
Types and Subtypes for Client-Server
Interactions

Simon Gay1 and Malcolm Hole2

1 Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey, TW20 0EX, UK. Email: <S.Gay@dcs.rhbnc.ac.uk>

2 Same address as first author. Email: <M.Hole@dcs.rhbnc.ac.uk>

Abstract. We define an extension of the π-calculus with a static type
system which supports high-level specifications of extended patterns of
communication, such as client-server protocols. Subtyping allows proto-
col specifications to be extended in order to describe richer behaviour; an
implemented server can then be replaced by a refined implementation,
without invalidating type-correctness of the overall system. We use the
POP3 protocol as a concrete example of this technique.

1 Introduction

Following its early success as a framework for the investigation of the foun-
dations of various concurrent programming styles, the π-calculus [12] has also
become established as a vehicle for the exploration of type systems for concur-
rent programming languages [2, 7, 9, 11, 15, 21]. Inter-process communication in
the π-calculus is based on point-to-point transmission of messages along named
channels, and many proposed type systems have started from the assignment of
types to channels, so that the type of a channel determines what kind of message
it can carry. Because messages can themselves be channel names, this straight-
forward idea leads to detailed specifications of the intended uses of channels
within a system. This line of research has not been purely theoretical: the Pict
programming language [16] is directly based on the π-calculus and has a rich
type system which incorporates subtyping on channel types and higher-order
polymorphism.

Honda et al. [5, 20] have proposed π-calculus-like languages in which certain
channels can be given session types. Such a channel, which we will call a session
channel, is not restricted to carrying a single type of message for the whole
of its lifetime; instead, its type specifies a sequence of message types. Some
of the messages might indicate choices between a range of possibilities, and
different choices could lead to different specifications of the types of subsequent
messages; session types therefore have a branching structure. One application
of session types is the specification of complex protocols, for example in client-
server systems. The main contribution of the present paper is to add subtyping
to a system of session types, and show that this strengthens the application to
the specification of client-server protocols. The differences in syntax between

1

our language and the π-calculus are minimal; all the special treatment of session
channels is handled by the typing rules. We anticipate that this will make it
easier to achieve our next goal of incorporating our type system into a modified
version of the Pict language and compiler.

Consider a server for mathematical operations, which initially offers a choice
between addition and negation. A client must choose an operation and then send
the appropriate number of arguments to the server, which responds by sending
back the result. All communications take place on a single session channel called
x, whose session type is

S = &〈plus :?[int] . ?[int] . ![int] . end, negate :?[int] . ![int] . end〉.

More precisely, this is the type of the server side of the channel. The &〈. . .〉
constructor specifies that a choice is offered between, in this case, two options,
labelled plus and negate. Each label leads to a type which describes the sub-
sequent communication on x; note that the two branches have different types,
in which ?[int] indicates receiving an integer, ![int] indicates sending an integer,
. is the sequencing constructor, and end indicates the end of the interaction.
The client side of the channel x has a dual or complementary type, written S.
Explicitly,

S = ⊕〈plus : ![int] . ![int] . ?[int] . end, negate : ![int] . ?[int] . end〉.

The ⊕〈. . .〉 constructor specifies that the client makes a choice between plus and
negate. Again, each label is followed by a type which describes the subsequent
interaction; the pattern of sending and receiving is the opposite of the pattern
which appears on the server side.

An implementation of a maths server must use x in accordance with the
type S, and an implementation of a client must use x in accordance with the
type S. These requirements can be enforced by static typechecking, and it is
then guaranteed that no communication errors will occur at runtime. When the
client chooses a label, it is guaranteed to be one of the labels offered by the
server; when the client sends a subsequent message, it is guaranteed to be of the
type expected by the server; and similarly when the server sends a message.

The typing rules to be introduced in Section 3 will allow the derivation of

x : S1 ` server

where
server = x . { plus :x ? [a : int] . x ? [b : int] . x ! [a + b] . 0,

negate :x ? [a : int] . x ! [−a] . 0}.
The operation . allows a message on x to choose between the listed alternatives.
The labels are the same as those in S, and the pattern of inputs (x? [a : int])
and outputs (x ! [a + b]) matches that in S. The usage annotation of 1 on S
indicates that only one side of x is being used by server.

One possible definition of a client is

client = x / negate . x ! [2] . x ? [a : int] . 0

2

and we can derive the typing judgement

x : S
1 ` client.

Note the use of / to select from the available options, and that the subsequent
pattern of inputs and outputs matches the specification in S. This client does
not do anything with the value received from the server; more realistically, 0
would be replaced by some continuation process which used a.

