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ABSTRACT

Traditional ad hoc retrieval models do not take into account
the closeness or proximity of terms. Document scores in
these models are primarily based on the occurrences or non-
occurrences of query-terms considered independently of each
other. Intuitively, documents in which query-terms occur
closer together should be ranked higher than documents in
which the query-terms appear far apart.

This paper outlines several term-term proximity measures
and develops an intuitive framework in which they can be
used to fully model the proximity of all query-terms for a
particular topic. As useful proximity functions may be con-
structed from many proximity measures, we use a learning
approach to combine proximity measures to develop a useful
proximity function in the framework. An evaluation of the
best proximity functions show that there is a significant im-
provement over the baseline ad hoc retrieval model and over
other more recent methods that employ the use of single
proximity measures.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models, Search Process

General Terms

Experimentation, Performance

Keywords

Information Retrieval, Learning to Rank, Proximity

1. INTRODUCTION
Ad hoc retrieval functions typically use occurrences of the

query-terms in the document and collection to determine
the usefulness (or weight) of each term in a particular doc-
ument. These weights are aggregated and normalised for a
specific document so that a final score can be assigned to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$5.00.

document for a particular topic. Vector space models [17],
probabilistic models [9] and language models [12] all sim-
plify their approaches by adopting the term-independence
assumption. This assumption ignores the relationship be-
tween individual terms with regard to proximity, position
and synonimity. We tackle the problem of incorporating the
first of these characteristics, that of the proximity between
terms, with regard to document scoring in the traditional ad
hoc retrieval task in an intuitive information retrieval (IR)
model.

The contributions of this paper are four-fold:

• We outline an extensive list of term-term proximity
measures which are heuristically motivated. We also
perform an analysis of the independent measures to
identify their correlation to relevance in the top ranked
documents.

• We develop an intuitive framework for the proximity
model into which useful term-term proximity functions
can be incorporated.

• We employ the use of a machine learning approach
to search through the space of term-term proximity
functions.

• We evaluate the best learned proximity functions on
test data to show that they achieve a significant in-
crease in performance.

The remainder of the paper is organised as follows: Sec-
tion 2 summarises previous work into proximity in IR. We
outline the strengths and limitations of previous work. Sec-
tion 3 outlines an extensive list of possible term-term prox-
imity measures. We also perform an analysis of each of
the independent measures with respect to relevance. Sec-
tion 4 details the framework into which a possible proximity
function may be placed in order to complete the IR model.
Section 5 presents the experimental setup and retrieval func-
tions used. Section 6 presents the experimental results. Our
conclusions and future work are detailed in section 7.

2. RELATED RESEARCH
There has been many recent attempts to incorporate prox-

imity into IR models [4, 3, 18, 2, 1, 11]. The relatedness of
terms in a semantic sense can be mapped to a proximity
measure [3]. Proximity in IR has been researched for some
time and semantic proximity (or related-ness between terms)
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has been incorporated into retrieval systems using query ex-
pansion techniques to help overcome the problem of term
mismatch.

However, as we wish to explore the actual closeness of
terms in a segment of text, we define proximity as the sim-
ilarity of query-terms within a sample of text. Thus, if the
proximity between two terms is 0, they are not in the same
grouping. This same grouping may be defined at different
levels of granularity, for example, at the document level.
This paper deals with proximity within documents only. The
underlying hypothesis being that documents in which query-
terms appear closer together are more useful to the user (i.e.
have a higher degree of relevance).

Boolean (or set-based) retrieval models often have opera-
tors to measure the proximity of certain terms within doc-
uments. Work has been presented [2] that makes use of a
fuzzy set theoretic measure of proximity in a Boolean model
of retrieval. This framework is elegant and presents results
for a number of different system parameter settings. Previ-
ous research [14] has used a window or passage method to
determine proximity within a certain threshold. The work
shows that proximity can increase performance on small col-
lections.

