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ABSTRACT

Modelling the document scores returned from an IR system
for a given query using parameterised score distributions is
an area of research that has become more popular in re-
cent years. Score distribution (SD) models are useful for
a number of IR tasks. These include data fusion, query
performance prediction, determining thresholds in filtering
applications, and tasks in the area of distributed retrieval.
The inference of performance metrics, such as average pre-
cision, from these SD models is an important consideration.
In this paper, we study the accuracy of a number of methods
of inferring average precision from an SD model.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval: Query formulation

General Terms: Experimentation, Measurement, Perfor-
mance

Keywords: Information Retrieval, Score Distributions, In-
ference

1. INTRODUCTION
Modelling the document scores returned from informa-

tion retrieval (IR) systems using score distributions (SD)
models [16] is both theoretically principled and practically
useful [12]. A number of works [1, 6, 9] have attempted
using expectation-maximisation to infer the distributions of
relevant and non-relevant document scores from unlabelled
data. However, there are a number of unanswered questions
with regard to SD models even when labelled data (i.e. rel-
evance judgments) are available. Before dealing with ‘noisy’
and unlabelled data, it is important that we know how to
correctly model and accurately infer performance metrics
from ‘clean’ labelled data. This paper deals with determin-
ing the best method of inferring average precision from SD
models that use labelled data and are theoretically consis-
tent with many known IR principles.
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2. BACKGROUND AND RELATED WORK
In this section, we discuss related work regarding SD mod-

els and we outline the contribution made by this work.

2.1 Hypotheses
A number of recent works [13, 11, 2, 7] in this area have

aided in constraining the search for models that are con-
sistent with various theories and observed phenomena in
the domain of IR. Robertson’s Recall-Fallout Convexity Hy-
pothesis [13] generalises previous work [4] and extends the
probability ranking principle (PRP) to the continuous score
domain where one ranking of the collection, given a query,
is a sample ranking drawn from an infinite collection which
is assumed to adhere to the PRP. This effectively invali-
dates the normal-exponential SD model used in many works.
Others [2] have postulated both ‘strong’ and ‘weak’ SD hy-
potheses that help to constrain the choice of distributions
that comprise an SD model. These hypotheses suggest that
the SD model should be able to support perfect retrieval (i.e.
full separation of relevant and non-relevant distributions).

2.2 Score Normalisation
Normalisation of retrieval scores prior to parameter esti-

mation can affect the theoretical validity of an SD model.
For example, min-max (0-1) normalisation used in many pre-
vious works [1, 9] effectively prohibits scores below 0 and
above 1. In such circumstances, any distribution that sup-
ports values outside of that range (i.e. 0-1) would be invalid,
as it would assign a non-zero probability to an observation
that is unobservable (i.e. impossible) [13].

2.3 Composition
As it is the query that generates both relevant and non-

relevant document scores, it would be unlikely that the pair
of distributions that comprise a binary SD model are from
two different families of distributions (e.g. it is unclear why
relevant documents should be drawn from a normal, when
non-relevant documents are drawn from an exponential dis-
tribution). In most cases, an IR system does not know the
underlying relevance of each document and can only strive
to separate the two distributions as much as possible (as im-
plied by the ‘strong’ and ‘weak’ SD hypothesis). Therefore,
it is likely that both distributions should be of the same
family (type) of distribution (at least for an initial ad hoc
retrieval run where no relevance information is available).

2.4 Truncation
Using only a portion of the ranked-list (i.e. the top 1000



Table 1: Adherence of SD models to a number of SD Hypotheses
RFCH Strong SD Weak SD Score Range Supported

Rel Non-Rel
Lognormal-Lognormal when σ1 = σ0 yes yes [0 : ∞] [0 : ∞]
Gamma-Gamma when θ1 = θ0 or k1 = k0 yes yes [0 : ∞] [0 : ∞]
Poisson-Poisson yes no yes [0 : ∞] [0 : ∞]
Normal-Normal when σ1 = σ0 yes yes [−∞ : ∞] [−∞ : ∞]
Exp-Exp yes no yes [0 : ∞] [0 : ∞]
Exp-Normal no no yes [0 : ∞] [−∞ : ∞]

document scores) from which to infer the SD model parame-
ters may negatively affect the performance of a model. Trun-
cating the list at arbitrary points may ignore useful infor-
mation regarding the document scores of a large number of
documents. Although most of the documents that are dis-
carded below the truncation point may not be relevant, they
are important for the inference of the non-relevant document
score distribution. This can, in turn, affect the inference of
performance metrics. Conversely, modelling the entire col-
lection of documents as a ranked-list leads to problems where
the actual ‘fit’ of the model is poor, due to the number of
documents that receive no score (due to not matching any
query-term). This would manifest itself as a large probabil-
ity mass (spike) at a score of zero. In fact, for many models
of retrieval, documents that do not match a query-term are
excluded from the ranking (i.e. they are not ranked), rather
than receiving a score of zero1.