The client and the server can be put in parallel using the typing rule T-Par
for parallel composition:

x : S1 ` server x : S
1 ` client

x : S2 ` server | client

where the usage annotation 2 on S indicates that both sides of x are being used.
The usage annotations are necessary in order to ensure that each side of x is

only used by one process. The system server | client | client is erroneous because
both clients are trying to use x to communicate with the same server. If this
system is executed, one client will use x to choose either plus or negate. After
that, the server expects to receive an integer on x, but the other client will again
use x to choose between plus and negate. This is a runtime type error of the kind
that the type system is designed to avoid. We will see later that

x : S
1 ` client x : S

1 ` client

x : S
1 ` client | client

is not a valid application of the typing rule T-Par.
To avoid runtime type errors we must ensure that session channels are used

linearly [3]. Our typing rules use techniques similar to those of Kobayashi et
al. [9] to enforce linearity. The type system also allows non-session types to be
specified, and there are no restrictions on how many processes may use them.
For example, y : ̂[int] is a channel which can be used freely to send or receive
integers.

How, then, can we implement a server which can be used by more than one
client? The solution is for each client to create a session channel which it will use
for its own interaction with the server. The server consists of a replicated thread
process; each thread receives a session channel along a channel called port and
uses it to interact with a client.

thread = port ? [x : S1] . server
newserver = !thread

client1body = y / negate :y ! [2] . y ? [a : int] . 0
client1 = (νy : S2)port ! [y] . client1body

client2body = z / plus :z ! [1] . z ! [2] . z ? [b : int] . 0
client2 = (νz : S2)port ! [z] . client2body

Now
port : ̂[S1] ` newserver | client1 | client2

3

is a valid typing judgement. Because port does not have a session type, it can be
used by all three processes. When this system is executed, client1 sends the local
channel y to one copy of thread; the standard π-calculus scope extrusion allows
the scope of y to expand to include that copy of thread, and then client1body
and server have a private interaction on y. Similarly client2 and another copy
of thread use the private channel z for their communication. Notice that y is a
session channel with usage 2 in client1, and indeed both sides of y are used: the
side whose type is S is used by being sent away on port, and the side whose type
is S is used for communication by client1body.

The final ingredient of our type system is subtyping. On non-session types,
subtyping is defined exactly as in Pierce and Sangiorgi’s type system for the
π-calculus [15]: if ∀i ∈ {1, . . . , n}.Ti 6 Ui then ̂[T1, . . . , Tn] 6 ?[U1, . . . , Un]
and ̂[U1, . . . , Un] 6 ![T1, . . . , Tn]. Channels whose type permits both input and
output (̂) can be used in positions where just input or just output is required.
We also have ?[T1, . . . , Tn] 6 ?[U1, . . . , Un] and ![U1, . . . , Un] 6 ![T1, . . . , Tn];
recall that input behaves covariantly and output behaves contravariantly.

Subtyping on sequences T1 . · · · . Tn is defined pointwise, again with ? acting
covariantly and ! acting contravariantly. More interesting is the definition of
subtyping for branch and choice types. If a process needs a channel of type
&〈l1 :T1, . . . , ln :Tn〉 which allows it to offer a choice from {l1, . . . , ln}, then it
can safely use a channel of type &〈l1 :T1, . . . , lm :Tm〉, where m 6 n, instead.
The channel type prevents the process from ever receiving labels lm+1, . . . , ln
but every label that can be received will be understood. Furthermore, a channel
of type &〈l1 :S1, . . . , lm :Sm〉 can be used if each Si 6 Ti, as this means that
after the choice has been made the continuation process uses a channel of type
Si instead of Ti and this is safe. In Section 5 we will see how subtyping can be
used to decribe modifications to the specification of a server.

The remainder of the paper is organised as follows. Section 2 defines the
syntax of processes and types, and some basic operations on type environments.
The typing rules are presented in Section 3. Section 4 defines the operational
semantics of the language and states the main technical results leading to type
soundness. Section 5 uses our type system to specify the POP3 protocol, and
discusses the role of subtyping. Finally we discuss related work, and outline our
future plans, in Section 6.

2 Syntax and Notation

Our language is based on a polyadic π-calculus with output prefixing [12]. We
omit the original π-calculus choice construct P + Q, partly in order to keep the
language close to the core of Pict [16]. However, we have the constructs intro-
duced in Section 1 for choosing between a collection of labelled processes, as
proposed by Honda et al. [5, 20]. We also omit the matching construct, which
allows channel names to be tested for equality, again because it is not present in
core Pict. The inclusion of output prefixing is different from many recent pre-
sentations of the π-calculus, but it is essential because our type system must

4

be able to impose an order on separate outputs on the same channel. It is con-
venient to add a conditional process expression, written if b thenP else Q where
b is a boolean value, and therefore we also have a ground type of booleans;
other ground types, such as int as used in the examples in Section 1, could be
added along with appropriate primitive operations. As is standard, we use the
replication operator ! instead of recursive process definitions.

The type system has separate constructors for input-only, output-only and
dual-capability channels, as suggested by Pierce and Sangiorgi [15]. It also has
constructors for session types, as proposed by Honda et al. [5, 20]. The need for
linear control of session channels leads to the usage annotations on session types,
which play a similar role to the polarities of Kobayashi et al. [9]. Subtyping will
be defined in Section 3.

In general we use lower case letters for channel names, l1, . . . , ln for labels of
choices, upper case P , Q, R for processes, and upper case T , U etc. for types. We
write x̃ for a finite sequence x1, . . . , xn of names, and x̃ : T̃ for a finite sequence
x1 : T1, . . . , xn : Tn of typed names.

