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1 Introduction

Text-based information retrieval (IR) systems deal withura language documents and queries. They at-
tempt to limit the problem of ‘information overload’ by amatically returning only documents that are
relevant to a users information need (query). Ambiguity,dgample, inherent in natural language, is one
such problem that automated systems have difficulties mivieg).

Current web search engines have benefited greatly from tiereaearch into text-based information
retrieval and library systems. Term-weighting functions ane of the most important parts of a web search
engine (or indeed any information retrieval system) as thigyto rank relevant items before non-relevant
items. Fundamentally, it is the quality of these term-wéitgdh functions that determines the usefulness of
the system. Many approaches to term-weighting have beeslapmd over the years. These term-weighting
functions have been produced from various types of modatgling from empirically-based learning models
to purely theoretical models.

An axiomatic approach to IR [Fang & Zhai, 2005] has previglgen developed that refines a number of
constraints (axioms) [Fang et al., 2004] to whichgalbd weighting functions should adhere. This approach
and, in particular, the constraints developed thereinuasdul in attempting to theoretically motivate term-
weighting functions that are developed from purely aut@dadearning (empirically-based) models. Often
the aim of these purely automated learning models is to le&unction that best fits’ the training data, while
ensuring some generality. It is important that we can erpla¢ output of such learning algorithms so we
can better understand retrieval in general. In particularbelieve that the better functions produced from
these automatic learning approaches to IR should adhehese existing constraints, as the satisfaction of
the constraints serve as a useful guide to the optimalitii@tblutions produced.

In this chapter, we aim to show that these axioms, that armdéevalid in abag of words model, can
be used to accurately estimate the performance of termhtieigfunctions. The unconditional satisfac-
tion of the constraints have been shown to serve as a useatld tutheir performance [Fang & Zhai, 2005,
Cummins & O’Riordan, 2007a]. These constraints can paéyntbe used in a number of different ways.



They can be used, as they are in this chapter, to validatectireettness’ of a specific retrieval model by
showing that any term-weighting scheme produced therdired to them. However, they could also be
used to constrain the space of term-weighting functionsiaba specific learning approach searches a much
smaller space, where it is knovgood that term-weighting schemes lie. However, it has not beewstow
often a constraint may be violated in a standard retriewtihgg if the constraint cannot be unconditionally
satisfied by a particular term-weighting scheme. Furtheeytbe number of violations that occur in an actual
retrieval setting could potentially be used as an evalnatietric, if the number of constraint violations is
correlated to performance. This is interesting as it dogésaip on relevance judgments and relies purely on
the axioms developed from an inductive approach, whichetyjosodels the notion of relevance.

We review four constraints (deemed valid irbag of words model) and describe how term-weighting
functions should be modelled in order to minimise the pdssilays in which a function could violate these
constraints. We develop properties that can be derived fngnfour initial constraints (axioms) and that help
to describe how the axioms can constrain the constitutiostate of the art term-weighting functions. We
outline a method which adopts an inductive approach to nieake humber of actual constraint violations
for a number of state of the art term-weighting functions amdard test collections for ad hoc retrieval. We
find that the number of constraint violations that occur fany of the axioms is higher than was stated in
the original works. Finally, we show that the best perforgnierm-weighting function (which was developed
using a learning approach) does not violate the constragtdten as other functions.

2 Background and Related Research

The goal of a term-weighting function is to score a documenafgiven user query, and therefore, is crucial
in most, if not all, information retrieval (IR) systems. Théhave been numerous models developed over the
years that have yielded many different term-weighting fioms. Some of these include: vector space models
[Salton et al., 1975], probabilistic models [Robertsonlgeti®95], language models [Ponte & Croft, 1998],
divergence from randomness models [Amati & van Rijsberg@0?2], learning models [Fuhr & Buckley, 1991,
Radlinski & Joachims, 2005] and some other more unconveatimodels [Shi et al., 2005]. However, many,
or all, of these approaches consists of the aggregation ightgeapplied to the terms in common with the
document and query. Once all documents are scored withaespe given query, the list of document scores
is sorted and the toN documents are returned to the user. These approachesemecafiedbag of words
models as they do not take into account the complex interastand interdependence of terms (although
term-dependence may more easily be incorporated into sbthe snodels in a more intuitive manner). The
simple ‘bag of words’ representation has survived over #ery mainly because it is easily implemented and
more importantly, it is very difficult to outperform this spie representation in terms of effectiveness (usually
measured using variations of precision and recall).

