needs to be estimated is the mixture parameter λ. We apply a similar approach as
before and assume that all documents over a certain threshold normalised score
are deemed relevant4. Similar to the previous tuning experiment, Fig. 3 shows
the performance of the mixture model at various normalised threshold scores for
estimating the mixture parameter λ. We can see that the best performance (i.e
correlation with actual average precision) occurs when assuming that very few
documents are relevant (i.e. only those scores that are at or above a normalised
score of 0.95).

Now we have estimated, albeit heuristically, all the information needed to
infer average precision without relying on relevance information. Furthermore,
for all future experiments using this MMP1 (method of moments predictor) ap-
proach, the threshold for estimating m1 and v1 remain at normalised score of 0.5,
and the threshold used for estimating λ is a normalised score of 0.95. As we will

4 Preliminary experiments informed us that the number of documents above the nor-
malised score of 0.5 grossly overestimated the number of actual relevant documents,
although the estimates of m1 and v1 are suitable. Therefore, a separate and more
stringent threshold is needed.
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Fig. 3. Estimating λ threshold by tuning on LA Times collection averaged over five IR
systems

see in the next section, the estimation of the mean and variance of non-relevant
documents (m0 and v0) is based on a rather sound heuristic. However, the ap-
proach to estimating the mean and variance of the relevance document scores,
and the mixture parameter, is where loss in predictive performance can be at-
tributed. We shall see later in the results section (section 5.1) that the estimation
from these heuristics yields very good performance compared to other predic-
tors. However, in the next section, we analyse the most important parameters
(i.e. m1, v1, m0, v0, λ) for the MMP1 approach outlined in this section.

4.2 Analysing Moments and Mixture

In this section, we aim to identify the parameters (i.e. m1, v1, m0, v0, λ) that
contribute most to the performance of the model outlined in the previous sec-
tion (i.e. MMP1). It would be beneficial to know which parameters are more
important in terms of performance (i.e. correlation with average precision). We
measure the amount of information contained in each parameter by initially
assuming that all parameters (i.e. moments and mixture parameters) are as ac-
curate as possible (i.e. using MME when relevance labels are known). We then
substitute an estimated version of each parameter (i.e. estimated without rel-
evance labels) and recalculate the performance of the model. At each stage of
the process, a parameter is estimated using the heuristics in the previous section
(section 4.1). Therefore, when the process is complete, all of the parameters of
the model have been estimated without use of relevance information.

Fig. 4 show the results of such a process5. As we view the Figure from left
to right, an estimate (i.e. without using labelled data) of each parameter is sub-
stituted into the model. It is clear from Fig. 4 that the estimation of the mean

5 The results of all other collections show similar trends



and variance of non-relevant documents (m0 and v0), and the variance of rele-
vant documents (v1) can be accurately estimated using the approach previously
outlined (section 4.1), as the correlation coefficient does not decrease. However,
when the m1 and λ parameters are estimated without using relevance informa-
tion, the correlation coefficient decreases a significant amount. Therefore, the
two most important parameters in the model are the mean of relevant document
scores (m1) and the mixture parameter (λ), the former being the most impor-
tant. These results are averages across five different IR systems. We can report
that all of the systems tested behaved very similarly.
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Fig. 4. Decrease in Spearman correlation with actual average precision as moments
and mixture are estimated (FT Collection) from unlabelled data

4.3 Motivation and Improvement

While Fig. 4 (and the results later in Section 5.1) show that the first approach
(MMP1) to estimating the mean and mixture of the set of relevant documents
seems to be effective to some degree, there is little motivation as to why this
may be so. The MMP1 approach estimated the mean and variance of relevant
documents by using all of the scores above a normalised score of 0.5. Consider
a system which returns N documents and where K = #(‖S(d)‖ > 0.5) is the
number of documents that are above a min-max normalised score of 0.5 (i.e. they
have a score in the top half of the distribution). If K is small it implies that the
system has also succeeded in promoting a relatively small number of documents,
compared to the returned set N . Given the view of score distributions in Fig.
1, we can see that if the relevant and non-relevant scores are separated to a
higher degree, the performance of the query will also be higher. Given that the
distribution of document scores from systems is positively skewed, a smaller
number of documents in this set of K documents will lead to a higher mean for



the relevant documents (m1). This in turn is an indicator that there is a good
separation between relevant and non-relevant documents (and subsequently an
indiction of a good query).