2.1 Processes

The syntax of processes is defined by the following grammar. Note that T and
T̃ stand for types and lists of types, which have not yet been defined.

P ::= 0
| P |Q | x . {l1 :P1, . . . , ln :Pn}
| x ? [ỹ : T̃] . P | x / l . P
| x ! [ỹ] . P | !P
| (νx : T)P | if x then P else Q

Most of this syntax is fairly standard. 0 is the inactive process, | is parallel
composition, (νx : T)P declares a local name x of type T for use in P , and
!P represents a potentially infinite supply of copies of P . x ? [ỹ : T̃] . P receives
the names ỹ, which have types T̃ , along the channel x, and then executes P .
x ! [ỹ] . P outputs the names ỹ along the channel x and then executes P . There
should be no confusion between the use of ! for output and its use for replication,
as the surrounding syntax is quite different in each case. x . {l1 :P1, . . . , ln :Pn}
offers a choice of subsequent behaviours—one of the Pi can be selected as the
continuation process by sending the appropriate label li along the channel x, as
explained in Section 1. x / l . P sends the label l along x in order to make a
selection from an offered choice, and then executes P . The conditional expression
has already been mentioned.

We define free and bound names as usual: x is bound in (νx : T)P , the names
in ỹ are bound in x?[ỹ : T̃] .P , and all other occurrences are free. We then define
α-equivalence as usual, and identify processes which are α-equivalent. We also
define an operation of substitution of names for names: P{x̃/ỹ} denotes P with
the names x1, . . . , xn simultaneously substituted for y1, . . . , yn, assuming that
bound names are renamed if necessary to avoid capture of substituting names.

5

As usual we define a structural congruence relation, written ≡, which helps to
define the operational semantics. It is the smallest congruence (on α-equivalence
classes of processes) closed under the following rules.

P | 0 ≡ P S-Unit
P |Q ≡ Q | P S-Comm

P | (Q |R) ≡ (P |Q) |R S-Assoc
(νx : T)P |Q ≡ (νx : T)(P |Q) if x is not free in Q S-Extr

(νx : T)0 ≡ 0 S-Nil
(νx : T)(νy : U)P ≡ (νy : U)(νx : T)P S-Perm

!P ≡ P |!P S-Rep
x . {l1 :P1, . . . , ln :Pn} ≡ x . {lσ(1) :Pσ(1), . . . , lσ(n) :Pσ(n)} S-Offer

In rule S-Offer, σ is a permutation on {1, . . . , n}.

2.2 Types

The syntax of types is defined by the following grammar.

Ground types G ::= bool
Channel types C ::= ?[T1, . . . , Tn]

| ![T1, . . . , Tn]
| ̂[T1, . . . , Tn]

Session types S ::= end
| ?[T1, . . . , Tn] . S
| ![T1, . . . , Tn] . S
| &〈l1 :S1, . . . , ln :Sn〉
| ⊕〈l1 :S1, . . . , ln :Sn〉

Types T ::= G|C|A
| X(type variable)
| µX.T (recursive type)

Annotated session types A ::= S1|S2

The usage annotation, or just usage, of a session type indicates how a channel
of that type can be used: if x : S1 then x can only be used as specified by S, but
if x : S2 then both sides of x can be used, including the side described by S. We
omit usage annotations from end, and often omit usage annotations of 1.

We define the unwinding of a recursive type: unwind(µX.T) = T{µX.T/X}.
If T is a type then T is the dual (or complementary) type of T , defined

inductively as follows.

&〈l1 :S1, . . . , ln :Sn〉 = ⊕〈l1 :S1, . . . , ln :Sn〉
⊕〈l1 :S1, . . . , ln :Sn〉 = &〈l1 :S1, . . . , ln :Sn〉
bool = bool ?[T̃] = ![T̃]
end = end ![T̃] = ?[T̃]
X = X µX.T = µX.T

6

S2 and S
2

both describe a session channel of which both ends are being used.
We adopt the convention that when S2 is written, S is either a branching type
or begins with an input. We say that a session type is complete if it has usage
2; it is incomplete if it is end or has usage 1.

2.3 Environments

An environment is a set of typed names, written x1 : T1, . . . , xn : Tn. We use Γ , ∆
etc. to stand for environments. We assume that all the names in an environment
are distinct. We write x ∈ Γ to indicate that x is one of the names appearing in
Γ , and then write Γ (x) for the type of x in Γ . When x 6∈ Γ we write Γ, x : T for
the environment formed by adding x : T to the set of typed names in Γ . When
Γ and ∆ have disjoint sets of names, we write Γ,∆ for their union. Implicitly,
true : bool and false : bool appear in every environment.