In a number of works, term-weighting schemes are describedjuwo triples [Salton & Buckley, 1988,
Zobel & Moffat, 1998]. One triple describes the weight aassig to the terms in the document, while the sec-
ond triple describes the weight assigned to the terms inuleeyq Each triple contains a term-discrimination
element, a term-frequency element and a form of normadisatHowever, with the advent of TREC data
[Harman, 1993], it has been noted that the triple descrithegveight assigned to terms in the query can be
reduced to a simple linear within-query term-frequency@bial, 2001, Fang & Zhai, 2005]. The framework
outlined here is also consistent with this view of a termgi¢ing scheme.

The following function (equation (1)) can be thought of aaeralisation of a family of term-weighting
schemes. While it does not represent the complete spacei@ gmm-weighting schemes (which is bound-
less), it does incorporate most, if not all, term-weightsufpjemes reported in the literature. The score (S())



of a documenD in relation to a query) can be calculated as follows:
S(Q.D) = g (ntf(D) - gw(t) -t ) (1)
teQND

wherent f () is a normalised term-frequenay(t) is a term-discrimination factor artd? is the frequency of
termt in the queryQ. In this framework, there is a basic term-discriminatiosneént (or global component),

a normalised term-frequency element (or within-documentgonent) and a query term element (or within-
query component). The term-discrimination elemayui(f)) aims to determine the usefulness of a search
term by using characteristics of the term in the collectisraavhole. Typically, terms that occur in fewer
documents are given a higher weight as they tend to be bedsarigtors of that document. Most term-
weighting approaches include some type of term-discrittonaelement either directly or indirectly in order
to promote terms that are likely to be better able to idem##ftain documents. The normalised term-frequency
(ntf(D)) aims to provide two effects on each specific docunigntsing within-document measures. Its
first aim is to promote documents that have a higher occuerehquery terms. This is achieved using a
term-frequency influence component. It is intuitive thatogwment with more occurrences of query terms
should be ranked higher than a document with fewer occueertdowever, not all documents are of similar
length and thus, the term-frequency is normalised in sometwavoid over-weighting longer documents
simply because they contain more of these terms. A docurhantg longer may simply have a broader
topic and should not be promoted over shorter documentshwhiy be more concise and preferable to the
user. Basically, the concept of normalisation is a measitteecconcentration of query terms in a document.
Documents with a greater concentration of query terms shimeipromoted ahead of documents with a lower
concentration. The remaining component of the framewogkidion (1)) describes the weight assigned to
the terms appearing in the actual query. This componentisdily a simple description and it has been
shown in many studies that using the actual query term-&equfor such a component does not lead to any
decrease in performance compared to a more complex forrhifocomponent [Fang & Zhai, 2005]. This is
typically because queries are quite short and supply addréimount of information about the frequencies
and characteristics of the terms themselves.

Much research has focused on combining these three heuastiors into effective term-weighting
schemes. There have been many attempts to exhaustiveghsedimited space of term-weighting func-
tions [Salton & Buckley, 1988, Zobel & Moffat, 1998]. Thespparoaches to developing retrieval functions
are unlikely to produce any substantial increase in perémire, as there is no guarantee that existing parts of
functions (which are limited in form at such a coarse leval) be effectively combined (in an ad hoc manner)
to create a high performance weighting function. Anotheénpworth mentioning is that for such exhaustive
searches, the parts of the functions to be combined mustiteeaqunplex (non-atomic) in order to render the
search space tractable. The divergence from randomness (f€R) [Amati & van Rijsbergen, 2002] has
been developed by combining these three factors into awegighting scheme in a more theoretical frame-
work. This work creates a number of term-weighting funcsibased on different models for the distribution
of terms in a document and collection. Nevertheless, theebespace of term-weighting schemes is so large
that an exhaustive search of the entire space is infeadilplet(mpossible).

3 Constraining Term-Weighting Functions

We will briefly outline four axioms for term-weighting andeth discuss how modern term-weighting schemes
can be constrained by these.



3.1 Axioms for aBag of Words Model

A number of axioms have been previously postulated and thesdoe used to validate or to develop term-
weighting schemes in a constrained space [Fang & Zhai, 20Q0Rkjs, we use the terms axiom and constraint
analogously in this paper. We will briefly introduce somestoaints that were developed using an inductive
framework [Fang & Zhai, 2005]. The idea of this inductiverfrawork is to define a base case function that
describes the score (weight) assigned to a document corgarsingle term matching (or not matching) a
query containing a single term. All other cases can be de#itmductively using two separate functions.
A document growth function describes the change in the document score when a singleseaahed to the
document, while aquery growth function describes the change in the document score when a single term
is added to the query. This is an elegant approach to forimglisecessary characteristics gfod term-
weighting functions. This inductive approach may more aataly model the human process of determining
the relevance of a document, as one can imagine that persotitsm of relevance changes, when terms that
are either on or off-topic are encountered, during a lineading process.