Proximity information is incorporated into an existing ad
hoc retrieval function (used as an underlying framework) to
improve the performance of short queries [15]. They create
a proximity function at the sentence level, whereby if two
query terms appear within the same sentence the document
score will be increased. This score is also subject to the
distance between the terms in the sentence. They show that
modest improvements on larger ad hoc retrieval TREC data
can be achieved. More recently some approaches have been
successful in employing proximity into a number of keyword
based retrieval functions [18]. The work shows that a search
of the space of proximity functions is non-trivial. They show
significant improvements for short queries.

However, we have identified several limitation of the re-
search conducted to date. Some of the research looks at only
the closest pair of query-terms in a document and modifies
the document score accordingly, while ignoring other query-
terms in the document [18]. A complete proximity function
should include the relationships between all query-terms. In
much, if not all, of the literature, only short queries are used.
It has also been shown that longer queries are more difficult
to improve using a proximity measure [1]. The use of shorter
queries simplify the number of term-term proximity relation-
ships, as there may be more complex interactions when there
are several term matches between a query and document. It
is not clear if significant increases in retrieval effectiveness
can be achieved using longer queries. This question has been
largely unexplored.

Most of the research to-date has only constructed prox-
imity functions from independent proximity measures. It
is a simpler task to measure independently the benefit of
individual proximity measures to retrieval performance in
a specific framework. However, a better proximity function
may well consist of a combination of proximity measures and
normalisation factors. A proximity function which uses mul-
tiple measures of proximity may outperform these simpler
approaches. In much of the research, the models adopted
augment a traditional keyword-based retrieval model with
a proximity function in an unmotivated, ad-hoc and non-
intuitive manner.

This paper aims to address all of the aforementioned is-
sues. We aim to create a proximity function which deals
with all possible query-terms, without the need for arbi-
trary thresholds or parameters and which fits neatly into an
intuitive framework for retrieval.

3. PROXIMITY MEASURES
This section outlines several individual term-term proxim-

ity measures, measures which capture proximity of all terms
in the query and also outlines some normalisation measures.
For the term-term proximity measures outlined, it is neces-
sary that the measure is symmetrical. For a specific term-
term proximity measure (pm(a, b)) which measures the prox-
imity between term a and b, we wish to find measures where
pm(a, b) = pm(b, a). This definition of proximity is intuitive
for proximity as defined in this work (although it may not
be a valid assumption if one is to define proximity in terms
of synonimity or semantic relatedness).

We wish to search for proximity functions which incorpo-
rate relationships between all query-terms and as such we
first consider the pairwise similarity between terms. There-
fore, when considering two terms a and b occurring in a
document D, we consider measures which can be calculated
using both terms’ position vectors. We define a position vec-
tor as the list of integer positions in the document D where
a term occurs. The following sample document D will be
used to explain how each of the proximity measures can be
calculated for a query Q with query-terms a and b:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
D = {a b c d a b d e f g h a i j}

Q = {a b}

For simplicity, we ignore paragraph and sentence bound-
aries. Therefore, the positions of each term reflect the ac-
tual ordering in which the terms occur in the document. Let
posD

a denote the vector of integer positions of a in document
D and let tfD

a be the term-frequency of a in document D.
Therefore, posD

a = {1, 5, 12}, posD
b = {2, 6}, tfD

a = 3 and
tfD

b = 2. In this work, we are aiming to develop measures
which capture proximity information from all of the query
terms.

The 12 measures in this section relate to proximity ei-
ther implicitly or explicitly. Many of these measures can
be easily calculated using the position vectors of each term.
The term-term proximity measures 1 to 6 deal with the dis-
tance between the positions of a pair of terms in a document.
These measures can be seen as explicitly capturing proxim-
ity in some way. Measures 7 and 8 may capture proximity
implicitly by combining the term-frequencies of each term
in the document. Measures 9 and 10 capture information
regarding the terms in the entire query. Measures 11 and 12
are potentially useful normalisation measures.