The partial operation + on types is defined by

T + T = T if T is a ground type, a channel type, or end

S1 + S
1

= S2 if S is a session type

and is undefined in all other cases.
The partial operation +, combining a typed name with an environment, is

defined as follows:

Γ + x : T = Γ, x : T if x 6∈ Γ
(Γ, x : T) + x : U = Γ, x : (T + U) if T + U is defined

and is undefined in all other cases.
We extend + to a partial operation on environments by defining

Γ + (x1 : T1, . . . , xn : Tn) = (· · · (Γ + x1 : T1) + · · ·+) + xn : Tn

We say that an environment is unlimited if it contains no session types except
for end.

3 The Type System

3.1 Subtyping

The principles behind the definition of subtyping have been described in Sec-
tion 1. Figure 1 defines the subtype relation formally by means of a collection of
inference rules for judgements of the form Σ ` T 6 U , where Σ ranges over finite
sets of instances of 6. When ∅ ` T 6 U is derivable we simply write T 6 U .
The inference rules can be interpreted as an algorithm for checking whether
T 6 U for given T and U , as follows. Beginning with the goal ∅ ` T 6 U , apply
the rules upwards to generate subgoals; pattern matching on the structure of T
and U determines which rule to use, except that the rule AS-Assump should
always be used, causing the current subgoal to succeed, if it is applicable. If

7

both AS-Rec-L and AS-Rec-R are applicable then they should be used in ei-
ther order. If a subgoal is generated which does not match any of the rules, the
algorithm returns false.

Pierce and Sangiorgi [15] give two definitions of their subtype relation: one by
means of inference rules (as in Figure 1) and one as a form of type simulation, de-
fined coinductively. The subtyping algorithm derived from the inference rules can
then be proved sound and complete with respect to the coinductive definition,
while the coinductive definition permits straightforward proofs of transitivity
and reflexivity of the subtype relation. In the same way, we can characterize our
subtype relation coinductively, prove soundness and completeness of the subtyp-
ing algorithm, and prove transitivity and reflexivity; due to space constraints,
we have omitted the details from the present paper.

The subtype relation is defined on non-annotated types, but annotations
preserve subtyping: if i ∈ {1, 2} then Si 6 T i if and only if S 6 T .

If T̃ and Ũ have the same length, n, and ∀i ∈ {1, . . . , n}.Ti 6 Ui, we write
T̃ 6 Ũ .

3.2 Typing rules

The typing rules are defined in Figure 2. Note that a judgement of the form
Γ ` x : T 6 U means x : T ∈ Γ and T 6 U . Subtyping appears in the
hypotheses of rules T-Out, T-OutSeq, T-In and T-InSeq, where it must be
possible to promote the type of the channel to the desired input or output type.
It appears less explicitly in rules T-Offer and T-Choose, where the type of x
must include enough labels for the choice being constructed.

Each typing rule is only applicable when any instances of + which it contains
are actually defined. This ensures that the environment correctly records the use
being made of session channels. Consider again the two applications of T-Par
from Section 1.

x : S1 ` server x : S
1 ` client

x : S2 ` server | client

x : S
1 ` client x : S

1 ` client

x : S
1 ` client | client

The first is correct because S1+S
1

= S2. The second is incorrect because S
1
+S

1

is not defined; this prevents the session channel x from being used simultaneously
by both copies of client.

Notice also that in rules T-Out and T-OutSeq, the names being output
are added to the environment; this means that if a session channel is output then
the part of its usage which is given away cannot be used again by the remainder
of the process. This allows a process to begin a communication on a session
channel, then delegate the rest of the session to another process by sending it
the channel; of course, the first process must not use the channel again. Such
behaviour arises when a recursive process, which uses a session channel (of a
recursive type), is represented in terms of replication: when the next instance of
the recursive process is invoked, the session channel must be passed on.

8

T 6 U ∈ Σ
AS-Assump

Σ ` T 6 U

AS-Bool
Σ ` bool 6 bool

AS-End
Σ ` end 6 end

Σ ` T̃ 6 Ũ
AS-In

Σ ` ?[T̃] 6 ?[Ũ] Σ ` ̂[T̃] 6 ?[Ũ]

Σ ` Ũ 6 T̃
AS-Out

Σ ` ![T̃] 6 ![Ũ] Σ ` ̂[T̃] 6 ![Ũ]

Σ ` T̃ 6 Ũ and Σ ` Ũ 6 T̃
AS-InOut

Σ ` ̂[T̃] 6 ̂[Ũ]