AssumeS(Q, D) is a function which scores a documdhin relation to a querg in a standardag of
wordsretrieval model. With notation similar in style to [Fang & @h2005], the constraints can be formalised
as follows, where € T is a termt in the set of terms in a corpus addt,D,Q) = S(Q,DU{t}) —S(Q,D)

(i.e. the change in score & added to the documeb:

Constraint 1: vQ,Dandt € T, if t € Q, S(Q,DU{t}) > SQ,D)

The first constraint (constraint 1) states that adding a neswqterm to the document muatwvays increase
the score of that document. This seems intuitive for all seasino matter how little information content is in
aterm, if it occurs in the document, it indicates that it issdr (possibly negligibly) to the topic of the query.

Constraint2: VQ,Dandt € T, if t ¢ Q, S(Q,DU{t}) < SQ,D)

The second constraint (constraint 2) states that addingaynery term to a document mutvays decrease
the score of that document. Again, this constraint seergiirdg as it ensures that document with more off-
topic terms will be assigned a lower score. As more off-té@ims are encountered the score of the document
should be reduced.

Constraint 3: VQ,Dandt € T, if t € Q, &(t,D,Q) > &(t,DU{t},Q)

The third constraint (constraint 3) states that adding ess&ige query terms to a document should increase
the score of the document less with each successive addilioa intuition behind this constraint is that it

is ultimately the first occurrence of a term that indicatest the document is on-topic (i.e. related to the
guery). Due to characteristics of natural language, it mvkmthat when a term first appears in a document,
the likelihood of re-appearance increases. Thus, the wegigln to successive occurrences of a query term
should be reduced. This is due to authors repeatedly usimitpsiterms to identify similar topics within a
document.

A fourth constraint can be formalised as follows, whiegeT is a term in the set of terms in a corpus and
&1(t,D,Q) = S(Q,DU{t})"*—-Q,D)"1(i.e. the change in inverse scoretas added to the documen:

Constraint4: VQ,Dandt € T, if t ¢ Q, & 1(t,D,Q) > & 1(t,DU{t},Q)

The fourth constraint (constraint 4) states that addingenmam-query terms to a document should decrease
the score of a document less with each occurrence. Accordidgaps’ law [Heaps, 1978], the appearance of
new unseentermsin a corpus grows in roughly a square-fatibreship (sub-linearly) to the documentlength
(in words). Therefore, amn-query termsappear in a document they should be penalised less withssicee
occurrences. This constraint avoids over-penalisingdompcuments by ensuring that the normalisation
aspectis sub-linear. For example, consider a document@sad® wordsdl = 9) and contains 3 unique terms
(i.e. vector length of 3). If this document grows in lengthl@0 words ¢l = 100), the expected number of
unique terms would be approximately 10. Thus, as the doctgrews in length, the topic broadens sub-



linearly. Furthermore, it is the number of occurrencenftfrequency) of these unique terms that indicates
the strength of each different aspect (i.e. dimension ofvwor) of the topic. As non-query terms appear
the topic of the document does not drift from the query lihearhis again is due to authors using the same
words repeatedly to identify similar topics in a documens. sich, it is the first appearance of a non-query
term that ultimately indicates a change in the topic of a domot and successive occurrences of this term
does not indicate that the topic of that document is driffiagn the query topic to the same degree.

3.2 Analysis of Constraints

We have not, as yet, indicated how the inductive approactlitadxioms developed therein constrain parts
of modern term-weighting functions. In this section, welwikap the characteristics of state-of-the-art term-
weighting functions to the constraints previously outtind’he following are some necessary properties of
term-weighting schemes that can be deduced from the axibhese properties (labelld?) are also derived
from the characteristics of the features used in term-wigiglschemes and the characteristics of the way in
which the three parts of a term-weighting scheme (descelaglier in section 2) interact.

P1: The measure of information content (typically some typ&ld) of a query-term that occurs should
never be assigned a value that is lower than the score adsigasquery-term not occurring (for most term-
weighting approaches this is 0). Therefore, for most teraigiving schemes (and those included in this
work), the term-discrimination factor should never be gissd a negative value. If this property is not present,
it will lead to violations of constraints 1 and 3, as a negaseore will lead to a decrease in the score of a
document when a query term occurs. It can also lead to wawiatof constraints 2 and 4 because, in certain
cases, the document score will be negative, and thus n@atial will actually increase the document score.

P2: A term-frequency aspect must be present and must alwaysdi@/pty increasing. If this property
is not present it will lead to violations of constraints 1 &hd

P3: There must be some type of normalisation aspect presente fingst be some method of penalising
the score of a document for the occurrences of non-querysteithis could be achieved by ensuring the
score of a document (or term) is inversely proportional ® lémgth of a document (as is the case in most
term-weighting schemes) or simply by subtracting some ktdigy each occurrence of a non-query term. In
either case if this property is not present it will lead tolat@mns of constraints 2 and 4.

