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Quote

“An author writes not only by processes of association – i.e. sampling
earlier segments of the word sequence – but also by process of
imitation – i.e. sampling segments of word sequences from other
works he has written, from works of other authors, and, of course,
from sequences he has heard.”

— Herbert A. Simon (1955)



Motivation

I Bag of words
I Term-dependencies

I Improves retrieval effectiveness +
I Leads to more complex models -
I ClueWeb09 (1 Billion documents)

I Can we create a retrieval model that includes
dependencies but without any additional cost?
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Two Kinds of Term Dependency

Examples
Traditional dependencies

I Captain Beefheart
I Che Guevara

Examples
Word Burstiness

I A different kind of dependency
I "Cycling on the footpath is dangerous. A footpath is ..."
I Synonyms: {footpath, pavement, sidewalk }
I Preference for the word already used
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Word Burstiness

I Initial choice of a word to describe a ‘concept’ affects
subsequent usage

I The tendency of an otherwise rare word to occur multiple
times in a document (Church, 1995; Madsen; 2005)

I A form of preferential attachment (e.g. ‘the rich get richer’)
I A generative language model that includes preferential

attachment better explains Zipfian (power-law)
characteristics (Simon, 1955; Mitzenmacher, 2004)

I Two-stage language models (Goldwater et al, 2011)
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VSM

Figure : vector space example



Tradition

I Place documents and queries in a multidimensional term
space

I Use measures of closeness in the space as measures of
similarity

I Conceptually useful
I But?

I What weights to use?
I What matching function to use?
I Experiments tell us that cosine matching function is very

poor
I linear tf and idf has very poor performance
I What did we gain from the VSM other than an

inner-product matching function?
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Language Modelling for Retrieval

I First approaches appeared in 1998 (Ponte and Croft, 1998;
Hiemstra, 1998)

I Relevance-based approaches (Lavrenko, 2001)
I Studies of smoothing (Zhai and Lafferty, 2001)
I Dirichlet compound multinomial relevance language model

(Xu and Akella, 2008)
I Positional language models (Lv and Zhai, 2009)
I State-of-the-art unigram model uses a Dirichlet prior on the

background multinomial updated with a document (Zhai
and Lafferty, 2004)



Language Modelling for Retrieval

I First approaches appeared in 1998 (Ponte and Croft, 1998;
Hiemstra, 1998)

I Relevance-based approaches (Lavrenko, 2001)
I Studies of smoothing (Zhai and Lafferty, 2001)
I Dirichlet compound multinomial relevance language model

(Xu and Akella, 2008)
I Positional language models (Lv and Zhai, 2009)
I State-of-the-art unigram model uses a Dirichlet prior on the

background multinomial updated with a document (Zhai
and Lafferty, 2004)



Query-Likelihood Model

I Rank documents d in order of the likelihood of their model
Md generating the query string q

I General ranking principle for a probabilistic language
model

p(q|Md = θdm) =
∏
t∈q

p(t |θdm)
c(t ,q) (1)

log p(q|Md = θdm) =
∑
t∈q

(log p(t |θdm) · c(t ,q)) (2)
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Query Likelihood
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Query Likelihood

Zero probabilities are especially problematic for longer queries



Smoothing I

I Avoids over-fitting

p(t |θ̂dm) = (1− π) · p(t |θ̂d) + π · p(t |θ̂c) (3)

I Dirichlet prior smoothing

πdir =
µ

µ+ |d |
(4)



Smoothing II

Document 1 (Sample)Background Model

Document 2 (Sample)Background Model
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Smoothing II

Document 1 (Sample)Background Model

Document 2 (Sample)Background Model

Query

Rank document 2 higher than document 1



Overview

I We can derive a retrieval function (and principled
term-weights) using language models, unlike the VSM

I It can be viewed as a form of unsupervised machine
learning

I The multinomial model is efficient to estimate and with
Dirichlet priors smoothing is the state-of-the-art in terms of
retrieval effectiveness

I It forms the basis of many applications
I It does not model term-dependencies
I The model using a Dirichlet prior has a free parameter (i.e.
µ)
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Multivariate Pólya Urn

Model (urn) Document (sample)
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Multivariate Pólya Urn

Model (urn) Document (sample)

Sampling with reinforcement
the rich get richer



Multivariate Pólya Distribution

I The multivariate Polya distribution
(Dirichlet-compound-multinomial or DCM)

I Instead of the multinomial in the original query-likelihood
model we can use the DCM

p(d |α) =
∫
θ

p(d |θ)p(θ|α)dθ (5)

I Parameter vector α can be interpreted as the initial number
of balls of each colour in the urn



Parameterisation

αd = md · θd = (md ·p(t1|θd),md ·p(t2|θd), ....,md ·p(tv |θd)) (6)

I θd can be seen as the expectation
I md can be seen as the scale (variance)
I Low md implies high burstiness