Σ ` V 6 W Σ ` T̃ 6 Ũ
AS-InSeq

Σ ` ?[T̃] . V 6 ?[Ũ] . W

Σ ` V 6 W Σ ` Ũ 6 T̃
AS-OutSeq

Σ ` ![T̃] . V 6 ![Ũ] . W

m 6 n ∀i ∈ {1, . . . , m}.Σ ` Si 6 Ti

AS-Branch
Σ ` &〈l1 :S1, . . . , lm :Sm〉 6 &〈l1 :T1, . . . , ln :Tn〉

m 6 n ∀i ∈ {1, . . . , m}.Σ ` Si 6 Ti

AS-Choice
Σ ` ⊕〈l1 :S1, . . . , ln :Sn〉 6 ⊕〈l1 :T1, . . . , lm :Tm〉

Σ, µX.S 6 T ` unwind(µX.S) 6 T
AS-Rec-L

Σ ` µX.S 6 T

Σ, T 6 µX.S ` T 6 unwind(µX.S)
AS-Rec-R

Σ ` T 6 µX.S

Fig. 1. Inference rules for subtyping

9

Γ unlimited
T-Nil

Γ ` 0

Γ ` P ∆ ` Q
T-Par

Γ + ∆ ` P |Q

Γ, x : T ` P if T is a session type it must be complete
T-New

Γ ` (νx : T)P

Γ ` P Γ ` x 6 ![T̃]
T-Out

Γ + ỹ : T̃ ` x ! [ỹ] . P

Γ, ỹ : T̃ ` P Γ ` x 6 ?[T̃]
T-In

Γ ` x ? [ỹ : T̃] . P

Γ, x : S ` P S is incomplete Ũ 6 T̃
T-OutSeq

(Γ, x : ![T̃] . S) + ỹ : Ũ ` x ! [ỹ] . P

Γ, x : S, ỹ : Ũ ` P S is incomplete T̃ 6 Ũ
T-InSeq

Γ, x : ?[T̃] . S ` x ? [ỹ : Ũ] . P

Γ, x : S1 ` P1 . . . Γ, x : Sn ` Pn each Si is incomplete m 6 n
T-Offer

Γ, x : &〈l1 :S1, . . . , lm :Sm〉1 ` x . {l1 :P1, . . . , ln :Pn}

Γ, x : Si
ti ` P Si = end or ti = 1

T-Choose
Γ, x : ⊕〈l1 :S1, . . . , ln :Sn〉1 ` x / li . P

Γ ` x : bool Γ ` P Γ ` Q
T-Cond

Γ ` if x then P else Q

Γ ` P Γ unlimited
T-Rep

Γ `!P

Fig. 2. Typing rules

R-Comm
x ? [ỹ : T̃] . P | x ! [z̃] . Q −→ P{z̃/ỹ} |Q

i ∈ {1, . . . , n}
R-Select

x . {l1 :P1, . . . , ln :Pn} | x / li . Q −→ Pi |Q

P −→ P ′

R-Par
P |Q −→ P ′ |Q

P ′ ≡ P P −→ Q Q ≡ Q′

R-Cong
P ′ −→ Q′

P −→ P ′

R-New
(νx : T)P −→ (νx : T)P ′

R-True
if true then P else Q −→ P

R-False
if false then P else Q −→ Q

Fig. 3. The reduction relation

10

Finally, note that a session type T.end effectively specifies a linear non-session
channel of type T as used in [9].

4 Operational Semantics

As usual for π-calculus-like languages, the operational semantics is defined by
means of a reduction relation [11]. P −→ Q means that the process P reduces
to the process Q by executing a single communication step (or evaluating a
conditional expression). The reduction relation is the smallest relation closed
under the rules in Figure 3, most of which are standard. The rules R-Comm and
R-Select introduce communication steps; R-Comm is standard and R-Select
introduces communications which select labelled options. Note that R-Comm
applies to both session and non-session channels, as there is no indication of the
type of x in either process.

The usual way of proving type soundness is first to prove a subject reduction
theorem: if Γ ` P and P −→ Q then there is an environment ∆ such that ∆ ` Q.
Then, one proves that if Γ ` P then the immediately available communications
in P do not cause type errors. Together these results imply that a well-typed
process can be executed safely through any sequence of reduction steps. However,
the presence of subtyping means that examining Γ is not sufficient to determine
what constitutes correct use of names in P ; different occurrences of a single
name in P might be constrained to have different types. For example, the typed
process

a : ̂[![bool]], b : ̂[?[bool]], x : ̂[bool] `
a ! [x] . b ! [x] . 0 | a ? [y : ![bool]] . P | b ? [z : ?[bool]] . Q

reduces in two steps to, essentially, x : ̂[bool] ` P{x/y} | Q{x/z}, and occur-
rences of x in P have type ![bool] but those in Q have type ?[bool].

To address this difficulty, we adopt Pierce and Sangiorgi’s technique of in-
troducing tagged processes [15], written E, F , etc. instead of P , Q, etc. The
syntax of tagged processes is identical to that of ordinary processes except that
all occurrences of names are typed, for example (x : T) ! [x̃ : Ũ] . E. Structural
congruence is defined on tagged processes by the same rules, with tags added, as
for untagged processes. We also introduce tagged typing rules, defining judge-
ments of the form Γ ` E. The tagged typing rules are essentially the same as
the untagged typing rules; a typical example is the rule TT-Out.

Γ ` E Γ ` x 6 T 6 ![Ũ] Ṽ 6 Ũ
TT-Out

Γ + ỹ : Ṽ ` (x : T) ! [ỹ : Ũ] . E

Note that the type declared for a name in the environment must be a subtype
of the type with which that name is tagged in the process.

The tagged reduction relation is written Γ ` E −→ ∆ ` F and is defined by
the rules in Figure 4, together with tagged versions of the rules R-Par, R-Cong,
R-New, R-True and R-False.