2.5 Contribution
Table 1 lists a number of SD models used in the literature

and outlines the hypotheses that they each adhere to, when
assuming that the expected score of relevant documents is
greater than the expected score of non-relevant documents
[13]. Inferring average precision from these distributions is
an important consideration in determining the practical use-
fulness of the model and the practical usefulness of any task
using these models. However, average precision has been in-
ferred using two different methods thus far in the literature
[8, 9]. In this paper, we determine empirically which of these
methods is more accurate. In doing so we use SD models
that are consistent with all of the aforementioned hypothe-
ses. Furthermore, we do not apply score normalisation or
ranked-list truncation.

3. SCORE DISTRIBUTIONS
In this work we model a document ranking using an SD

model that adheres to the recall-fallout convexity hypothe-
sis (RFCH) [13], where f(s|1) and f(s|0) are the probability
density function of the relevant and non-relevant document
scores respectively, and where λ is the mixing parameter.
Therefore, the scores returned in a ranked list can be mod-
elled as f(s) = λ · f(s|1) + (1− λ) · f(s|0). Furthermore, we
use two gamma distributions2 to model the scores of both
relevant and non-relevant documents.

1For models of retrieval that allow negative scores, assign-
ing a score of zero to documents that match no query-terms
is not a practical, or theoretically sound, solution. Deem-
ing the documents not-returned would seem a practical and
more theoretically sound approach.
2A two-lognormal model that adheres to the RFCH yields
higher actual correlation values, but comparatively similar

Given a ranked list of all document scores s1, s2, s3, ...s|ret|
returned in response to a query Q (i.e. where ret is the re-
turned set of documents that match at least one query-term)
and the known binary relevance labels for the documents at
each of those scores, we can estimate the SD model param-
eters for that ranking. For simplicity, we use method-of-
moment estimates and ensure that the model adheres to the
RFCH by equating the scale parameters of both distribu-
tions using the values obtained from the non-relevant doc-
ument scores following previous research [8]. We estimate
λ using only the relevance labels in the returned set (i.e.
λ = |rel∩ ret|/|ret| and where rel is the set of relevant doc-
uments). It is important to note that we do not perform any
score normalisation on the output of the scores from any of
the IR systems used. We now review two methods that can
be used to infer average precision from an SD model and the
available ranking.

3.1 Expected Average Precision
Research using the Maximum Entropy Method to analyse

performance metrics [3] has shown that the expected average
precision E[ap] of a ranking can be calculated as follows:

E[ap] =
1

R
·

N∑
i=1

(
pi
i
· (1 +

i−1∑
j=1

pj)) (1)

where R is the number of relevant documents for a query,
N is the number of documents in the ranking, and pi is the
probability that a document at rank i is relevant. The prob-
ability of relevance at rank i can be inferred from the SD

model as pi = λ·f(si|1)
f(si)

following Bayes’ rule used in previ-

ous research [9]. Adherence of the SD model to the RFCH
ensures that this probability of relevance decreases as i in-
creases, and therefore, adheres to the PRP. Given that doc-
uments that do not match a query-term are not modeled in
our approach, N = ret is the number of returned documents

and therefore, R can be estimated as
∑|ret|

i=1 pi. This method
is used in recent research [9] and can be computed in O(N)
time.

3.2 Area Under the PR Curve
Average precision corresponds to the area under the pre-

cision recall curve [15]. This can be expressed in terms of a
score s as follows:

AuPR =

∫ 1

0

prec(s) · drec(s) (2)

where prec(s) is the precision at score s on the score line
and rec(s) is the recall at score s [5]. rec(s) is calculated as

results as regards the accuracy of the two approaches to
inferring average precision studied in this paper.