The initial estimate of m1 was calculated by averaging all the scores above a
normalised score of 0.5. A subsequent analysis on the LATIMES tuning collection
has informed us that for 80% of the queries, the mean of the set of relevant
document scores lies in the top half of the score distribution. However, our initial
method of estimating the mean score of relevant documents (m1) cannot return
an estimate below a normalised score of 0.5. Therefore, we now propose a small
modification to the initial estimate of m1 so that a score of below 0.5 can be
achieved when it is detected that the distribution of relevant and non-relevant
document have not been seperated to a sufficient degree. Given that a small
value of K explicitly indicates good separation, the following formula give us
an updated measure of the normalised mean score of relevant documents (m′

1)
using a simple linear combination with the original normalised m1 estimate:

‖m′

1‖ = α · (1− log(K)

log(N)
) + (1− α) · ‖m1‖ (7)

where K is the number of documents above a normalised score of 0.5, N is the
returned set, and α is a parameter we set to 0.5 for all subsequent experiments.
The left-hand side of this equation will reduce the estimate of the normalised
mean score (‖m′

1‖) when K is relatively large. Consider a query which returns
N = 10, 000 documents, for which a relatively large proportion K = 4, 000
lie in the top half of the distribution. The left-hand side of the equation (1 −
log(4,000)
log(10,000) = 0.099) will return a low value which can reduce the initial normalised

estimate of ‖m1‖ below 0.5. The new estimate can be unnormalised to recover
a new updated mean m′

1. This updated mean m′

1 can be used in place of m1

in the initial MMP1 approach to yield a second approach (MMP2). A further
discussion of the comparative results of these approaches is undertaken in the
results section.

4.4 Expectation Maximisation Approach

The EM algorithm is a popular unsupervised learning algorithm for estimating
the parameters in mixture models [3]. We initialised the EM algorithm with
the parameter estimates from the first MME approach (Section 4.1) that were
generated using heuristics. We ran the EM algorithm for 50 iterations. Our initial
experiments showed that the parameters converged prior to the 50th iteration.

5 Results and Discussion

In this section we present comparative results of the two QPP approaches based
on heuristics that estimate the model parameters via moments (MMP1 and
MMP2), and the approach based on the EM algorithm (EM). We then discuss
the contributions and limitations of the research undertaken. In the subsequent
results we focus on the two most popular IR systems (i.e. BM25 and LM).



5.1 Comparative Results

In this section, we compare the performance of the new QPP approaches devel-
oped in Section 4 (labelled MMP1, MMP2 and EM) against other state-of-the-art
post-retrieval approaches. The state-of-the-art baseline approaches that we use
are the clarity score [4] (a principled approach using KL-divergence), the stan-
dard deviation of document scores at 100 (σ(100)) [10], and NQC [12] also at
100 documents. We also tested the automatically tuned version of the standard
deviation [10], and the maximum retrieval score of a ranked list, and found that
the baselines presented in Tables 2 and 3 are stronger.

Tables 2 and 3 show the Spearman correlation6 of the output of each pre-
dictor and average precision, for the approaches on four test collections for two
prominent IR systems (BM25 and LM). The column labelled ‘OPT’ is the theo-
retically maximum correlation of the mixture model, if the parameters could be
predicted using the MME from labelled relevance data. We can see that the new
MMP approaches outperform the clarity score on most of the collections and, in
general, are comparable in performance to that of the best baselines for longer
queries. In general, on short queries, the new MMP1 and MMP2 approaches out-
perform the baselines, with MMP2 noted as the best predictor. We performed
statistical tests7 on the correlation coefficients of the new MMP approaches
against both baseline approaches for each collection, and found that on most of
the collections, the correlation coefficients were not significantly higher. We can
report that when any of the baselines outperformed the MMP approaches the
result was not significant, but on some collections, the MMP approaches signifi-
cantly outperformed one (always the lower) of the baselines (denoted by †). The
MMP2 approach tends to outperform the MMP1 approach especially for longer
queries. It should be noted that we have not tuned the linear combination (i..e
α = 0.5) parameter in this approach.