Some properties

I Subsequent balls drawn from the urn are identically
distributed but dependent

I Each sample (document) can be modelled using a
multinomial

I Each time you restart the process to draw a sample, you
draw from a different multinomial

I The process is exchangable
I Generates power-law characteristics of term-frequencies
I Estimating a DCM from multiple samples (i.e. multiple

documents) is computationally expensive (i.e. no
closed-form solutions)



The SPUD Language Model

I Use the Pólya urn as a model for document generation
I Documents are known to exhibit burstiness
I Estimate the document and background models as before

but with different model assumptions
I Retain the multinomial as the model for query generation



Background Model I



Background Model II

I The background model is the most likely single model to
have generated all documents

I Given all documents, find the DCM parameters
I Elkan (2006) has shown that close approximations to the

model parameters are proportional to the number of
samples in which an observation appears (EDCM)

I Essentially, documents exhibit quite a lot of word burstiness



Background Model II

I This is a useful result as close estimates of the the
background parameters will be proportional to:

p(t |θ̂′c) =
dft∑
t ′ dft ′

=
dft∑n
j |~dj |

(7)

I With only mc remaining to be estimated using Newton’s
method

α̂c = (mc · p(t1|θ̂′c),mc · p(t2|θ̂′c), ....,mc · p(tv |θ̂′c)) (8)



Document Model I



Document Model II

I With only one sample we cannot estimate the parameters
of a DCM

I We can estimate the expectation of the DCM but what is
md?

I Thought experiment: What is the minimum initial mass of
the urn (i.e. number of balls) that could have generated d?

I We set md to the number unique terms in the document
(it’s lower bound).

α̂d = (|~d | · p(t1|θ̂d), |~d | · p(t2|θ̂d), ...., |~d | · p(tv |θ̂d)) (9)
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Remaining Parameters

I Linearly combine the two models using one parameter ω
I We can experimentally tune ω

SPUD = ω · αc + (1− ω) · αd (10)
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Questions

I How effective is the new model in terms of retrieval?
I How effective is Newton’s method at automatically

determining the free parameter in the background model?
I Why?



Effectiveness MAP

I Optimally tuning the one free parameter in each function
I All increases are statistically significant (for SPUD v MQL)
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Effectiveness NDCG@20

I Optimally tuning the one free parameter in each function
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Newton’s Method and Tuning

I Mixing parameter is robust at ω = 0.8
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Newton’s Method

I Mixing parameter is set to ω = 0.8
I Tuned mc vs mc estimated using Newton’s method
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Scope Hypothesis

I One of two hypotheses proposed that aim to explain the
interaction between document length and topicality

I Documents vary in length due to some documents
covering more topics (Robertson & Walker, 1994)

I Relevance is likely affected by this aspect of document
length



Verbosity Hypothesis

I Documents vary in length due to verbosity (Robertson &
Walker, 1994)

I Some documents are just more ‘wordy’
I This aspect of document length is independent of topic,

and therefore, relevance
I In reality documents may vary in length due to a

combination of these two hypotheses
I No formal means of capturing whether a retrieval function

adheres to this intuition has been proposed (as far as I
know)



Axiomatic Analysis

LNC2* Constraint
Given a ranking function s(q,d) that scores a document d with
respect to a query q, if d ′ is created by concatenating d with
itself k times, then s(q,d ′) = s(q,d)

In other words, you cannot change the ranking of a document
by concatenating it with itself k times (where k > 1)
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Comparison

Multinomial

MULTdir (q,d) =
∑
t∈q

log(
|d |
|d |+ µ

· c(t ,d)
|d |

+
µ

|d |+ µ
· cft
|C|

) · c(t ,q)

(13)
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Violation I

Document 1 (Sample)Background Model

Document 2 (Sample)Background Model

Query

Document 2 is ranked higher than document 1 (X)



Violation II
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Violation II



Violation II

Document 1 is ranked higher than document 2 (X)
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What about scope?

I What happens as non-query (off-topic) terms are added to
a document

I The part of the SPUD model that deals with scope, only
penalises documents as distinct terms are added
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Probability of Relevance/Retrieval
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Figure : Probability of retrieval/relevance for MQLdir and SPUDdir
methods for trec-9/01 collection for short queries (left) and medium
length queries (right).



A more sensitive idf

Traditional idf

log(
n

dft
) (16)

The actual weight applied to a term occurring in a document
can be re-written as follows:

variable idf

log(1 + δ · n
dft

) (17)

where δ = c(t ,d) · |~d |avg · |~d |/(µ′ · |d |) contains term-frequency
and document length normalisation
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Conclusions

I The simple bag-of-words approach has not yet reached its
limit

I More accurately modelling the language generation
process leads to more accurate unsupervised models of
retrieval

I The Pólya urn model leads to more effective retrieval
without any additional cost

I Automatic setting the parameters in the background model
(unlike the multinomial model)

I An analysis shows that the new model adheres to a new
test for the verbosity hypothesis
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