∫ ∞

s
f(s|1) · ds, while prec(s) is calculated as

∫
∞

s
λ·f(s|1)·ds

∫
∞

s
f(s)·ds

.

As s is supported on [0 : ∞), we can approximate this using
numerical integration. In particular, N uniformly spaced
integration points on [0 : B] can be used where B is some
upper bound where f(s) ≈ 0. We have found by experimen-
tation that 2 · s1 (i.e. two times the top score) is a suitable
point3 for the collections used here. AuPR can be calcu-
lated in O(N) time where N is the number of samples used.
By starting at B, we can estimate recall, fallout, and pre-
cision at each integration point down to 0. The estimate
of AuPR can be calculated cumulatively as the algorithm
progresses (as outlined in Algorithm 1). These samples can
be viewed as documents that are uniformly dispersed on the
score line s from 0 to B.

Algorithm 1 Calculate AuPR with N samples and mixing
parameter λ

score = 2 · s1
recall = 0
fallout = 0
ap = 0
ds = score/N
for i=0 to N do

score = score - ds
recall += rel likelihood(score) · ds
fallout += non rel likelihood(score) · ds
prec[i] = (λ· recall) / (λ· recall + (1-λ) · fallout)
rec[i] = recall
if i > 0 then

ap + = (rec[i]-rec[i-1]) · (prec[i]+prec[i-1])/2
end if

end for
return ap

4. EXPERIMENTS
In the experiments that follow, we compare both methods

of inferring average precision (i.e. E[ap] and AuPR) us-
ing a large number of queries on three test collections from
TREC disks 1-5 (two Newswire collections and one Web
collection4). We submit each query to an IR system and
estimate the parameters of an SD model using the relevance
judgments for that query. We then estimate the inferred av-
erage precision for each of the methods outlined. We report
the Kendall-τ correlation and RMS (root mean square) error
of real average precision to inferred average precision over
a set of queries. We conducted these experiments on two
IR systems (BM25 with default parameters and a language
model LM using Jelinek-Mercer smoothing set to 0.2). It is
important to note that both of these systems return positive
scores as we used the modified BM25 [10] and the language
model with JM smoothing from [17].

4.1 Performance Comparison

3While the integral can be transformed into an integral over
a finite interval, the method used here produces a suitable
approximate of average precision. It also enables us to con-
trol the number of uniformly sampled documents (N) on the
score line.
4Outlined in Table 2 and available from
http://trec.nist.gov/

Table 2: Details of Collections Used
# docs # Topics Range Avg Qry Len

AP 242,918 149 051-200 3.6
FT 210,158 188 251-450 2.5
WT10G 1,692,096 100 451-550 2.5

We can see from Figure 1 for all three collections that
AuPR outperforms E[ap] as there is a higher correlation
with real average precision. Another point to note is that
AuPR needs relatively few points (i.e. documents on the
score line s) to reach maximum performance. On all three
collections, after 64 points have been sampled, the corre-
lation of AuPR with actual average precision is near its
maximum. A similar trend is reported for the RMS error
(Figure 2) and the results are consistent for both IR sys-
tems used. Overall AuPR is the more accurate approach
of the two analysed and can be calculated using far fewer
documents (N).

Using an SD model that adheres to the RFCH smooths the
probabilities of relevance over the entire score range s in a
principled manner. Using only a limited interval on the score
line s, (as is the case for E[ap] which uses the initial dis-
crete ranking) may ignore useful information at high scores.
Approximating the integral (as is the case for AuPR) is a
more accurate approach. We hypothesise that using only a
part of this range effectively reduces the accuracy of the in-
ference from the model. Furthermore, as score distributions
effectively model an infinite collection of document scores
in a principled manner, it is more intuitive to infer the ef-
fectiveness metric from the continuous domain. Modelling
the actual ranking of documents as a sample drawn from
an infinite collection was proposed recently [14] and it has
been shown that average precision values, when smoothed
appropriately, tend to follow a normal distribution. It must
be noted that the E[ap] was not originally developed for the
task of inferring average precision from SD models, and so
this research does not dispute its’ importance in other areas
of IR.

5. CONCLUSION
We have presented an empirical study of two methods of

inferring average precision from SD models. We have shown
that approximating the area under the precision-recall curve
directly from the SD model is the better of the two ap-
proaches in terms of accuracy.
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