The results of the unsupervised EM learning approach are particularly poor.
We analysed the parameters returned from the approach and determined that
the EM algorithm tends to grossly over-estimate the mixture parameter (λ),
while not estimating values that are close to the actual values for µ̂1, σ̂1, µ̂0, or
σ̂0.

It is true that the methods for estimating the parameters of the distributions
are heuristic, but these can be removed when more theoretically sound methods
for estimating these are discovered. There are many approaches to query per-
formance prediction that have not been evaluated against the new approaches
developed here, but comparative studies [10] would tend to suggest that our ap-
proach is highly competitive. Furthermore, other approaches to QPP have not
aimed to explicitly estimate the performance measure in question. One inter-

6 Best results are in bold. Due to the sizes of the differences and the number of
queries in some of the test collections, statistical tests tend not to find significant
differences between most of the correlations. However, for all but the EM approach
the individual correlations are significant.

7 We transformed both coefficients to z-scores and tested whether the 0.95 confidence
interval levels overlapped.



Table 2. Spearman correlation of output of various predictors vs average precision for
title (top half of table) and desc (bottom half of table) queries for BM25

BM25

Collection clarity σ(100) NQC EM MMP1 MMP2 OPT

AP 0.393 0.280 0.265 0.037 0.511 † 0.495 † 0.87

FT 0.426 0.492 0.513 0.173 0.596 † 0.590 † 0.88

WT2G 0.352 0.445 0.411 -0.125 0.423 0.473 0.82

WT10G 0.357 0.328 0.342 -0.031 0.298 0.344 0.74

Avg(title) 0.382 0.386 0.382 0.013 0.457 0.475 0.83

AP 0.508 0.591 0.543 0.060 0.513 0.571 0.84

FT 0.382 0.431 0.518 -0.025 0.519 0.543 † 0.86

WT2G 0.321 0.584 0.592 -0.129 0.507 0.552 0.81

WT10G 0.400 0.501 0.491 -0.042 0.411 0.456 0.72

Avg(desc) 0.402 0.526 0.536 -0.034 0.487 0.530 0.81

Table 3. Spearman correlation of output of various predictors vs average precision for
title (top half of table) and desc (bottom half of table) queries on for a Jelinek-Mercer
Language Model

LM

Collection clarity σ(100) NQC EM MMP1 MMP2 OPT

AP 0.387 0.170 0.205 0.184 0.389 † 0.378 † 0.89

FT 0.467 0.432 0.467 0.105 0.442 0.469 0.89

WT2G 0.335 0.467 0.428 -0.158 0.453 0.514 0.80

WT10G 0.246 0.276 0.253 0.040 0.523 † 0.537 † 0.76

Avg(title) 0.358 0.336 0.338 0.042 0.451 0.474 0.83

AP 0.525 0.519 0.456 -0.038 0.430 0.499 0.86

FT 0.414 0.296 0.368 0.002 0.347 0.388 0.87

WT2G 0.249 0.533 0.517 -0.139 0.513 0.577 † 0.82

WT10G 0.333 0.567 0.455 0.017 0.381 0.482 0.75

Avg(desc) 0.380 0.478 0.449 -0.039 0.417 0.486 0.83

esting practical advantage of the predictors developed here is that they can be
easily modified to predict other performance measures.

6 Conclusion

In this work, we have developed new query performance predictors that explicitly
aim to predict average precision. The new predictors (MMP1 and MMP2) based
on estimating the moments and mixture parameter are comparable to state-of-
the-art predictors. Furthermore, an analysis of the parameters of the predictor
has determined that only two parameters (m1 and λ) are of crucial importance
to the performance of the predictor. This analysis aids in narrowing the focus



of future work. In a broader IR sense, it follows that only these two parame-
ters are of importance to any IR application using score distributions. Future
work, involves researching other unsupervised learning approaches to parameter
estimation in the hope that they may yield higher performance predictors.
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