1. min dist(a, b,D) is defined as the minimum distance
between any occurrences of a and b in D. In the ex-
ample, min dist is 1 (i.e. 2− 1) and can be calculated
from the position vectors. The main intuition behind
this measure is that if any occurrence of term a is close
to any occurrence of term b, it indicates a relatedness
between the terms. It would be expected that there is
an inverse correlation between the min dist measure
of all query-terms and relevance.
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2. diff avg pos(a,b,D) is defined as the difference be-
tween the average positions of a and b in D. This mea-
sure first calculates the average position of each of the
terms using the position vectors and then uses the dif-
ference as a measure of proximity. In the given exam-
ple, diff avg pos is 2 (i.e. ((1+5+12)/3)−((2+6)/2)).
It indicates where each term tends to occur (e.g. one
term may tend to occur near the beginning of the doc-
ument, while the other may tend to occur near the
end of document). This measure makes use of position
information about all occurrences of both query-terms.

3. avg dist(a, b,D) is defined as the average distance
between a and b for all position combinations in D
(with time complexity O(tfD

a × tfD
b )). In the exam-

ple, the distances from the first occurrence of a (in
position 1) to all occurrences of b are: {1 and 5}. This
is computed for the next occurrence of a (in position
5) and so on. avg dist for the example is ((1 + 5) +
(3 + 1) + (10 + 6))/(2 · 3) = 26/6 = 4.33. It sums
every possible combination of distance between a and
b and averages the result. This measure will promote
terms that consistently occur close to one another in a
localised area. For example, if a single paragraph has
multiple occurrences of both query terms, this distance
will be reduced.

4. avg min dist(a, b,D) is defined as the average of the
shortest distance between each occurrence of the least
frequently occurring term and any occurrence of the
other term. In the example, b is the least frequently oc-
curring term so avg min dist = ((2−1)+(6−5))/2 =
1. It can be seen that in two cases a and b occur very
close together in D. These terms may constitute a
phrase. If this phrase occurs multiple times in a doc-
ument but far apart in that document, the two previ-
ously introduced measures would unfairly penalise the
relationship simply because the occurrences of the en-
tire phrase are far apart (i.e. all occurrences are not
localised). The first measure (min dist) would not suf-
ficiently reward the number of times the entire phrase
occurs. The factor used to average the measure is the
frequency of the least frequently occurring term. This
is used so that each occurrence of term b (i.e. the least
frequently occurring) is matched only once (this also
ensures symmetry for this measure). In the example,
the occurrence of a at position 12 maybe completely
unrelated to b (superfluous to the relationship between
a and b) and is ignored by the measure.

5. match dist(a, b,D) is defined as the smallest distance
achievable when each occurrence of a term is uniquely
matched to another occurrence of a term. For the pre-
vious distance function, the occurrence of a term may
be used twice in the computation of the relationship
(if it is an occurrence of the most frequently occurring
term). However, if indeed each term is treated as hav-
ing a pair, each occurrence of the least frequently oc-
curring term should be paired with one distinct occur-
rence of the second term. The problem can be posed
as follows; what is the best way to match the occur-
rences of pairs of terms so as to minimise the total dis-
tance between the pairs? This problem can be solved
in exponential time using a dynamic programming al-

gorithm. Fortunately, the frequencies of the query-
terms in the document are relatively small so that this
calculation is feasible on TREC documents. In the
above example, the answer is the same as the previous
measure as match dist = ((2 − 1) + (6 − 5))/2 = 1.
The frequency of the least frequently occurring term
is used in averaging the score.

6. max dist(a, b,D) is the maximum distance between
any two occurrences of a and b. In the example max dist =
(12−6) = 6. This may be a useful measure of distance
or may be a useful normalisation factor for some of the
other proximity measures.

7. sum(tf(a), tf(b)) is defined as the sum of the term-
frequencies of a and b in D. This measure gives an im-
plicit indication of the proximity of both terms. If this
measure is high, the probability of closer occurrences
of terms is automatically higher. In the example used,
sum is 5 (i.e. 3 + 2) for document D.

8. prod(tf(a), tf(b)) is defined as the product of the
term-frequencies of a and b. This measure also gives
an implicit indication the proximity of both terms. If
this measure is high, the probability of closer occur-
rences of terms is again automatically higher. In the
example, prod is 6. Furthermore, these two measures
(sum and prod) can be combined to give an indication
of the equality of pairwise occurrences of terms in the
entire document. For example, if

p

prod(tf(a), tf(b))/sum(tf(a), tf(b)) = 0.5

then both terms occur an equal number of times pos-
sibly indicating a closeness between the terms. If it is
considerably less than 0.5, one term is far more fre-
quent.