11

T 6 ?[Ũ] V 6 ![Ũ] W̃ 6 Ũ
TR-Comm

Γ, x : ̂[S̃] ` (x : T) ? [ỹ : Ũ] . P | (x : V) ! [z̃ : W̃] . Q

−→ Γ, x : ̂[S̃] ` P{z̃/ỹ} |Q

S 6 ?[Ũ] . R V 6 ![Q̃] . R W̃ 6 Ũ
TR-CommSeq

Γ, x : ?[T̃] . R2 ` (x : S) ? [ỹ : Ũ] . P | (x : V) ! [z̃ : W̃] . Q
−→ Γ, x : R2 ` P{z̃/ỹ} |Q

m 6 n l ∈ {l1, . . . , ln}
TR-Select

Γ, x : &〈l1 :T1, . . . , ln :Tn〉2 ` (x : S) . {l1 :P1, . . . , ln :Pn} | (x : V) / l . Q
−→ Γ, x : Ti ` Pi |Q

Fig. 4. The tagged reduction relation (selected rules)

The function Erase from tagged processes to untagged processes simply re-
moves the extra type information. The definition is straightforward, for example

Erase((x : T) ! [ỹ : Ũ] . E) = x ! [ỹ] . Erase(E).

Theorem 1 (Tagged Subject Reduction). If Γ ` E −→ ∆ ` F and Γ ` E
is derivable then ∆ ` F is derivable.

Proof. By induction on the derivation of Γ ` E −→ ∆ ` F . The assumption
that Γ ` E is derivable provides the information about the components of F
which is needed to build a derivation of ∆ ` F .

Observe that the Tagged Subject Reduction Theorem guarantees that the
tagged reduction relation is well-defined as a relation on derivable tagged typing
judgements.

Lemma 1. If Γ ` P is a derivable untagged typing judgement, then there is a
tagged process E such that P = Erase(E) and Γ ` E is a derivable tagged typing
judgement.

Proof. We can define a function TagΓ (P), by induction on the structure of P ,
which essentially tags every name in P with its exact type as declared in Γ or by
a binding ν or input. The presence of session types causes a slight complication:
if x : S2 ∈ Γ and x is used in both P and Q, then TagΓ (P | Q) must ensure
that x is tagged with S1 in P and with S

1
in Q, or vice versa. Essentially the

same problem is encountered in linear type inference [10], and we use the same
solution: TagΓ (P) returns a pair (P ′, Γ ′) where P ′ is a tagged process and Γ ′

differs from Γ only by the possible removal of some usages of session types. Then

12

TagΓ (P |Q) = (P ′ |Q′, Γ ′′) where TagΓ (P) = (P ′.Γ ′) and TagΓ ′(Q) = (Q′, Γ ′′).
When Γ ` P and TagΓ (P) = (P ′, Γ ′) we have that Γ ′ is unlimited (so all session
types have been removed), okΓ (P ′) and P = Erase(P ′).

Theorem 2. If Γ ` P is derivable and Γ ` E is derivable and P = Erase(E)
and P −→∗ Q then there exists ∆ ` F such that Γ ` E −→∗ ∆ ` F and Q =
Erase(F).

Proof. By breaking the sequence of reductions into individual steps, and showing
that the result holds for each step; the latter fact can be proved by induction on
the derivation of the reduction step.

The Tagged Subject Reduction Theorem, Lemma 1 and Theorem 2 imply
that any sequence of reductions from a well-typed untagged process can be mir-
rored by a sequence of reductions from a well-typed tagged process. The final
theorem establishes that well-typed tagged processes do not contain any imme-
diate possibilities for incorrect communication. It follows easily from the taggd
typing rules; most of the work in proving type soundness is concentrated into the
proof of the Tagged Subject Reduction Theorem. Each case of the conclusion
shows that whenever a tagged process appears to contain a potential reduction,
the preconditions for the relevant tagged reduction rule are satisfied and the
reduction can safely be carried out.

Theorem 3. If P is a tagged process, Γ ` Erase(P) and okΓ (P), then

1. if P ≡ (νx̃ : X̃)((a : T) ? [ỹ : Ũ] . P1 | (a : V) ! [z̃ : W̃] . P2 | Q) and T is not
a session type then the declaration a : S occurs in either Γ or x̃ : X̃, with
S 6 T 6 ?[Ũ] and S 6 V 6 ![W̃] and W̃ 6 Ũ .

2. if P ≡ (νx̃ : X̃)((a : T . T ′) ? [ỹ : Ũ] . P1 | (a : V . V ′) ! [z̃ : W̃] . P2 |Q) then the
declaration a : S2 occurs in either Γ or x̃ : X̃, with S 6 T .T ′ and S 6 V .V ′

and T 6 ![Ũ] and V 6 ?[W̃] and Ũ 6 W̃ .
3. if P ≡ (νx̃ : X̃)((a : T) . {l1 :P1, . . . , lm :Pm} | (a : V) / l . P0 | Q) then

the declaration a : S occurs in either Γ or x̃ : X̃, with S 6 T and T =
&〈l1 :T1, . . . , ln :Tn〉 and n 6 m and S 6 V and V = ⊕〈l1 :V1, . . . , lr :Vr〉
and r 6 n and l ∈ {l1, . . . , lr}.