P4: The normalisation factor must be measured in repeated térensmust contain a measure that
reduces the score f@very non-query term). If, for example, a coarse measure of doatiteagth is used
for normalisation (e.g. the document vector length), ré&gekaccurrences of non-query terms would not be
penalised. Thus, this property ensures that the lengthuneased in normalisation is granular and leads to
a more refined normalisation. If this property is not presentll lead to violations of constraints 2 and 4.

P5: The actual term-frequency should be normalised insteatietarm-frequency function. For ex-
ample, consideB1(Q,D) and S2(Q, D) which describe two possible ways of applying normalisatiom
term-weighting function.

QD) g;% gw(t) Q) @)

wheregw(t) is the term-discrimination aspett,f () is the term-frequency function() is some normalisation
aspect andfP is the actual term-frequency bin D. Other functions penalise the actual term-frequency as
follows:

D
2(Q.D) = §D<tff<‘n%> w(t) Q) @3)



The first method of normalisation present&tl(Q, D)) violates constraints 1 and 3, as the normalisatig)(

is independent of the term-frequency functionf()) and, therefore, it may grow to such a degree that the
penalisation more than outweighs the increase in weigltttigaterm-frequency provides. Consider these
two somewhat similar methods of applying normalisatioa. (S1(Q,D) and S2(Q,D)) from an inductive
perspective. Lex define the term-frequency for a query term. Consider a doatithat consists of successive
occurrences of this term. In such a caselso defines the document length. Lag(x) be the term-frequency
factor and,/x be the normalisation aspect. In isolation they would appeadhere to the aforementioned
constraints (i.e. the term-frequency is sub-linear andntbrenalisation is sub-linear). Figure 3 shows that
S1(Q,D) (i.e. log(x)/+/X) does not always increase for successive occurrences qtihrg-termx. S2(Q, D)
does adhere to this constraint in this simple inductive cd$ris, when normalisation is explicitly used to
penalise documents, it should be applied to the actual texquency as ir82(Q, D) (i.e. log(x/+/X)) to help
satisfy constraint 1 for this simplest inductive case.

score of document
=
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Figure 1: Violation of constraint 1 for Property P5

P6: The term-frequency aspect must be sub-linear (as more afahe query terms occur, they must
increase the score of the document less with each successiugrence). A scheme which does not exhibit
this property will violate constraint 3.

P7: The normalisation aspect must be sub-linear (as more nensgerms occur, the penalisation must
become smaller). A scheme which does not exhibit this ptgpél violate constraint 4.

P8: The increase in score due to a query-term being added musehtegthan the penalisation due to
the document increasing in length. This is the only proptray cannot unconditionally be enforced by most
modern term-weighting schemes. This will lead to violasi@f constraints 1 and 3. Due to the nature of the
normalisation schemes used in modern retrieval functiwhen a term-weighting scheme uses the document
length explicitly to penalise the document, constraintrid(eonsequently constraint 3) casver be satisfied
unconditionally. Consider the case where a term with areextéty lowidf value (i.e. where the term has
negligible semantic content) is added to a document. Thalation due to the document increasing in
length will more than offset the increase in weight as thmtsradded (as all existing terms in the document
are penalised by the document length accordingly). For rmahgmes this will only tend to happen for terms
with a very low information content (ie. term-discriminai scheme).

Figure 2 shows a set of query terms with some basic weighigressto them. Document 1 contains



Violation of Constraint 1

Query and weights of query terms
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Figure 2: Violation of constraint 1 for P8

5 distinct query terms while document 2 contains 6 distingtrg terms. The normalisation function, in
the example, uses the document length. The normalisatigisifh by the document length) reduces the
weight of all of the existing terms in the document and therefore, theesacba document may not increase
as a query term is added. In the example shown, the score ahunt 1 is calculated by summing up
the scores of the 5 query terms (36.4). The score of document&culated similarly (summing up the 6
guery terms). As the query term, added to document 2, hasydoxerterm-discrimination weightvws = 1)
compared to the other query terms, the increase in weightaliinés query term being added does not offset
the increase in penalisation. The score of document 2 is3hly, although document 2 is created by adding
a query term to document 1. However, the potential for viofet of the type just described may be more
prevalent in different types of term-weighting schemesiléhese violations cannot be prevented, it may be
possible to minimise the violations that occur due to thismmenon, by using different term-discrimination
measures. Interestingly, this property constrains thexaction between the measure of information content
and normalisation in some way. We will now briefly look at staf the art term-weighting functions and
indicate the properties they contain.