9. fullcover(Q,D) is defined as the length of the doc-
ument that covers all occurrences query-terms. This
measure has previously been defined as span [18]. The
value of fullcover is 12 in the example given. This
measure is a query specific measure as it incorporates
all terms in the query.

10. mincover(Q,D) is defined as the length of the doc-
ument that covers all query-terms at least once. The
value of mincover is 2 in the example given. This will
be the same as min dist+1 for a two-term query. The
intuition for this, and the preceding measure, is that if
all the query terms reside in a smaller segment of text,
it indicates that the document contains a segment that
has a high probability of relevance and thus, the doc-
ument has a higher probability of relevance.

11. dl(D) is defined as the length of the document and is
a factor useful for normalisation in IR. It may be very
important in the scaling or normalisation of some of
the proximity measures introduced here. For example,
shorter documents are more likely to have closer term
proximities. In the example outlined earlier, dl(D) is
14.

12. qt(Q, D) is defined as the number of unique terms that
match both document and query. In [18], it is shown
that mincover is not inversely correlated with relevant
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documents (indeed the opposite). This is because of
the fact that mincover will be also be smaller for docu-
ments with fewer query terms (i.e. a document match-
ing only one query term has a mincover of 1 by defi-
nition). Thus, it is suggested that mincover should be
normalised by the number of distinct matching terms
between a document and query (i.e. qt(Q, D)). The re-
sults of this intuition are more promising (as a weak in-
verse correlation is uncovered). However, this normal-
isation factor was incorporated in an unguided manner
and indeed better normalisation may lead to a proxim-
ity function with superior performance. In the example
outlined earlier, qt is 2.

It can be noted that some of these proximity measures are
similar to those in [18]. However, all the measures in that
work are query specific, meaning that they only calculate
the proximity for the closest pair of terms in a query or use
a type of span measure to capture the minimum portion of
text which covers occurrences of the query terms. In fact, of
the 12 measures outlined here, only mincover and fullcover
are the same measures used previously [18].

3.1 Correlations of Measures
In this section, we perform an analysis of each of the inde-

pendent proximity measures to predict which measures may
be most useful when incorporated into a proximity measure.

3.1.1 Collections Used

For our analysis and subsequent experiments, we use the
FBIS, FT, FR collections from TREC disks 4 and 5 as test
collections and topics. Some characteristics of the collec-
tions are indicated in Table 1. For each set of topics we
create a short query set, consisting of the title field of the
topics and a medium length query set, consisting of the title
and description fields. We also use the OHSUMED collec-
tion and its topics. Table 1 shows some of the characteristics
of the collections used in this research. We stemmed the col-
lections using Porter’s algorithm [13] and removed standard
stop-words.

3.1.2 Analysis

Our aim is to incorporate a proximity function into an
existing term-weighting scheme. Therefore, we can view the
problem as performing re-ranking on the top N documents
from an initial ranked list using a proximity function on the
query-terms. This also ensures that these N documents have
an ample supply of query-terms. Consequently, we perform
an analysis of the top 1000 documents from a retrieval run
and examine the correlation between the measures outlined
in the previous section and the relevant and non-relevant
documents in this set of documents.

Table 2 shows the average values of the individual mea-
sures per query across all of the test collections (for relevant
and non-relevant documents respectively). For example, for
short queries, the average min dist between query terms in
the relevant documents is 39.2, while it is 172.4 in the non-
relevant documents. The percentage of queries for which
this inverse relationship holds is also indicated. For exam-
ple, in 83.5% of short queries, the min dist is a smaller
value in the relevant documents than in the non-relevant
documents across all of the collections. However, on the
collections used we have determined that the consistency of

the correlation and the average proximity measure in the
relevant and non-relevant document does not always agree.
For example, consider the avg dist proximity measure for
the medium length queries. We can see that the measure
seems directly correlated with relevance as the avg dist av-
eraged over all queries is higher in the relevant documents
(i.e. 250.0 compared to 235.1). However, we can see that in
fact it is inversely correlated with relevance in 68% of the
queries. Thus, there is a difference between the strength
of the difference of each proximity measure in the relevant
and non-relevant documents and the degree to which they
are correlated with relevance. The asterisk (*) indicates
that there are certain collections in which the consistency
of correlation does not agree with the average difference in
magnitude of the measure in the relevant and non-relevant
document sets.