4. if P ≡ (νx̃ : X̃)(if a then P1 else P2 | Q) then the declaration a : bool occurs
in either Γ or x̃ : X̃.

If we take a well-typed untagged process and convert it into a tagged process, no
reduction sequence can lead to a type error. Because every reduction sequence
from a well-typed untagged process can be matched by a reduction sequence
from a well-typed tagged process, we conclude that no type errors can result
from executing a well-typed untagged process.

5 The POP3 Protocol

As a more substantial example, we will now use our type system to specify the
POP3 protocol [13]. This protocol is typically used by electronic mail software

13

A = µX.&〈 quit :⊕〈ok : ![str] . end〉,
user :?[str] .⊕〈 error : ![str] . X,

ok : ![str] . &〈 quit :⊕〈ok : ![str] . end〉,
pass :?[str] .⊕〈 error : ![str] . X,

ok : ![str] . T 〉〉〉〉
T = µX.&〈 stat :⊕〈ok : ![int, int] . X〉,

retr :?[int] .⊕〈 ok : ![str] . ![str] . X,
error : ![str] . X〉,

quit :⊕〈ok : ![str] . end〉〉

Fig. 5. Types for the POP3 protocol

to download new messages from a remote mailbox, so that they can be read and
processed locally; it does not deal with sending messages or routing messages
through a network. A POP3 server requires a client to authenticate itself by
means of the user and pass commands. A client may then use commands such
as stat to obtain the status of the mailbox, retr to retrieve a particular message,
and quit to terminate the session. Some of these commands require additional
information to be sent, for example the number of a message. We have omitted
several POP3 commands from our description, but it is straightforward to fill in
the missing ones.

To specify the behaviour of a channel which can be used for a POP3 ses-
sion, we use the type definitions in Figure 5: A describes interactions with the
authentication state, and T describes interactions with the transaction state.
These definitions are for the server side of the channel, and we assume that
there is a ground type str of strings. These definitions illustrate the complex
structure possible for session types, and show the use of recursive types to de-
scribe repetitive session behaviour. The server both offers and makes choices, in
contrast to the example in Section 1. After receiving a command (a label) from
the client, the server can respond with either ok or error (except for the quit
command, which always succeeds and does not allow an error response). The
client implements an interaction of type A, and therefore must offer a choice be-
tween ok and error when waiting for a response to a command. In the published
description of the protocol, ok and error responses are simply strings prefixed
with +OK or -ERR. This does not allow us to replace the corresponding ⊕ by
![str] in the above definitions because the different continuation types after ok
and error are essential for an accurate description of the protocol’s behaviour.
We specify a string message as well, because a POP3 server is allowed to provide
extra information such as an error code.

As in Section 1 we could implement a process POP3body such that x : A `
POP3body. Defining POP3 = port?[x : A1].POP3body gives port : ̂[A1] ` POP3,
which can be published as the specification of the server and its protocol.

The POP3 protocol permits an alternative authentication scheme, accessed
by the apop command, in which the client sends a mailbox name and an au-

14

thenticating string simultaneously. This option does not have to be provided,
but a server which does implement it requires a channel of type B, where B is
obtained from A by adding a third option to the first choice:

apop :?[str, str] .⊕〈error : ![str] . X, ok : ![str] . T 〉

A server which implements the apop command can be typed as follows: port :̂[B1] ` newPOP3. Now suppose that client is a POP3 client which does not know
about the apop command. As before, we have client = (νx : A2)port![x].clientbody
where x : A1 ` clientbody. This gives port : ̂[A1] ` client. The following deriva-
tion shows that client can also be typed in the environment port : ̂[B1], and can
therefore be put in parallel with newPOP3. The key fact is that A 6 B, because
the top-level options provided by A are a subset of those provided by B.

x : A
1 ` clientbody ̂[B] 6 ![A]

T-Out
port : ̂[B1], x : A2 ` port ! [x] . clientbody

T-New
port : ̂[B1] ` (νx : A2)port ! [x] . clientbody

Space does not permit us to present the definition of POP3body, but we claim
that it is simpler and more readable than an equivalent definition in conventional
π-calculus or Pict. The key factor is that the session type of x allows it to be
used for all the messages exchanged in a complete POP3 session. Without session
types, the client has to create a fresh channel every time it needs to send a
message of a different type to the server; these channels also have to be sent
to the server before use, which adds an overhead to every communication and
therefore also to the channel types. Also in this case, the subtype relation on
non-session types does not describe the relationship between interactions with
POP3 and with newPOP3.