4 Term-weighting Analysis

In this section, we present two different ways of deternmgnihe constraint violations of term-weighting
schemes. Firstly in Section 4.1, we present a number of tegighting scheme and analytically analyse them
(similarly to [Cummins & O’Riordan, 2007a]) to determingtlifey unconditionally adhere to the constraints.
Secondly in Section 4.2, we outline a method whereby, thebmurof constraint violations in an actual
retrieval setting are counted.

4.1 Strict Satisfaction of Constraints

In this section we present several term-weighting scheméddefly analyse them to determine their satis-
faction to the constraints by identifying which schemestaomthe aforementioned properties.



4.1.1 Pivoted Document Length Normalisation

The pivoted document length normalisation approach [Sihghal., 1996] is often used to weight term in the
vector space model [Salton et al., 1975] and is defined asaisll
1+log(1+log(tfP)) N+1

Jog(——
(1—s)+s-ﬁ 9 df;

PIV(Q,D) = g ( )-tfQ) @)
teQND

wheret fP is the frequency of a termin D andtfl is the frequency of the term in the que®y dl and
dl.,g are the length and average length of the documents resplgatieasured in non-unique termi. is
the number of documents in the collection atfdis the number of documents in which tetrappears. The
tuning parametes, is used to tune the normalisation component and has a tefdué¢ of 0.2.

The normalisation function used in the pivoted documengtlemormalisation scheme normalises the
term-frequency function and not the actual term-frequettiogctly. Therefore, property P5 is not present.
The normalisation function used is also linear and thus gntyP7 is not present. As a result, violations of
constraints 1, 3 and 4 can occur due to properties P5, P7 andt®®ing present for this scheme.

4.1.2 BM25

TheBM25 weighting scheme [Robertson et al., 1995] is a weightifgme based on the probabilistic model.
The score of a documeBtin relation to a given quer) can be calculated as follows:

tf2 N—dfi+05, . o

MBQD)= 2 Pk (a-b) b ) ¥ drros

(®)

wherek; is the term-frequency influence parameter which is set tdy @efault. The query term weighting
used heret( ) is slightly different to the original weighting method pmsed [Robertson et al., 1995] but has
been used successfully in many studies [Fang & Zhai, 200B¢ document normalisation influence tuning
parameterh, has a default value of 0.75.

Theidf used in this scheme can assign negative values for termsawdatv information content and
thus P1 is not present. The normalisation used is also liaeaithus property P7 is not present. Therefore,
violations of constraints 1, 2, 3 and 4 will occur due to pmigs P1, P7 and P8 not being present in this
scheme.

4.1.3 Modified BM25 Analysis

A modified BM25 scheme (MBM25) can be created by replacingidifefactor used in thdM25 scheme
with theid f factor used in the pivoted document length normalisatitieste. This scheme should break less
constraints than the original BM25 scheme as only propeRieand P8 are not present.

4.1.4 Evolutionary Learned Scheme

An incremental evolutionary learning approach [Cummins ®iOrdan, 2007b] which develops an entire
weighting function has previously been explored. The deapace is separated into three parts. Firstly,
schemes are learned that aim to correctly measure the iafmmcontent of a term (i.e. some type of
term-discrimination measure). When a suitable measurbéas determined, i.e. one that maximises Mean
Average Precision (MAP), the term-frequency aspect of theme is learned while the term-discrimination
(i.e. some type ofdf) measure remains fixed. Once a suitable term-frequencyrseiefound (again one
that maximises MAP), it remains fixed in the weighting schembile a normalisation scheme is learned.



This process results in a complete term-weighting schemighodgh the shape of the possible function
is constrained by the manner in which the three aspects afmaweighting function are combined, the
form (shape) of the constituent functions are not consthiny the aforementioned constraints (axioms).
Therefore, this approach (which is data-driven) is onlystrained by the representation used within the
learning algorithm, and is driven purely by fithess (i.e fpenance). The following term-weighting function
[Cummins & O’Riordan, 2007b] was developed by this evoladéiry learning approach:

tfP cfd-N
ESL.Q= 3 ! /g 1) (6)
teQND tftD+045 m t

Again, this formula contains the three term-weighting comgnts outlined earlier, and it should be noted that
there are no tuning parameters in this function. The tesurahination scheme is always positive. The actual

term-frequency is normalised & /tf° +0.45. /g can be re-written a £/, /5-) /(t {0/ / g +0.45.

lavg
The normalisation scheme used is sublinear, as is the tepdncy function. Therefore, violations of con-
straints 1 and 3 can occur only because property P8 is abSeother properties (P1-P7) are present.