Of the six pairwise proximity measures, we can see that
min dist, avg min dist and match seem to have the strongest
inverse correlation with relevance. Conversely, we can see
that the qt measure is directly correlated with relevance. In
only 18.5% of queries, the number of distinct query terms
(qt) is smaller in the relevant documents than in the number
of non-relevant documents for short queries.

However, it should be noted that some of the proxim-
ity measures may be correlated with each other implicitly
and a combination of such measures may not increase per-
formance. Some measures may be correlated to relevance
because they are highly correlated with the original ranking
(which is correlated to relevance). Since ranking functions
tend to promote shorter documents with more occurrences
of query terms, many measures of proximity will be implic-
itly correlated to relevance. As a result, incorporating them
in a ranking function may bring about no increase in per-
formance (MAP ). Due to the complexity of the problem,
the potential number of measures and multitude of combi-
nations that may exist, it is difficult to perform an in-depth
analysis of the potential benefit of each proximity measure
in isolation.

4. PROXIMITY RETRIEVAL MODEL
Our goal is to create a model of retrieval which incorpo-

rates proximity into an intuitive model. Therefore, we ex-
tend a vector (or bag of words) model into one which exploits
proximity or closeness between pairs of terms. As most tra-
ditional keyword models of retrieval can be viewed as vector
type approaches, we extend this model so that documents
and queries are viewed as matrices.

Consider the following 3 × 3 matrix representing a docu-
ment D matching 3 query-terms (Q). The document may
have many terms but we only consider terms that match
the query in the scoring process. Let the diagonals be the
relatedness between a term and itself and the non-diagonal
entries be the proximity (or closeness) between a pair of dis-
tinct terms. The query representation is kept simple due
to the relative size of the query compared to the document.
Thus, the following document representation is equivalent to
a vector based model as term-independence is assumed (i.e.
the proximity between two distinct terms is 0 and w(t1) is
some tf -idf type score for each term).

D =

0

@

w(t1) 0 0
0 w(t2) 0
0 0 w(t3)

1

A
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Table 1: Test Collections
Documents Topics

# Avg. Length Range # title title+desc
Avg. Length

LA 131,896 225 351-450 95 2.4 9.5
FBIS 130,471 241 301-450 116 2.4 10.4
FR 55,630 344 251-450 95 2.6 10.6
OHSUMED 293,856 91 1-63 63 - 7
FT-TRAIN 69,507 191 301-400 55 2.2 9.5

Table 2: Inverse correlations over all collections
title only title+desc

REL NON-REL %Qrys REL NON-REL %Qrys
min dist 39.2 172.4 83.5% 55.7 87.8 80.3%
diff avg pos 176.7 366.5 75.8% 165.0 175.4 74.6%
avg dist 270.7 455.7 69.8% 250.0 235.1 68.0%*
avg min dist 65.5 190.5 82.1% 77.8 101.7 77.3%*
match dist 86.0 205.8 78.3% 96.2 113.6 76.2%
max 564.6 647.7 58.7%* 471.1 376.3 60.5%*
sum 13.0 7.5 32.2% 10.2 6.4 33.9%
prod 94.6 45.3 38.0% 80.3 23.7 39.7%
fullcover 720.5 875.4 61.8%* 684.2 539.7 59.4%*
mincover 49.5 181.9 81.7% 160.5 180.5 72.3%
dl 971.8 1410.5 73.2% 814.4 730.6 69.4%*
qt 2.1 2.0 18.5% 3.3 2.7 21.0%