6 Conclusions and Future Work

We have defined a language whose type system incorporates session types, as
suggested by Honda et al. [5, 20], and subtyping, based on Pierce and Sangiorgi’s
work [15] and extended to session types. Session channels must be controlled
linearly in order to guarantee that messages go to the correct destinations, and
we have adapted the work of Kobayashi et al. [9] for this purpose. Our language
differs minimally from the π-calculus, the only additions being primitives for
offering and making labelled choices. Unlike Honda et al. we do not introduce
special syntax for establishing and manipulating session channels; everything is
taken care of by the typing rules. We have advocated using a session type as part
of the published specification of a server’s protocol, so that static type-checking
can be used to verify that client implementations behave correctly. Using the
POP3 protocol as an example, we have shown that subtyping increases the utility
of this idea: if upgrading a server causes its protocol to have a session type which
is a supertype of its original session type, then existing client implementations
are still type-correct with respect to the new server.

15

Session types have some similarities to the types for active objects studied by
Nierstrasz [14] and Puntigam [18, 19]. Both incorporate the idea of a type which
specifies a sequence of interactions. The main difference seems to be that in the
case of active objects, types can specify interdependencies between interactions
on different channels. However, the underlying framework (concurrent objects
with method invocation, instead of channel-based communication between pro-
cesses) is rather different, and we have not yet made a detailed comparison of
the two systems.

The present paper is the first report of our work on a longer term project
to investigate advanced type systems in the context of the Pict [16] program-
ming language. Our next goal is to extend the Pict compiler to support the type
system presented here. Because Pict is based on the asynchronous π-calculus
[4, 6, 1] the output prefixing of our language will have to be encoded by explic-
itly attaching a continuation channel to each message. Initially we will work with
a non-polymorphic version of Pict; later, after more theoretical study of the in-
terplay between session types and polymorphism, we will integrate session types
with the full Pict type system including polymorphism. The Pict compiler uses
a powerful partial type inference technique [17], and it will be interesting to see
how it can be extended to handle session types. Because of the value of explicit
session types as specifications, we might not want to allow the programmer to
omit them completely; however, automatic inference of, for example, some usage
annotations will probably be very useful.

The implementation will allow us to gain more experience of programming
with sessions, which in turn should suggest other typing features which can
usefully be added to the system—for example, it would be interesting to consider
Kobayashi’s type system [7, 8] for partial deadlock-freedom.

Acknowledgements

Malcolm Hole is funded by the EPSRC project “Novel Type Systems for Concur-
rent Programming Languages” (GR/L75177). Simon Gay is partially funded by
the same EPSRC project, and also by a grant from the Nuffield Foundation. We
thank the anonymous referees for their comments and suggestions. Paul Taylor’s
proof tree macros were used in the production of this paper.

References

[1] G. Boudol. Asynchrony and the π-calculus (note). Rapporte de Recherche 1702,
INRIA Sofia-Antipolis, May 1992.

[2] S. J. Gay. A sort inference algorithm for the polyadic π-calculus. In Proceedings,
20th ACM Symposium on Principles of Programming Languages. ACM Press,
1993.

[3] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.
[4] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In

Proceedings of the European Conference on Object-Oriented Programming, LNCS.
Springer-Verlag, 1994.

16

[5] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In Proceedings of the Euro-
pean Symposium on Programming, Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[6] K. Honda and N. Yoshida. Combinatory representation of mobile processes.
In Proceedings, 21st ACM Symposium on Principles of Programming Languages,
1994.

[7] N. Kobayashi. A partially deadlock-free typed process calculus. In Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, 1997.

[8] N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transac-
tions on Programming Languages and Systems, 20:436–482, 1998.

[9] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus.
In Proceedings, 23rd ACM Symposium on Principles of Programming Languages,
1996.

[10] I. Mackie. Lilac : A functional programming language based on linear logic.
Journal of Functional Programming, 4(4):1–39, October 1994.

[11] R. Milner. The polyadic π-calculus: A tutorial. Technical Report 91-180, Labo-
ratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, 1991.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–77, September 1992.

[13] J. Myers and M. Rose. Post office protocol version 3, May 1996. Internet Standards
RFC1939.

[14] O. Nierstrasz. Regular types for active objects. ACM Sigplan Notices, 28(10):1–15,
October 1993.

[15] B. Pierce and D. Sangiorgi. Types and subtypes for mobile processes. In Pro-
ceedings, Eighth Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press, 1993.

[16] B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. Technical Report CSCI 476, Computer Science Department, Indiana
University, 1997. To appear in Proof, Language and Interaction: Essays in Honour
of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, MIT
Press, 1998.

[17] B. C. Pierce and D. N. Turner. Local type inference. In Proceedings, 25th ACM
Symposium on Principles of Programming Languages, 1998.

[18] F. Puntigam. Synchronization expressed in types of communication channels.
In Proceedings of the European Conference on Parallel Processing (Euro-Par’96),
volume 1123 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[19] F. Puntigam. Coordination requirements expressed in types for active objects.
In M. Aksit and S. Matsuoka, editors, Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’97), volume 1241 of Lecture Notes in
Computer Science. Springer-Verlag, 1997.

[20] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In Proceedings of the 6th European Conference on Parallel Lan-
guages and Architectures, number 817 in Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[21] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1996.

17