4.1.5 Divergence From Randomness (DFR)

One of the best performing term-weighting functions, pistlfrom the DRF approach, as outlined in
[Amati & van Rijsbergen, 2002] is the following:

tf0-log(1+ Uea) logNFL
df,+05

DFR(Q,D) = g ( ) tf0) @)

"o 1+tfP-log(14 Las)

This term-weighting scheme also has no tuning paramet#n®@@h in some studies a tuning parameter
¢ has been introduced into the normalisation component tedwgpperformance). Violations of constraints
1 and 3 can occur, as property P8 is not present. All othergstigs (P1-P7) are present.

While we have described which constraints are satisfiednditonally and which constraints may be
violated, it is not indicated how often these constraint$ e violated on a standard test collection. Previ-
ous research [Fang & Zhai, 2005, Cummins & O’Riordan, 20®i&s] shown that the strict adherence to the
constraints is a useful guide to constructing effectiventgreighting schemes.

4.1.6 Language Modelling Scheme

A language modelling approach to information retrieval &ls® been successful in developing high perfor-
mance weighting functions. The following function [Fangkt 2004] is an example of one such function
based on dirichlet priors:

Ps(aild)

Qg- P(Qi\c))+ n+1o9(ct) ©

LM(Q,D) = g log(
teQrD

where|C| is the number of terms in the collectid?(q;|C) = cf;/|C|, Ps(gi|d) = (tf +u-P(q;|C))/(dl +
u), u= 2000 andoy = u/(dl 4+ u). Violations of constraints 1 and 3 can occur only becauspeity P8 is
absent. The normalisation is not sublinear and therefanstcaint 4 is violated.



4.1.7 Axiomatic Term-Weighting Scheme

A term-weighting function F2EXP) that was developed in conjunction with the original axidnas also
been developed and shown to achieve a very high performamae&omber of test collections.

t ftD N 0.35

tfP+O.5+O.5-ﬁ df,

F2EXP(Q,D) = g ( t2) 9)
teQND

Again, Violations of constraints 1 and 3 can occur only beeguroperty P8 is absent. The normalisation
is not sublinear and therefore constraint 4 is violated.

4.2 Measuring Constraint Violations

In this section, we describe how an automatic system canure#fse number of constraint violations on an
actual test collection. The approach, used to measure théewof constraint violations, takes a query and
a stemmed document as input. The terms in the document remikia same order in which they naturally
appear. A pseudo-document is created by using the first tppeaaing in the document. This pseudo-
document is matched against the query using a term-wegghiimction and the score is recorded. A further
pseudo-document is created by including the next term ajpgean the document. This is then matched
against the query and the score is again recorded. This gga@mntinues until the complete document is
scored against the query. As the score is recorded at eaydh $ite violations of each constraint that occur
can be counted measured each time a new term is added to th@opdecument. In this process, we only
start counting constraint violations once the first querntess encountered, as until that point the score of the
document will be zero.

If the score of a document does not increase when a query geadded to the pseudo-document, a
violation of constraint 1 is recorded. If the score of a doeunfrdoes not decrease when a non-query term is
added, a violation of constraint 2 is recorded. If the inses@ score of the document when a query term is
added is equal to, or greater than, the increase in score tlikgrevious occurrence of that query term was
added, a violation of constraint 3 is recorded. Finallyhifeee non-query terms appear in succession and the
inverse of the score reduction is not sublinear, a violadioctonstraint 4 is recorded. The approach adopted to
counting the violations of constraint 4 is actually a lowstimation. However, for our experiments we used
the same top ranked documents for each of the term-weightingmes and thus, results is a fair comparison.

Due to the computational complexity of such an approacls ibhfieasible to do this for an entire test
collection. However, typically only the top 1000 documeaits returned by a retrieval system as these are
deemed most likely to be relevant. Therefore, we measureuher of violations of constraints on the top
1000 documents returned from the best performing appraadhé term-weighting schemes. The top 1000
documents should represent a set of documents with a highewof query terms, and therefore, is a good
sample of documents on which to measure the number of cartstialations. In the next section, we will
test this automatic way of measuring constraints, to séeifdtal number of constraint violations is inversely
related to the ranking function quality (measured by MAP}e&st data.

5 Results

This section presents experimental results that measheeaumber of actual constraint violations for a
number of term-weighting schemes, in the manner outlinethénprevious section. We also present the
performance of these schemes on the test data.



5.1 Document Collections

We use the LATIMES, FBIS, FR documents from TREC disks 4 amitBapics 251 to 450 as test collections.
For each set of topics we create a short query set, consistiting title field of the topics, a medium length
guery set, consisting of the title and description fieldsl atong query set consisting of the title, description
and narrative fields. We also use the OHSUMED collection amdopics. Table 1 shows some of the
characteristics of the collections used in this research.