If we assume that the weights of the diagonal entries are
weights in a traditional retrieval model (e.g. tf -idf or BM25),
the model can be simply extended by defining the non-
diagonal elements as a useful proximity function (p()). Thus,
the proximity function is some combination of the set of 12
proximity measures introduced earlier that define term-term
closeness or proximity as defined in this work. Again, we can
assume a simple weighting on the query-terms due to the rel-
ative size of the query in comparison to the document (even
for a query of 10 or so terms). Thus, the representation of
a document in our model is as follows:

D =

0

@

w(t1) p(t2, t1) p(t3, t1)
p(t1, t2) w(t2) p(t3, t2)
p(t1, t3) p(t1, t2) w(t3)

1

A

where w() is a standard term-weighting scheme and gives
us the weight of term in a document and p() is a proxim-
ity function. Usually, a document can be represented by
a vector and the final score is some aggregation of those
weights. Therefore, the entire score of the document can
now be defined as the sum of all combinations of term-term
relationships:

S(D, Q) =
X

i∈Q∩D

X

j∈Q∩D

˛

˛

˛

˛

w(i) ∀i = j
p(i, j) ∀i 6= j

˛

˛

˛

˛

.

which aggregates all of the elements of the document ma-
trix (as we use simple weighting on the query terms). As all
measures of proximity introduced earlier are symmetrical,
p(i, j) will equal p(j, i) and each term-term proximity score
in the framework is counted twice. We allow this as the
framework can then also be used to model semantic simi-
larity (i.e. where p(i, j) 6= p(j, i)) using a different set of
semantically related term-term measures.

While this framework, like many others, has no theoretical
basis, it is an intuitive extension of a vector based approach.
Indeed, there is no theoretical basis for mapping documents
into a Euclidean space at all. If we assume that proxim-
ity has no effect or that term occurrence is independent we
can set p(i, j) = 0 ∀i 6= j and recover a standard vector
based retrieval model. Now, assuming that proximity is an
important measure in a retrieval model, we need to instan-
tiate the proximity function p() in our framework. Previ-
ous research has indicated that this is a non-trivial problem
and developed a constraint which helped to guide the search
for a useful function [18]. However, this constraint is only
useful when using the individual measures for proximity in
isolation. We wish to find a useful proximity function, by
combining some or all of the 12 proximity measures identi-
fied earlier. In order to achieve this, we employ the use of
genetic programming (GP) [10] and search the space of prox-
imity functions in a guided manner, as GP has previously
been used in IR to search for useful ranking functions [19,
5]. The next section introduces this GP process and exper-
iments which aim to instantiate useful proximity functions
in our framework.

5. EXPERIMENTAL SETUP
In this section, we outline the benchmarks and the ini-

tial term-weighting schemes into which we can incorporate
a proximity function. We also provide a brief description
of the GP process before outlining the settings for the GP
process for which we use to create proximity functions.

5.1 Benchmarks
As a benchmark against which to test our approach we

use the traditional BM25 scheme.

255



BM25(Q, D) =
X

t∈Q∩D

(
tfD

t · log(N−dft+0.5

dft+0.5
) · tfQ

t )

tfD
t + k1 · ((1 − b) + b · dl

dlavg
)

(1)

where tfD
t is the frequency of term t in document D, dl

is the document length, dft is the document frequency of
term t and dlavg is the average document length in the en-
tire collection. k1 is the term-frequency influence parameter
which is set to 1.2 by default. The query term weighting
used here (tfQ

t ) is slightly different to the original weight-
ing method proposed [16] but has been used successfully in
many studies [7]. b is the document normalisation influence
tuning parameter and has a default value of 0.75.

We use the BM25 matching function and the proximity
function previously developed by Tao [18] as another bench-
mark. The proximity function t() is as follows:

t() = log(α + exp(−min dist(Q, D))) (2)

where min dist(Q, D) is the minimum distance between
any occurrence of any two query-terms in the document1 . It
is stated that α set to 0.3 provides stable performance and
thus we use this setting for our experiments [18].

The term-weighting scheme upon which we base the prox-
imity functions in these experiments is based on a previously
learned formula [6] and is as follows:

ES(D, Q) =
X

t∈Q∩D

(
tfD

t · tfQ
t

tfD
t + 0.45 ·

q

dl
dlavg

·
s

cf3
t · N
df4

t

) (3)

where cft is the frequency of t in the entire collection. The
choice of underlying ranking function is not crucial for the
development of a proximity function. Although the perfor-
mance of a specific instantiation of a proximity functions
is dependent on the underlying ranking function, it is our
intent to show that the process can find useful proximity
functions and that these are indeed general across different
test collections (not that the proximity functions are general
for a multitude of ranking functions). The process outlined
here can be repeated for different underlying ranking func-
tions, like BM25, but this experimentation lies outside the
scope of this paper.

The benchmark proximity functions can be instantiated
by simply adding t() to the score of the original ranking
function. We will label these functions BM25 + t() and
ES + t(). In this section, we have outlined two ranking
functions (BM25 and ES) and a baseline proximity function
(t()) which can be used with each.

5.2 GP process
GP is a heuristic stochastic search algorithm, inspired by

natural selection, and is useful for navigating large complex
search spaces. Initially, a population of solutions is created
randomly (although other approaches seed the initial popu-
lation with known solutions). The solutions are encoded as
trees. Each tree (genotype) contains nodes which are either
functions (operators) or terminals (operands). Each solu-
tion is rated based on how it performs in its environment.
This is achieved using a fitness function. Having assigned

1This is different that the min dist(a, b, D) defined in this
work which specifies which pair of query-terms to use.

the fitness values, selection can occur. Individuals are se-
lected for reproduction based on their fitness value. There
are various different methods used to select individuals but
all are based in some way on the fitness of the individual.

As a result, fitter solutions will be selected more often.
Once selection has occurred, recombination can start. Re-
combination creates new solutions for the next generation
by use of crossover and mutation. Recombination occurs
until the population is replaced by new solutions. The pro-
cess usually ends when a predefined number of generations
is complete. Some important parameters in the GP process
are the population size, the number of generations for which
to run the GP, the function set and the terminal set. Genetic
programming has been shown to be useful for finding solu-
tions in complex search spaces such as combining sources
of evidence in IR. One of the big advantages conferred by
the GP approach over other machine learning solutions is
that the resulting learned solutions are available in readable
format rendering them amenable to further analysis.

5.3 Training
We used a subset of the Financial Times collection as a

training collection for the GP (FT-TRAIN in Table 1). We
took 69,500 documents and 55 queries (in the range of topics
301-400). We used 25 title only queries and 30 title and
description queries. The slightly longer queries will help
the GP to learn general term-term proximity functions as
there are more pairwise interactions in these longer queries
((n2−n)/2 possible relationships for each query). The fitness
function used in the experiments is MAP as it is a stable
measure of IR performance. In fact, we learn a function
which is twice the value produced by a proximity function
for a pair of terms in the the framework outlined earlier (i.e.
2× p()). Therefore, we can score the proximity part of each
document in (n2 − n)/2 steps.

We ranked the documents using the ES scheme and calcu-
lated all the proximity measures for the top 3000 documents.
We used all of the proximity measures previously introduced
as input terminals to the GP (which was developed using ex-
isting software [8]) along with three constants for used for
scaling (i.e. {1, 10, 0.5}) . We also used the following func-
tions as inputs to the GP : +, −, ×, /,

√
, sq(), log().

We then ran the GP six times with an initial random pop-
ulation of 2000 for 30 generations using an elitist strategy
(i.e. where the best individual is automatically copied to
the next generation). We then chose the best function from
each of the six runs as a proximity function (labelled p1() to
p6() in our experiments).

6. EXPERIMENTAL RESULTS
In this section, we outline the results of our experiments.

We conducted a Wilcoxon signed-rank test on the proximity
functions when compared to the underlying ranking func-
tion. For the following results, † and ‡ indicate that the
results are significant at the 0.05 and 0.01 level respectively.
The best result on a collection is in bold text. In all cases
we are testing the significance with respect to the underlying
ranking function. For example, BM25 + t() is compared to
the BM25 function, while ES + t() is compared to the ES
function.