Table 1: Characteristics of Collections

| Collection ILATIMES| FBIS| FR|OHSUMED|
No. of Documents *7 131,897130,471‘55,637 293,857

Average Doc. Lengt 468 501 670 158
Standard Dev. 489 812 1380 60

As per the original axiomatic study [Fang & Zhai, 2005], wefpaned stemming, but didot remove
stopwords. A term-weighting function that correctly madedlevance should be able to correctly weight all
types of terms. A complete theoretical model for retrievedidd not exclude terms based on some arbitrary
list. This increases the probability of violations of coasit 1 (due to property 8 not being present) as there
are many terms in the documents that have a low informatioiecd. Thus, when these terms occur, the
increase in penalisation may be greater than the weighitbdlake to the term occurring.

5.2 Comparison of Schemes Using Constraint Violations

Table 2: No. of constraint violations on average per document andygoe FR collection for
short, medium and long queries

| Topics | short | medium | long |
|Scheme$ C1| C2| C3| c4|| C1| C2| c3| c4| cC1| C2| C3| Cc4
PIV 2.5| 0.0] 1.9/396.5|79.4/ 0.0/52.3/306.1|223.5 0.0{148.6 259.0

BM25 3.6|38.3] 3.5/338.3||99.0|274.6 89.9215.5| 264.6 408.9 234.5/115.3
MBM25| 1.9| 0.0] 1.4/314.9|78.1 0.0|57.1] 17.5/|219.4 0.0/156.1] 4.5
DRF 2.0/ 0.0 1.5/ 0.0|79.5| 0.0|61.1] 0.0{223.4 0.0|164.4 0.0
ES 0.05{ 0.0 0.3] 0.0y 6.7/ 0.0f 8.8/ 0.0 57.8) 0.0 45.7, 0.0
LM 0.07| 0.0] 0.1{518.0f 9.6 0.0/13.4/479.4| 49.2 0.0| 49.5445.7
F2EXP |0.26| 0.0{0.33/314.3||38.3] 0.0|19.4] 17.5|138.7, 0.0 79.5 4.5

Table 2 shows the number of constraint violations averaged@cument, per query, for the FR collection
for the top 1000 documents of one of the best retrieval ruasekample, for a long query, the origirai25
scheme violates all the constraints, and violates comstiaan average of 264 times per document. We can
see that constraint 2 is satisfied by most of the schemes. érhaimder of the test collections show very
similar results over a set of topics.

The first thing to notice is that none of the schemes adher# & the constraints unconditionally as
indicated by our analysis (Section 4). Furthermore, the memof violations of constraints 1 and 3 also in-
creases as the queries get longer. This is because therewrguery terms being matched to the documents.



For longer queries, there is a greater chance of spuriooster terms of minimal information content being
introduced. This will cause more violations of constraihtand 3, because property P8 is absent in all of
the term-weighting schemes. TMBM25 scheme violates each of the constraints a fewer numbenes$t
compared to the origindM25 scheme and should perform better in all cases. The pidategment normal-
isation schemeR1V) violates constraint 4 a large number of times for short, inmadand long queries, which
would tend to indicate that its document normalisation isrp@ur analysis has shown that the normalisation
used in this scheme is poor.

Of the two schemes that adhere to most of the propertiesRF andES), the ES scheme violates
less constraints. Both schemes unconditionally adherenstraints 2 and 4, but the number of violations of
constraints 1 and 3 for theS scheme is less than a third of those of BieR scheme, for all query lengths.
This is an interesting result as it shows that the measurafofmation content (i.e. term-discrimination
measure) used by tHeS scheme and the normalisation applied therein, seem to bneagonstraints less
often that theDFR scheme. Although, both schemes contains the same numlgmodfterm-weighting
properties. The language modelling schemll) also have very few violations of constraints 1 and 3. It
seems to break constraint 4 quite frequently however. Fildmdiscussion we can predict that the best
performing scheme (in general) should be Bféscheme and the worst scheme should be the unmodified
BM25 scheme. Th®FR scheme should perform better than the modiBBd25 on most data due to its
satisfaction of constraint 4.