6.1 Training
Table 3 shows the results of the best three runs of the
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GP on the training data. The only two formula which are
significant on the training data are p5() and p6(). On the
training data, the t() function does not lead to a significant
increase although a small increase is seen when compared to
both underlying ranking functions.

Table 3: MAP on Training Data

TRAINING

BM25 0.2999
BM25 + t() 0.3007

ES 0.3273
ES + t() 0.3280

ES + p2() 0.3435
ES + p5() 0.3466 †
ES + p6() 0.3451 †

The three best functions produced by the GP are as fol-
lows:

2 × p2() = log(
10

min dist
) + 5 · prod

avg dist
+

r

10

min dist

2 × p5() = ((((((
log(fullcover)

min dist2
+

10

sum
)

·min dist) − 0.5)/(min dist2)) + (((log(0.5))

+(
prod

avg dist
))/0.5))/min dist) − 0.5

2 × p6() = ((3 · log(
10

min dist
) + log(prod +

10

min dist
)

+
10

min dist
+

prod

sum · qt )/qt)

+
prod

avg dist · min dist

From inspection, it can be seen that min dist appears in
all of the functions found by the GP. avg dist also appears in
all of the best functions suggesting that there is also benefit
in incorporating this measure into proximity functions. The
best two functions (p5() and p6()) also make use of the sum
and prod measures. However, as is the case with any ma-
chine learning approach, it is possible to have over trained,
or over-fitted, for the data. In order to properly test the
usefulness of the learned functions, we need to test over un-
seen data. The next section compares the chosen functions
on unseen test data.

6.2 Tests on Unseen Data
The results on the test data show that measures of prox-

imity and the information contained therein are useful in
increasing performance of IR systems. We attain a notable
improvement over existing benchmarks by learning a suit-
able means to combine intuitive proximity measures. This
is reflected in the increased MAP scores obtained (Table 4).
We can see that the performance of p6() in terms of MAP is
significantly better than that of its underlying function on
most test collections. p5() also shows significant improve-
ment on many of the collections. We can see that there is
little or no improvement for p2() which mirrors the results
of the significance tests on the training data.

The t() function also performs poorly on many of the col-
lections especially for longer queries. This shows that it is
important to incorporate the proximity relationships of all
the query-terms into one function for these longer queries.
The t() function only incorporates the relationship between
the closest query-term pair in the document to augment the
retrieval score. For longer queries, this becomes problem-
atic as the closest pair of query-terms may be less important
terms with respect to the entire query.

We also compare the benchmarks with the best evolved
proximity function (p6()) in terms of the precision achieved
at 10 documents (Table 5). Again, an improvement is achieved
over the standard ranking functions.

7. CONCLUSION
We have outlined an extensive list of measures that may

be used to capture the notion of proximity in a document.
We have indicated the potential correlation between each of
the individual measures and relevance. From this analysis,
we have indicated that min dist is highly correlated with
relevance which corresponds with previous work [18]. We
outline an IR framework which incorporates the term-term
similarities of all possible query-term pairs. This framework
leads to a ranking function into which a proximity function
can be placed. We adopt a population based learning tech-
nique (GP) which learns useful proximity functions in the
framework developed. Using this learning approach, we de-
velop six functions, three of which are presented here.

Finally, we evaluate three of our learned proximity func-
tions on test data and show that they outperform previous
benchmarks, particularly for longer queries. It is interest-
ing to note that the proximity functions presented in this
paper achieve an improvement for both short and longer
queries. Previous approaches have failed to demonstrate an
improvement using proximity measures for longer queries.
We believe this is due to limitations of the chosen proximity
measures used in previous research; previously used mea-
sures did not take into account evidence provided by all the
proximity relationships among query terms. We have also
included measures which consider more than just a limited
subset of the query terms proximity scores. Such measures
(e.g avg dist) take into account proximity scores between all
occurrences of query terms.

The research described in this paper demonstrates that
it is possible to use combinations of proximity measures to
improve the performance of IR systems for both short and
long queries. Future work will involve further exploration
of the learned functions and other types of proximity that
could be used in the framework.
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