5.3 Performance Comparison of Schemes

Table 3: MAP on test collections for short (title) queries

SchemeSLATIMES| FBIS|  FR)
Topics | 301-45( 301-450 251-450
ES 0.2256 0.2678 0.2912
F2EXP | 0.2276 0.2505 0.2956
LM 0.2248 0.2596 0.2798
DRF 0.2121 0.2355 0.2796
MBM25| 0.2106 0.2305 0.2766
PIV 0.2020 0.2163 0.2381
BM25 0.2080 0.2273 0.2729
p 05 05 05

Tables 3, 4 and 5 show the performance of the schemes on sfaledacollections.The measure is
the Spearman correlation between the number of constrialations for a scheme on a particular collection,
and the MAP (performance) of the scheme on that collectioa.cdh see that the best performing schemes
across the collections is the scheme that breaks constilasmt often on the test collections (i.e. B8
scheme). Th®FR scheme slightly outperforms the modifiB§125 scheme on short and medium queries.
On longer queries the schemes perform more similarly. Thiigetates with the similar number of violations
of constraint 4 for long queries for these schemes. We caths¢@lthough the sample size is quite small,
the data indicates that there is a consistent inverse atiorlbetween the ranking of the schemes by perfor-
mance, and the ranking of schemes by the number of constiaiations. The larger number of violations of
constraints on medium and long queries, for the origBMP5 schemes, explains the very poor performance
of this scheme on these types of queries (as indicated inrihi@al work [Fang & Zhai, 2005]).



Table 4: MAP on test collections for medium length (title+desc) qeer

| SchemebLATIMES | FBIS|  FR|OHSUMED)

| Topics | 301-45( 301-45( 251-45( 1-63
ES 0.2277) 0.2687 0.3150  0.3319
F2EXP | 0.2445 0.2661 0.3103  0.3252
LM 0.2357 0.2833 0.3049  0.2903
DRF 0.2334 0.2447 0.2869  0.3149
MBM25| 0.2328 0.2420 0.2825  0.3127
PIV 0.2219 0.2253 0.2479  0.3164
BM25 0.1695 0.1852 0.1666  0.2779
p -0.39] -0.35 0464  -0.785

Table 5: MAP on test collections for long (title+desc+long) queries

|SchemeSLATIMES | FBIS|  FR|
| Topics | 301-450301-450 251-45(

ES 0.2316 0.2393 0.3448
F2EXP 0.2634 0.2657 0.3453
LM 0.2032 0.1979 0.2144
DRF 0.2393 0.2397 0.3169
MBM25 0.2415 0.23935 0.3188
PIV 0.2174 0.2213 0.2832
BM25 0.1212 0.0443 0.0544
p -0.78] -0.78] -0.928
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Figure 3: Number of violations vs performance on FR collection
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Figure 4: Spearman correlation vs average performance for all mediwgries

Figure 3 shows a plot of the performance of each term-waigHtinction on the FR collection and the
number of violations for each scheme on that collection. Wesee that there is a general inverse correlation.
The plot for the other collections is quite similar. Figurshbws the Spearman correlation of all the medium
length queries vs the average performance of each quergsatire different functions. We can see that for
most queries ( 80%) there is a negative correlation betwéaations and performance (i.e. most of the
gueries lie on the negative side of the plot).

5.4 Related Work: Relaxing thebag of wordsassumption

Recently, the proximity of terms in a piece of text has beewstto be useful feature in IR [Tao & Zhai, 2007,
Lv & Zhai, 2009]. Several works have shown that proximity de@nincorporated into retrieval functions to
boost the performance at low levels of recall. These prayitmased ranking functions relax thag of words
assumption and therefore, may violate the simplistic cairgs outlined earlier.

Related work has developed two further constraints for ipnay [Tao & Zhai, 2007], which are in-
tuitively motivated, for incorporating proximity into bag of words retrieval function. Some recent work
[Cummins & O’Riordan, 2009, Cummins et al., 2010] has usethaa learning approach to that outlined
earlier in this work (ie. genetic programming), and prodlitenctions that appear to validate the proximity
constraints previously developed. This approach of véfida seemingly intuitive, constraints by learning
functions that best "fit’ the data is useful for both areamébimation retrieval and machine learning.

6 Conclusions

This chapter has reviewed a number of axioms that are mtljtmotivated and that can be used to constrain
current term-weighting schemes in many ways. We have aadtlgeveral properties that must be present in
state of the art term-weighting schemes, in order to undimmdilly adhere to the constraints. Our analysis

shows that none of the current state of the art term-weighgghemes can unconditionally adherealioof

the constraints. However, the derivation of the propecd@sbe used to model term-weighting schemes that
limit or reduce the potential for constraint violations.



Furthermore, we have outlined an approach that counts thbauof actual constraint violations on a
sample of the top ranked documents from a retrieval run. Qiomaptary to our analysis, we show that all
of the term-weighting schemes presented violate some afdhstraints on test data. Furthermore, many of
the schemes violate some of the constraints a large numliered on the collections used. Interestingly, we
show that the number of violations of all constraints thatuw@er document for an average query, is inversely
correlated to the performance of the schemes on that dolfecThis approach could be used to predict the
best weighting scheme to used on a per collection basisré-utork includes identifying the most important
constraint to satisfy in order to best predict retrievafpenance.
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